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Abstract. This paper constitutes a short introduction to paramet-
ric verification of concurrent systems. It originates from two 1-day
tutorial sessions held at the Petri nets conferences in Torun (2016)
and Zaragoza (2017). A video of the presentation is available at
youtube.com/playlist?1list=PL9S0LKoGjbeqNcdQVqFpUz7HYqD1fbFIg,
consisting of 14 short sequences. The paper presents not only the basic
formal concepts tackled in the video version, but also an extensive
literature to provide the reader with further references covering the
area.

We first introduce motivation behind parametric verification in general,
and then focus on different models and approaches, for verifying sev-
eral kinds of systems. They include Parametric Timed Automata, for
modelling real-time systems, where the timing constraints are not nec-
essarily known a priori. Similarly, Parametric Interval Markov Chains
allow for modelling systems where probabilities of events occurrences
are intervals with parametric bounds. Parametric Petri Nets allow for
compact representation of systems, and cope with different types of pa-
rameters. Finally, Action Synthesis aims at enabling or disabling actions
in a concurrent system to guarantee some of its properties. Some tools
implementing these approaches were used during hands-on sessions at the
tutorial. The corresponding practicals are freely available on the Web.

1 Introduction to parametric verification

We first introduce the motivation for performing parametric verification. Sev-
eral formal models can be considered, depending on the characteristics of the
system and its properties the designer wants to address. We will also discuss the
problems of interest in such a framework. At the end of this section, we will give
pointers to some additional and complementary material.

* This is the author version of the manuscript of the same name published in the
Transactions on Petri Nets and Other Models of Concurrency (ToPNoC). The pub-
lished version is available at springer.com. This work is partially supported by the
ANR national research program PACS (ANR-14-CE28-0002).
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The reader is assumed to have basic knowledge of Petri nets and/or automata
and their associated verification techniques, since they constitute the basis of the
formal models we address in a parametric setting.

1.1 Why parameters and of what kind?
Parameters provide several facilities for easily modelling complex systems:

1. Dimensioning: systems often exhibit components that occur as multiple
copies of the same structure or similar ones. For example, a wireless sen-
sor network is composed of a certain number of identical sensors. At the
design phase, the exact number of sensors might be unknown and would
therefore be a parameter.

2. Choice of actions: different actions in the system might be possible in a
given state. The designer having several possibilities in mind would model
them and analyse the behaviour of the system with these actions enabled or
disabled. In this case, the enabledness of each individual action is considered
as a parameter.

3. Design choices: different system characteristics can be taken into account
at the design phase so as to be evaluated. For example, when designing an
electronic system, one might have the choice between different components,
available of course at different prices, each providing its specific character-
istics, such as a better or worse response time. In such a case, the designer
may want to construct a single model, and use these timing characteristics
as a parameter so as to evaluate which is the best possible choice according
to his/her needs.

To handle the cases described, different kinds of parameters are used. They
will influence the type of a formal model and verification techniques chosen. In
the three previous cases, parameters would be:

1. Instances numbering allow for counting identical components in the system.

2. Controllable actions can be enabled or disabled, as opposed to the other ones
which are always available for the system.

3. Time or probabilities provide means to handle different characteristics of the
actual system components.

Therefore, many kinds of parameters can be considered according to the
problem at hand.

1.2 Modelling languages

Among the popular traditional languages for modelling concurrent systems are
automata and Petri nets, and their numerous extensions.

Unfortunately, these modelling languages are not completely suited to handle
the systems of our interest. Indeed, numbering instances of components is easily
achieved with high-level Petri nets such as Coloured Petri Nets (CPNs). In CPNs,



the Petri net is enriched with data carried by tokens and modified when firing
transitions. These data can very well be a numbering of an instance. Nevertheless,
the number of instances is fixed a priori, as opposed to a parameter. Therefore,
when the designer wants to analyse several configurations of the system, first
the model is built for a given number of instances, then analysed, the number is
changed, the model analysed again, and so on.

In Petri nets or automata, there is no specific handling of controllable actions.
Hence, to test several options in the design, each of them must be modelled and
analysed individually.

Finally, timed versions of Petri nets and automata are widely used, but suffer
from the same defaults: values must be known in advance.

Hence, with traditional modelling languages, values are to be set before the
analysis is performed, and the process must be repeated for all possible values.
It is thus a tedious process which boils down to testing all values one by one,
taking a huge amount of time.

1.3 Problems of interest in a parametric setting

The major objective for introducing parameters is to circumvent this repetition
of analysis, by introducing parameters in the models. Furthermore, the analysis
techniques are suited to find constraints on parameters such that desired prop-
erties are satisfied (e.g. the property is satisfied for all values of the parameter p
between 1 and 10) or even synthesize the set of all such parameters valuations.

The first advantage of this approach is that answering these questions pro-
vides all possible values in a single analysis step. Second, the set of parameters
obtained can be infinite (e.g. p > 5), a result that cannot in general be obtained
with an enumerative approach.

1.4 Sources and references

Several sources of information are available to the reader, that provide additional
details on the theoretical background, further examples, etc. Among these:

— the video of the tutorial presentation:
youtube.com/playlist?1list=PL9SO0LKoGjbeqNcdQVqFpUz7HYqD1fbFIg;

— the slides of the tutorial: imitator.fr/tutorials/PN17/;

the exercises with IMITATOR (imitator.fr/tutorials/PN17/) and

ROMEO (romeo.rts-software.org/doc/tutorial.html);

the extensive literature that is referenced.

Outline. In Section 2, we first consider parameters as unknown constants in
timed automata, i.e. Parametric Timed Automata [AHV93]. We review de-
cidability results, and report on decidable subclasses. Then, in Section 3, we
consider parameters as unknown probabilities in Parametric Interval Markov
Chains [DLP16]. Section 4 deals with parameters that are unknown numbers of
tokens in Petri nets, yielding Parametric Time Petri Nets [Dav+15; Dav+17]. As
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a last formalism, we also consider in Section 5 the synthesis of actions (seen as
Boolean parameters) [KMP15; KP15]. Finally we review some verification tools
in Section 6.

2 Parametric Timed Automata

Classical qualitative model checking, implemented in powerful tools used suc-
cessfully in industry, falls short when quantitative aspects of systems such as
time, energy, probabilities, etc., are to be verified. Timed automata [AD94] al-
low for modeling and verifying time critical concurrent systems. This seminal
work [AD94] received the CAV conference award in 2008, and since then numer-
ous works have extended the formalism of timed automata.

However, despite of some success, (timed) model checking can be seen as
slightly disappointing. There are two main reason of that:

1. the binary response to properties satisfaction may not be informative enough,
and
2. the insufficient abstraction to cater for tuning and scalability of systems.

Adding parameters offers a higher level of abstraction by allowing unknown con-
stants in a model. Parameters can be used to model unknown timing constants
of timed systems. This approach has the following advantages:

— it becomes possible to verify a system at an earlier design stage, when not
all timing constants are known with full certainty.

— it allows designers to cope with uncertainty even at runtime: some timings
constants (e.g. periods of a real-time system) may be known up to a given
precision only (e.g. given with an interval of confidence), and parameters can
model this imprecision.

Parametric timed automata [AHV93] are an extension of timed automata
where timing constants can become unknown, i.e. parameters. They repre-
sent a particularly expressive formalism: in fact, its expressiveness is Turing-
complete [ALR16] and all non-trivial problems related to parametric timed au-
tomata are undecidable. For example, the mere existence of a parameter valua-
tion for which there exists a run reaching some location is undecidable (see e.g.
[And19b] for a survey).

Parametric timed automata suffer from negative decidability results, but they
still remain a quite powerful formalism. They can be used to address robustness
(in the sense of possibly infinitesimal variations of timing constants [BMS13]),
to model and verify systems with uncertain constants, and to synthesize suitable
(possibly unknown) valuations so that the system meets its specification.

In addition, several recent decidability results for subclasses of parametric
timed automata (e.g. [BL09; BO14; JLR15; Ben+15; AL17]) has made this for-
malism more promising, while new algorithmic and heuristic techniques (e.g.
[KP12; JLR15; And+15; Ast+16; Li+17; And+19]) has made the parametric



verification for some classes of problems more scalable and complete, or more
often terminating.

Verification with parametric timed automata has had important outcomes
in various areas, with verification of case studies such as the root contention
protocol [Hun+02], Philip’s bounded retransmission protocol [Hun+02], a 4-
phase handshake protocol [KP12], the alternating bit protocol [JLR15], an
asynchronous circuit commercialised by ST-Microelectronics [Che+09], (non-
preemptive) schedulability problems [JLR15], a distributed prospective archi-
tecture for the flight control system of the next generation of spacecrafts de-
signed at ASTRIUM Space Transportation [Fri+12], and even analysis of music
scores [FJ13].

In this section, we recall the syntax and semantics of parametric timed au-
tomata (Section 2.2) and their subclasses (Section 2.3). We introduce theoretical
problems of interest (Section 2.4), and review decidability results (Section 2.5).

2.1 Basic notions

Let N, Z, Q4, and R denote the sets of non-negative integers, integers, non-
negative rational numbers, and non-negative real numbers, respectively.

We first define the notions necessary to deal with clocks. We begin with clock
valuations.

Definition 1 (clock valuation). Let X = {x1,...,zn} be a finite set of
clocks, i.e. real-valued variables that evolve at the same rate.

A clock valuation is a function w: X — Ry.

We identify a clock valuation w with the point (w(zy),...,w(zmg)).

The following notations allow for specifying null clocks, and adding simulta-
neously the same delay to all clocks.

Notation 1 (clock operations)

— We write X =0 for Ny, g xi =0.

— We also use a special zero-clock xo, always equal to 0 (as in e.g. [Hun+02]).

— Given d € Ry, w+d denotes the valuation such that (w+d)(x) = w(x) +d,
forallx € X.

— Given R C X, we define the reset of a valuation w, denoted by [w|g, as
follows: [wlgr(z) =0 if x € R, and [w]r(z) = w(z) otherwise.

The systems considered comprise a priori unknown timing constants that
are thus parameters to be synthesized according to the targeted property.

Definition 2 (timing parameter valuation). Let P = {p1,...,pam} be a set
of timing parameters, i.e. unknown timing constants.

A timing parameter valuation v is a function v: P — Q4.

We identify a valuation v with the point (v(p1),...,v(par))-

Clocks and parameters are used together and thus can be combined.



Notation 2 (clocks and parameters valuations combined) Given a tim-
ing parameter valuation v and a clock valuation w, we denote by w|v the valu-
ation over X U P such that for all clocks x, w|v(z) = w(z) and for all timing
parameters p, w|v(p) = v(p).

The expressions on clocks can concern clock themselves, but also involve
parameters and constant delays.

Notation 3 (linear terms)

— In the following, let It denote a linear term over X U P of the form
Doi<cicn YiTit D<o Bipy +d, withx; € X, pj € P, and 73, B, d € L.

— Let plt denote a parametric linear term over P, that is a linear term without
clocks (i.e., vi =0 for all ).

The synthesis of parameters leads to expressing constraints on their values
in order to guarantee that the model satisfies the expected properties.

Definition 3 (constraints on clocks and timing parameters). A con-
straint C' over X U P s defined by the following grammar:

p=¢NG| ¢ |ltra0,
where 1 € {<, <, >, >}, It is a linear term.

Definition 4 (constraint satisfaction). A valuation w|v satisfies a constraint
C, denoted wl|v = C, if the expression obtained by replacing in C each timing
parameter by its valuation as in v evaluates to true.

Zones allow for defining convex sets of clocks and timing parameters values.

Definition 5 (zones and parametric guards). 4 zone C is a constraint such
that each of its linear conjuncts can be written in the form x; — x; > plt, where
zi,x; € X U{xo}. A parametric guard ¢ is a zone such that each of its linear
conjuncts can be written in the form x; > plt.

Definition 6 (satisfiability). Given a zone C, wjv | C indicates that valuat-
ing each clock variable x with w(x) and each timing parameter p with v(p) within
C, evaluates to true. Zone C is satisfiable if Jw,v s.t. wjv | C.

Time elapsing can be obtained by adding a new variable to all clocks, ensuring
that this variable is non-negative, and eliminating it (see, e.g. [And+09]).

Definition 7 (time elapsing of a zone). The time elapsing of a zone C,
denoted by C-", is the constraint over X U P obtained from C by delaying all
clocks by any arbitrary amount of time.

That is,

wEC” iffIw: X 5 Ry, IdeR, st w'|v=CAw =w+d.



2.2 Syntax and semantics
Syntax

Definition 8 (parametric timed automaton [AHV93]). A parametric
timed automaton (PTA) is a tuple A= (X, L,lo, F, X, P,1,E), where:

. X is a finite set of actions,

. L is a finite set of locations,

lo € L is the initial location,

F C L is a set of final or accepting locations,

X is a finite set of clocks,

P is a finite set of parameters,

I is the invariant, assigning to every l € L a parametric quard 1(1),

. E is a finite set of edges e = (I, g,0, R,l') where l,l' € L are the source and
target locations, o € X, R C X is a set of clocks to be reset, and g is a
parametric guard called the transition guard.

%R D T oo =

Given a parameter valuation v, we denote by wv(.A) the non-parametric
timed automaton where all occurrences of each parameter p; have been replaced
by v(p;). If v(A) is such that all constants in guards and resets are integers, then
v(A) is a timed automaton [AD94]. In the following, we refer to any structure
v(A) as a timed automaton, by assuming a rescaling of the constants: by multi-
plying all constants in v(.A) by the least common multiple of their denominators,
we obtain an equivalent (integer-valued) timed automaton.

Fig. 1: A coffee machine modeled using a PTA

Ezample 1. Consider the coffee machine in Fig. 1, modelled using a PTA with
4 locations, 2 clocks (z; and 25) and 3 parameters (p,p2,). Invariants are
boxed. The only accepting location (with a double border) is done. Observe that
all guards and invariants are simple constraints.

The machine can initially be idle for an arbitrarily long time. Then, whenever
the user presses the (unique) button (action ), the PTA enters location



add_sugar, resetting both clocks. The machine can remain in this location as
long as the invariant (zo < ) is satisfied; there, the user can add a dose of
sugar by pressing the button (action ), provided the guard (z; > p) is
satisfied, which resets x;. That is, the user cannot press twice the button (and
hence add two doses of sugar) within a time less than p;. Then, p, time units after
the machine left the idle mode, a cup is delivered (action ), and the coffee is
being prepared; eventually, time units after the machine left the idle mode,
the coffee (action ) is delivered. Then, after 10 time units, the machine
returns to the idle mode—unless a user again requests a coffee by pressing the
button.

Concrete Semantics

Definition 9 (Concrete semantics of a TA). Given a PTA A =
(X, L0, F,X,P I,E), and a parameter valuation v, the concrete semantics of
v(A) is given by the timed transition system (S, so, —), with

- S={(l,w) e L xRY |wlv = 1)},
— s0 = (lp,0), and
— — consists of the discrete and (continuous) delay transition relations:
e discrete transitions: (I,w) 5 (I',w'), if (I,w),(I',w’) € S, there exists
e=(l,g9,0,R,1") € E, w' = [w]g, and w|v |= g.
o delay transitions: (I, w) A (l,w+d), with d € Ry, if Vd' € [0,d], (I,w +
d)es.

Moreover we write (I, w) v (I’,w’) for a combination of a delay and discrete
transition where ((I,w), e, (I, w")) € — if 3d,w" : (I, w) 4 (1w S (U, w').

Given a TA v(A) with concrete semantics (5, sg, —), we refer to the states
of S as the concrete states of v(A). A (concrete) run of v(.A) is a possibly infinite
alternating sequence of concrete states of v(A) and edges starting from the initial

concrete state so of the form sg 3 sq = - -- st Sm =% -+, such that for all
i=0,1,...:¢e; € E, and (s;, €;,8;1+1) € —. Given a state s = (I, w), we say that s
is reachable (or that v(.A) reaches s) if s belongs to a run of v(A). By extension,
we say that [ is reachable in v(A), if there exists a state (I,w) that is reachable.
By extension, given a set of locations T' C L (T stands for “target”), we say that
T is reachable in v(.A), if there exists a location [ € T that is reachable in v(A).
Given a set of locations T' C L, we say that a run stays in T if all of its states
(I,w) are such that [ € T.

A mazimal run is a run that is either infinite (7.e. contains an infinite number
of discrete transitions), or that cannot be extended by a discrete transition. A
maximal run is deadlocked if it is finite, i.e. contains a finite number of discrete
transitions. By extension, we say that a TA is deadlocked if it contains at least
one deadlocked run.

Ezxample 2. Consider again the PTA modeling a coffee machine in Fig. 1. Let v
be the parameter valuation such that v(p;) =1, v(p2) = 5 and v(p3) = 8.



Given a clock valuation w, we denote it by (w(z1),w(z2)). For example,
(0,4.2) denotes that w(z;) =0 and w(zy) = 4.2.

The following sequence is a concrete run of v(.A).
(idl(r, (0, 0)) — (add_suga‘r, (0, 0)) — (add_suga‘r, (0, 1.78)) —

(a‘(,l(,l_sugar, (0, 4.2)) — (preparing_coﬂ'ee, (0.8, 5)) — (done, (0, 8)) —
(a‘(,l(,l_sugar, (0, O))

As an abuse of notation, we write above each arrow the action name (instead
of the edge), as edges are unnamed in Fig. 1.

This concrete run is not maximal (it could be extended).

€m—1 em

Language of timed automata Let (Iy, wo) <3 (I1,w;) & - (I, W) ¥
.-+ be a (finite or infinite) run of a TA v(A). The associated untimed word is
0001 - Om -+, where o; is the action of edge e;, for all ¢ > 0; the associated
trace® is looglio1le - - - Omlmat - - -

Given a run (lo, wo) =3 (I1,w1) S -+ T5" (I, wy,), we say that this run is
accepting if 1, € F.

We define the untimed language as the set of all untimed words associated
with accepting runs of a TA.

Definition 10 (untimed language of a TA). Given o PTA A =
(X,L,1y,F,X,P,1,E), and a parameter valuation v, the untimed language of
v(A), denoted by UL(v(A)), is the set of untimed words associated with all ac-
cepting runs of v(A).

We define the trace set as the set of traces associated with the accepting
runs.

Definition 11 (trace set of a TA). Given a PTA A= (X,L,ly,F,X,P,1,E),
and a parameter valuation v, the trace set of v(A) is the set of traces associated
with all accepting runs of v(A).

Ezxample 3. Consider again the PTA A modeling a coffee machine in Fig. 1.
Let v be the parameter valuation such that v(p,) =1, v(p.) =5 and v(p;) = 8.
The untimed language of v(A) can be described as follows:

[1..6] ( ? [1..6] )*
)
where o[®t 57 5* denote between a and b occurrences, zero or one occurrence,
and zero or more occurrence(s) of o, respectively.
The trace set of v(A) can be described as follows:

idle ( add_sugar) [1..6] preparing _coffee done
. ? . g *
(( idle)” ( add_sugar)[-¢! preparing_coffee done)

® This is a non-standard definition of traces (compared to e.g. [G1a90]), but we keep
this term as it is used in e.g. [And+09; AM15].



Symbolic semantics Let us now recall the symbolic semantics of PTAs (see
e.g. [Hun+02; And+09; JLR15]).

Definition 12 (Symbolic state). A symbolic state is a pair (I,C) wherel € L
s a location, and C' its associated parametric zone.

Definition 13 (Symbolic  semantics). Given a« PTA A =
(X,L,lo, F,X,P,1,E), the symbolic semantics of A is the labelled transi-
tion system called parametric zone graph PZG = (E, S, sg, =), with

-S={(0C)|CccIl)}
— 89 = (lo, (AlgigH €T, = 0)/( A\ I(lo)), and
— ((l,C),e, (l’,C”)) e=ife=(l,9,0,R,l') and

' = ((C A g)le AIW)) AL
with C" satisfiable.

That is, in the parametric zone graph, nodes are symbolic states, and arcs
are labelled by edges of the original PTA.

If ((1,C),e, (I',C")) € =, we write Succ(s,e) = (I',C").

A graphical illustration of the computation of Succ is given in Fig. 2.5 Start-
ing from the parametric zone C, it is intersected with guard g, leading to the
parametric values that allow for taking the transition. Then the necessary clocks
are reset. However, for the transition to be taken, the new values thus obtained
must satisfy the invariant of the target location, I(I’). After this, when in ',
time can elapse as long as the invariant still holds, leading to the new zone C’.

R

Fig.2: Computing the successor of a symbolic state

A symbolic run of a PTA is an alternating sequence of symbolic states and

E€m—1

edges starting from the initial symbolic state, of the form sg <2 51 = -+ =" s,

 This figure comes from [AS13], itself coming from an adaptation of a figure by
Ulrich Kiihne.
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such that for alli = 0,...,m—1,¢; € E, s;,8,41 € S and (s;,¢,8;41) € =. Given
a symbolic state s, we say that s is reachable if s belongs to a symbolic run of A.
In the following, we simply refer to symbolic states belonging to a run of A as
symbolic states of A.

Ezample j. Consider again the coffee machine example in Fig. 1. A (non-
maximal) symbolic run is as follows:

(idl(r, T =axo0 N1y > O) = (add_suga‘r, 1 =10 N0 < 19 < )
= (add_suga‘r, <ao—a1 <po A0 < 29 < )
= (add_suga‘r, 2X ) <ao—a21 <o AN0O< a5 <
= (pr(rparing_(‘()ﬁk‘,(r, 2 X <zo—11 < A < )
= ((1()11(,‘, 0<z1 <10Az9 —21 =p3A2X < < )
= (add_suga‘r, 21 =20 AN0< 20 <o A2X 1 <o < )
(For sake of readability, we use action names instead of edges along the

transitions.)
The parametric zone graph of this example is infinite.

€m—1
—

Given a concrete (respectively symbolic) run (g, 0) &3 (I1,w;) & ---
(Im>wy) (respectively (lp,Co) =2 (I1,C1) 2 -+ “%" (In, C)), we define the
corresponding discrete sequence as lp =% 1] < - -- 25" 1. Two Tuns (concrete
or symbolic) are said to be equivalent if their associated discrete sequences are
equal.

Two important results (see e.g. [Hun402]) relate the concrete and the sym-
bolic semantics, and are recalled below using our syntax. They provide a sort of
equivalence between symbolic parametric zones and concrete runs. That is, they
guarantee that the zones correspond to feasible runs (correctness) and that each
run is represented by a zone (completeness).

Lemma 1 ([Hun+02, Proposition 3.17]). For each parameter valuation v
and clock valuation w, if there is a symbolic run in A reaching state (1, C'), with
w E v(C), then there is an equivalent concrete run in v(A) reaching state (I, w).

Lemma 2 ([Hun+02, Proposition 3.18]). For each parameter valuation v
and clock valuation w, if there is a concrete run in v(A) reaching state (I,w),
then there is an equivalent symbolic run in A reaching a state (I,C) such that

w Ev(C).
2.3 Subclasses of PTAs

Lower-bound /upper-bound parametric timed automata (L/U-PTAs), proposed
in [Hun+02], restrict the use of parameters in the model.

Definition 14 (L/U-PTA). An L/U-PTA is a PTA where the set of param-
eters is partitioned into lower-bound parameters and upper-bound parameters,
where an upper-bound (resp. lower-bound) parameter p; is such that, for every

11



guard or invariant constraint x > El<j<M Bip; + d, we have: B; > 0 im-
plies 1 € {<, <} (resp. > € {>,>}), and B; < 0 implies <1 € {>,>} (resp.
€ {<,<}).

In [BL09], two additional subclasses are introduced: L-PTAs (resp. U-PTAs)
are PTAs with only lower-bound (resp. upper-bound) parameters.

L/U-PTAs enjoy a well-known monotonicity property [Hun+02]: increasing
upper-bound parameters or decreasing lower-bound parameters can only add
behaviours.

Ezxample 5. Consider again the coffee machine in Fig. 1, modelled using a
PTA A. This PTA is not an L/U-PTA; indeed, in the guard =, = (resp.
Z9 = p3), po (resp. p;) is compared with clocks both as a lower-bound and as an
upper-bound. (Recall that = stands for < and >.)

However, if one replaces 15 = with 25 < and zo = with 2o < ps,
then A becomes an L/U-PTA with lower-bound parameter p; and upper-bound
parameters {)-, p;}. Note that equalities are not forbidden in L/U-PTAs (e.g.
x1 = 10), but only equalities involving parameters are.

Several case studies fit into the class of L/U-PTAs: the root contention pro-
tocol, the bounded retransmission protocol and the Fischer mutual exclusion
protocol are all modelled with L/U-PTAs in [Hun+02]; in [Hun+402; KP12],
both the Fischer mutual exclusion protocol and a producer-consumer are ver-
ified using L/U-PTAs. Interestingly, the two case studies of the seminal paper
on PTAs [AHV93] (viz. a toy train gate controller model and a model of Fis-
cher mutual exclusion protocol) are also L/U-PTAs, although the concept of
L/U-PTAs had not yet been proposed at that time. In addition, most models
of asynchronous circuits with bi-bounded delays (i.e. where each delay between
the change of an input signal and the change of the corresponding output is a
parametric interval) can be modelled using L/U-PTAs.

We will also consider bounded PTAs, i.e. PTAs with a bounded parame-
ter domain that assigns to each parameter an infimum and a supremum, both
integers.

Definition 15 (bounded PTA). A bounded PTA is Ajyounds, where A
is a PTA, and bounds assigns to each parameter p an interval [inf,sup],
(inf, sup], [inf,sup), or (inf,sup), with inf,sup € N. We use inf(p, bounds) and
sup(p, bounds) to denote the infimum and the supremum of p, respectively. (Note
that we rule out co as a supremum.)

We say that a bounded PTA is a closed bounded PTA if, for each parame-
ter p, its ranging interval bounds(p) is of the form [inf,sup|; otherwise it is an
open bounded PTA.

We define similarly bounded L/U-PTAs.

2.4 Decision and computation problems
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TCTL TCTL [ACD93] is the quantitative extension of CTL where temporal
modalities are augmented with constraints on duration. Formulae are interpreted
over timed transition systems.

Given ap € AP and c € N, the language of TCTL is given by the following
grammar:

o= T | ap | =¢ | oA¢ | EpUwep | ApUpecp

A reads “always”, E reads “exists”, and U reads “until”.

Standard abbreviations include Boolean operators as well as EF.q.p for
ET U, AFpep for AT Upe and EGuep for —AF.—@. F reads “eventually”
while G reads “globally”.

Definition 16 (Semantics of TCTL). Given a TA v(A), the following clauses
define when a state s; of its timed transition system (S, so, —) satisfies a TCTL
formula ¢, denoted by s; = ¢, by induction over the structure of ¢ (semantics
of Boolean operators is omitted:

€j—1

1. s; = EpUset) if there is a mazimal run p in v(A) with o = s; &% - 5" s,
(i <j) a prefic of p s.t. s; =1, time(o) Xc, and Vk,i <k < j:si =

2. si = ApUsctp if for each mazimal run p in v(A) there exists o = s; >

S sj (i <j) aprefix of p s.t. s; =1, time(o) e, and Vk,i <k < j:

sk = .

where, given a concrete run p, time(p) gives the total sum of the delays d along p.
In EpUyqb the classical until is extended by requiring that ¢ be satis-

fied within a duration (from the current state) verifying the constraint “o< ¢”.

Given v, a PTA A and a TCTL formula ¢, we write v(A) | ¢ when s | ¢.

Decision problems

Emptiness and universality of the valuations set. Let P be a given a class of
decision problems (reachability, unavoidability, etc.).

P-emptiness problem:

InPUT: A PTA A and an instance ¢ of P

PROBLEM: Is the set of parameter valuations v such that v(A) satisfies ¢
empty?

P-universality problem:
INPUT: A PTA A and an instance ¢ of P
PROBLEM: For all parameter valuations v, does v(.A) satisfy ¢?

In this section, we mainly focus on the following decision problems:

— reachability (EF7): given a TA v(A), is there at least one run of v(A) that
reaches a given location? That is, EF-emptiness asks: “is the set of parameter

" The names “EF”, “AF”, “EG” come from the TCTL syntax, and are consistent with

the notations introduced in [JLR15] and subsequently used in further papers (such
as [ALR16; AL17)).
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valuations v such that the TA v(.A) reaches a given location empty?” And EF-
universality asks: “are all parameter valuations such that the corresponding
TA reaches a given location?”

— unavoidability (AF): given a TA v(A), do all runs of v(.A) eventually reach
a given location?

— EG: given a TA v(A) and a subset T of its locations, is there at least one
maximal run of v(A) that always stays in T'?

— AG: given a TA v(.A) and a subset T of its locations, do all runs of v(A) stay
in T7

— deadlock-existence (ED): given a TA v(.A), is there at least one maximal run
of v(A) that is deadlocked, i.e. has no discrete successor (possibly after some
delay)?

— cycle-existence (EC): given a TA v(\A), is there at least one run of v(.A) with
an infinite number of discrete transitions?

Note that AF-emptiness is equivalent to EG-universality, while AG-emptiness
is equivalent to EF-universality.
We will finally consider the following two additional emptiness problems:

Language-preservation-emptiness problem:

INPUT: A PTA A and a parameter valuation v’

PROBLEM: Is the set of parameter valuations v such that v # v’ and for
which v(A) has the same untimed language as v'(A) empty?

Trace-preservation-emptiness problem:

INPUT: A PTA A and a parameter valuation v’

PROBLEM: Is the set of parameter valuations v such that v # v’ and for
which v(A) has the same set of traces as v/(A) empty?

Computation problem Additionally, we define the following computation
problem:

P-synthesis problem:
InPUT: A PTA A and an instance ¢ of P
PROBLEM: Compute the parameter valuations such that v(.A) satisfies ¢.

Ezample 6. Let us exemplify some decision and computation problems for the
coffee machine PTA in Fig. 1. Assume the unique target location is done, i.e.
T = {done}.

EF-emptiness asks whether the set of parameter valuations that can reach
location done for some run is empty, i.e. there is an execution in which the coffee
is not delivered. This is false (e.g. p1 =1, p» =2, p3 = 3 can reach done).

EF-universality asks whether all parameter valuations can reach location done
for some run, 7.e. all executions allow for delivering the coffee, regardless of the
parameters valuation. This is false (no parameter valuation such that >
can reach done).

AF-emptiness asks whether the set of parameter valuations that can reach
location done for all runs is empty, ¢.e. if there is some parameters valuation for
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which coffee delivery is not guaranteed. This is false (e.g. p1 =1, =2, p3 =3
cannot avoid done).

EF-synthesis consists in synthesizing all valuations for which a run reaches
location domne, i.e. identifies all parameters valuations for which a coffee will
eventually be delivered. The resulting set of valuations is 0 < < < 10Ap; >
0.

2.5 Decidability

The general class of PTAs With the rule of thumb that all problems are un-
decidable for PTAs, we review the decidability of the aforementioned problems.

— EF-emptiness was shown to be undecidable [AHV93], with different flavours
and settings: for a single bounded parameter [Mil00], for a single rational-
valued or integer-valued parameter [Ben+15], with only one clock compared
to parameters [Mil00], or with strict constraints only [Doy07].

— AF-emptiness was shown undecidable in [JLR15].

— AG-emptiness was shown undecidable in [ALR16].

— EG-emptiness (as well as EC and ED) were shown undecidable in [AL17].

— The language and trace-preservation problems were shown undecidable
in [AM15].

A complete survey is available in [And19b].

Following the very negative results for PTAs, subclasses have been proposed.
We review some in the following.

The class of L/U-PTAs

A main decidability result. The first (and main) positive result for L/U-PTAs is
the decidability of the EF-emptiness problem [Hun+02]. L/U-PTAs benefit from
the following interesting monotonicity property: increasing the value of an upper-
bound parameter or decreasing the value of a lower-bound parameter necessarily
relaxes the guards and invariants, and hence can only add behaviours. Therefore,
checking the EF-emptiness of an L/U-PTA can be achieved by replacing all lower-
bound parameters with 0, and all upper-bound parameters with a sufficiently
large constant; this yields a non-parametric TA, for which emptiness is PSPACE-
complete [AD94]. This procedure is not only sound but also complete.

Undecidability results. The first undecidability results for L/U-PTAs are shown
in [BL09]: the constrained EF-emptiness problem and constrained EF-universality
problem (for infinite runs acceptance properties) are undecidable for L/U-PTAs.
By constrained it is meant that some parameters of the L/U-PTA can be con-
strained by an initial linear constraint, e.g. < 2 X po 4 ps. Indeed, using
linear constraints, one can constrain an upper-bound parameter to be equal to
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a lower-bound parameter, and hence build a 2-counter machine using an L/U-
PTA. However, when no upper-bound parameter is compared to a lower-bound
parameter (i.e. when no initial linear inequality contains both an upper-bound
and a lower-bound parameter), these two problems become decidable [BL09].
The exact decidability frontier may have not been found yet: the case where a
lower-bound parameter is constrained to be less than or equal to an upper-bound
parameter fits in none of the considered cases.

A second negative result is shown in [JLR15]: the AF-emptiness problem is
undecidable for L/U-PTAs. This restricts again the use of L/U-PTAs, as AF is
essential to show that all possible runs of a system eventually reach a (good)
state.

Third, in [AM15], the language- and trace-preservation problems were shown
to be undecidable for L/U-PTAs.

Model-checking L/U-PTAs. In [BL09], a parametric extension of the dense-time
linear temporal logic MITLg o (denoted “PMITLg ") is proposed; when param-
eters are used only as lower or upper bound in the formula (to which we refer as
L/U-PMITLy ), satisfiability and model checking are PSPACE-complete; this
is obtained by translating the formula into an L/U-automaton and checking an
infinite acceptance property.

Then, in [DLN15], an extension of MITL allowing parametric linear expres-
sions in bounds is proposed (yielding PMITL). Two sets of (integer-valued) pa-
rameter valuations are considered:

1. the set of valuations for which a PMITL formula is satisfiable, i.e. for which
there exists a timed sequence (possibly belonging to a given L/U-PTA) sat-
isfying it, and

2. the set of valuations for which a PMITL formula is valid, i.e. for which all
timed sequences (possibly belonging to a given L/U-PTA) satisfy it.

Under some assumptions, the emptiness and universality of the valuation set for
which a PMITL property is satisfiable or valid (possibly w.r.t. a given L/U-PTA)
are decidable, and EXPSPACE-complete. Essential assumptions for decidability
include the fact that parameters should be used with the same polarity (positive
or negative coefficient, as lower or upper bound in the intervals) within the
entire PMITL formula, and each interval can only use parameters in one of
the endpoints. Additional assumptions include that no interval of the PMITL
formula should be punctual (nor empty), and linear parametric expressions are
only used in right endpoints of the intervals (single parameters can still be used
as left endpoints). In addition, two fragments of PMITL are showed to be in
PSPACE, including one that allows for expressing parameterized response (“if
an event occurs, then another event shall occur within some possibly parametric
time interval”).

Finally, we showed that the emptiness-problem using nested quantifiers (i.e.
beyond EF, EG, AF, AG) automatically leads to the undecidability, even for
the very restricted class of U-PTAs with a single parameter (that can even be
integer-valued) [ALR18]. In other words, the nested TCTL emptiness problem
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is undecidable for U-PTAs. We may wonder if the timed aspect of TCTL (and
notably the urgency required by the TCTL formula EGAG_g) is responsible for
the undecidability. In fact, it is not, and we could modify the proof to show that
CTL itself leads to undecidability, i.e. that EGAX-emptiness is undecidable.

Intractability of the synthesis. A very disappointing result concerning L /U-PTAs
is shown in [JLR15]: despite decidability of the underlying decision problems
(EF-emptiness and EF-universality), the solution to the EF-synthesis problem
for L/U-PTAs, if it can be computed, cannot be represented using a formalism
for which the emptiness of the intersection with equality constraints is decid-
able. The proof relies on the undecidability of the constrained emptiness prob-
lem of [BL09]. A very annoying consequence is that such a solution cannot be
represented as a finite union of polyhedra (since the emptiness of the intersection
with equality constraints is decidable).

Liveness. The EG-emptiness problem stands at the frontier between decidability
and undecidability for the class of L/U-PTAs: while this problem is decidable
for L/U-PTAs with a bounded parameter domain with closed bounds, it be-
comes undecidable if either the assumption of boundedness or of closed bounds
is lifted [AL17].

The deadlock-existence emptiness problem is undecidable, even for the re-
stricted class of closed bounded L/U-PTAs [AL17].

In contrast to deadlock-freeness that is consistently undecidable, and to EG-
emptiness for which the frontier between decidability and undecidability is thin,
the existence of a parameter valuation for which there exists at least one infinite
run (EC-emptiness) is consistently decidable for L /U-PTAs [AL17].

The power of integer points Following works related integer clock and
parameter valuations with decidability in [JLR15], we introduced in [ALR16]
integer-points parametric timed automata (IP-PTAs for short), i.e. a subclass of
PTAs in which any symbolic state contains at least one integer point.

Definition 17. A PTA A is an integer points PTA (in short IP-PTA) if, in
any reachable symbolic state (I,C) of A, C' contains at least one integer point,
ie. v: P—->NJw: X >Nt wupEC.

Example 7. Consider the PTA in Fig. 3a, containing two clocks z; and x5, and
one parameter p. This PTA is not an IP-PTA. Indeed, as can be seen on its
parametric zone graph, the (unique) symbolic state with location I3 contains
only p = %, and this symbolic state therefore contains no integer point.

In contrast, the PTA in Fig. 3b is an IP-PTA: each zone in its parametric
zone graph contains an integer valuation of all parameters. The coffee machine

in Fig. 1 (which has an infinite parametric zone graph) is also an IP-PTA.
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(a) A PTA which is not an IP-PTA, and its Parametric Zone Graph

r=1 7(:1
Az s r:=0
b
r:=0
(12)

(b) A PTA which is an IP-PTA, and its Parametric Zone Graph

Fig. 3: Examples of PTA

[AL17]
[ALR16]

EG open
AG [AL17]

[AL17)
[JLR15]

[Mil00]

Class | U-PTAs| bL/U-PTAs |L/U-PTAs | bIP-PTAs|IP-PTAs| bPTAs | PTAs
closed | open
EF | [Hun+02] | [ALR16] [Hun+02] | [ALR16] [AHVI3]
AF open [JLR15]

[AHV93]

EC [AL17]
ED open

LgP open open
TrP open open

Table 1: Decidability of the emptiness problems for PTAs and subclasses

[AL17] | open [AL17]

In [ALR16], we studied the expressiveness of IP-PTAs: while the class of IP-
PTAs is incomparable with the class of L/U-PTAs, any non-strict L/U-PTA,
i.e. with only non-strict inequalities, is an TP-PTA.

Concerning decidability, the only non-trivial general class with a decidabil-
ity result for EF-emptiness is L/U-PTAs [Hun+02]. We extended this class, by
proving that EF-emptiness is decidable for bounded IP-PTAs [ALR16]. However,
other studied problems turned out to be undecidable.

Summary Table 1 summarises the decidability results. It gives from left to
right the (un)decidability for U-PTAs, bounded L/U-PTAs (with either closed
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or open bounds), L/U-PTAs, bounded IP-PTAs, IP-PTAs, bounded PTAs, and
PTAs. We review the emptiness of TCTL subformulas (EF, AF, EG, AG), full
TCTL, cycle-existence, deadlock-existence and language- and trace-preservation.
Decidability is given in green, whereas undecidability is given in italic red. Our
contributions are emphasized in bold using a plain background, whereas existing
results are depicted using a light background. When several papers in the litera-
ture proved the same result, we only give the earliest result, and not necessarily
the best (in terms of number of clocks and parameters, or complexity).

Perspective: open subclasses 1L-PTAs and U-PTAs [BL09] are very open classes,
in the sense that the only known decidability results come from the larger class of
PTAs, and no undecidability result was known—with the exception of our recent
result concerning TCTL-emptiness [ALR18]. To summarize, the EG-emptiness,
AG-emptiness and AF-emptiness problems, as well as the language- and trace-
preservation problems, are all undecidable for (general) L/U-PTAs, but remain
open for L-PTAs and U-PTAs. Similarly, the EF-synthesis problem (shown in-
tractable for L/U-PTAs in [JLR15] despite the decidability of the EF-emptiness
problem) remains open for rational-valued L- and U-PTAs, and would signifi-
cantly increase the interest of these subclasses if it was shown to be computable.

3 Parametric Interval Markov Chains

Parametric probabilities are useful to capture imprecisions, robustness and di-
mensioning issues. Hence, in this section we consider Parametric Interval Markov
Chains (PIMC).

3.1 Introduction to Parametric Markov Chains

[0,0.5]

(a) Markov Chain (MC) (b) Interval MC (IMC)  (c) Parametric IMC (PIMC)

Fig. 4: Markov Chains and their extensions

Fig. 4 contains an example of the different flavours of Markov Chains we are
addressing in this section. Fig. 4a is a Markov chain (MC). As in an automa-
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ton, there are states and transitions between them, but these are labelled by
probabilities for the transition to occur. For example, from state s, there is a
probability of 0.7 to go to state s; and of 0.3 to go to state so. Therefore, the
sum of all probabilities labelling transitions exiting a state must be 1.

When probabilities are not known in advance, it might still be possible to
know an interval to which they belong. Hence, we introduce Interval Markov
Chains (IMC), as pictured in Fig. 4b. The transitions are then no more labelled
by a fixed probability but an interval meaning that the probability should be
between the lower and the upper bound of the interval. For example, the prob-
ability to move from state s; to state s3 is between 0.3 and 0.5. The MC in
Fig. 4a can be seen as an implementation of the IMC in Fig. 4b which stands as
a specification. Notice that state s, does not appear in Fig. 4a, which is equiv-
alent to having a transition from state s, to state s, with a probability 0. Once
a probability is chosen in an interval, it imposes constraints on the other proba-
bilities outgoing the same state since they must add up to 1. An IMC is said to
be consistent if it admits at least one implementation.

When the upper or lower bounds are unknown, it is convenient to use param-
eters. Fig. 4c shows a Parametric Interval Markov Chain (PIMC). As compared
with the IMC of Fig. 4b, some of the bounds are replaced with parameters
and ¢. Notice that the same parameter occurs at several places in the PIMC,
therefore imposing constraints on the interval. For example, from state s, it is
possible to stay in this state with a probability between ¢ and 1, or to move
to state s3 with a probability between 0.3 and the same ¢. When assigning a
valuation to all parameters in a PIMC, we obtain an IMC.

3.2 Markov Chains definitions

We now formally define the different Markov Chain models. These definitions
are detailed in [DLP16].

Definition 18 (Markov Chain). A Markov Chain is a tuple M =
(S, S0, ]\47 A,

V'), where S is a finite set of states containing the initial state so, A is a set of
atomic propositions, V : S — 24 is a labelling function, and M : S x S — [0,1]
is a probabilistic transition function such that Vs € S, ", g M(s,t) = 1.

We now introduce the notation of parameters, and interval ranges that will
be used throughout this section. A parameter p € P is a variable ranging through
the interval [0, 1]. A valuation for P is a function ¢ : P — [0, 1] that associates
values with each parameter in P. We write Intp (P) for the set of all closed
parametric intervals of the form [z, y] with z,y € [0, 1]JUP. When P = (}, we write
Int[g,1] = Int[g,1)(0) to denote closed intervals with real-valued endpoints. Given
an interval I of the form I = [a, b], Low(I) and Up(I) respectively denote the lower
and upper endpoints of I, i.e. a and b. Given an interval I = [a, b] € Intjy ), we
say that I is well-formed whenever a < b.

The definition of Interval Markov Chains is adapted from [Del+12].
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Definition 19 (Interval Markov Chain [Del+12]). An Interval Markov
Chain is a tuple T = (S, so, ¢, A, V'), where S, so, A and V are as for MCs, and
¢ 8% 8 — Intygq) is a transition constraint that associates with each potential
transition an interval of probabilities.

The following definition recalls the notion of satisfaction introduced
in [Del+12]. Satisfaction (also called implementation in some cases) allows to
characterise the set of MCs represented by a given IMC specification. Satisfac-
tion abstracts from the syntactic structure of transitions in IMCs: a single tran-
sition in the implementation MC can contribute to satisfaction of more than one
transition in the specification IMC, by distributing its probability mass against
several transitions. Similarly many MC transitions can contribute to the satis-
faction of just one specification transition. This crucial notion is embedded in the
so-called correspondence function ¢ introduced below. Informally, such a func-
tion is given for all pairs of states (¢, s) in the satisfaction relation, and associates
with each successor state t’ of ¢ — in the implementation MC — a distribution
over potential successor states s’ of s — in the specification IMC — specifying how
the transition ¢ — ¢’ contributes to the transition s — s'.

Definition 20 (Satisfaction Relation [Del+12]). Let T = (S, s0, ¢, A4, V1)
be an IMC and M = (T,to, M, A, VM) be a MC. A relation R C T x S is a
satisfaction relation if whenever tRs,

1. the labels of s and t agree: VM (t) = VI(s),
2. there exists a correspondence function 6 : T — (S — [0, 1]) such that
(a) for allt' € T such that M (t,t') > 0, 6(t') is a distribution on S,
(b) for all s" € S, we have (3, cp M(t,t")-6(t')(s")) € ¢(s,5'), and
(c) forallt’ € T and s’ € S, if 6(t')(s') > 0, then (t',s") € R.
We say that state t € T satisfies state s € S (written t |= s) iff there exists
a (minimal) satisfaction relation containing (t,s) and that M satisfies T
(written M = T) iff to = so.
The set of MCs satisfying a given IMC Z is written [Z]. Formally, [Z] =

Definition 21. An IMC T is consistent iff [Z] # 0.

Although the satisfaction relation abstracts from the syntactic structure of
transitions, we recall the following result from [Dell5], that states that whenever
a given IMC is consistent, it admits at least one implementation that strictly
respects its structure.

Theorem 1 ([Dell5]). An IMC T = (S, so, ¢, A, V') is consistent iff it admits
an implementation of the form M = (S, so, M, A, V) where, for all reachable
states s in M, it holds that M (s,s’) € ¢(s,s") for all .

In the following, we say that state s is conmsistent in the IMC Z =
(S, s0, ¢, A, V) if there exists an implementation M = (5, so, M, A, V) of T in
which state s is reachable with a non-zero probability.

We now recall to the notion of Parametric Interval Markov Chain, previously
introduced in [Dell5].
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Definition 22 (Parametric Interval Markov Chain). A Parametric Inter-
val Markov Chain is a tuple I = (S, s, ¢p, A, V, P), where S, so, A and V
are as for IMCs, P is a set of variables (parameters) ranging over [0,1] and
¢p 1 SxS — Intjyq)(P) associates with each potential transition a (parametric)
interval.

Given a pIMC ZF = (S, 59, ¢p, A, V, P) and a parameter valuation ¢ : P —
[0,1], we write 1(Z%) for the IMC obtained by replacing ¢p by the function
¢ : S xS — Intpy defined by Vs,s' € S,¢(s,s") = (¢pp(s,s’)). The IMC
Y(ZF) is called an instance of pIMC ZF.

Finally, we say that a MC M = (T,ty, M, A, VM) implements pIMC ZF,
written M = Z7 iff there exists an instance Z of Z% such that M = Z. We
write [Z7] for the set of MCs implementing Z' and say that a pIMC is consistent
iff its set of implementations is not empty.

3.3 Consistency of PIMCs

When considering IMCs, one question of interest is to decide whether it is con-
sistent without computing its set of implementations. This problem has been
addressed in [Del+12; Dell5], yielding polynomial decision algorithms and pro-
cedures that produce one implementation when the IMC is consistent. The same
question holds for pIMCs, although in a slightly different setting. [Dell5] pro-
posed a polynomial algorithm for deciding whether a given pIMC is consistent, in
the sense that it admits at least one parameter valuation for which the resulting
IMC is consistent.

In order to decide whether a given IMC is consistent, we need to address the
set of potential successors of a given state s. Let Succ(s) be the set of states
that can be reached from s with a probability interval not reduced to [0, 0]:
Succ(s) ={s' € S| ¢p(s,s") # [0,0]}.

We now introduce the notion of n-consistency in the IMC setting and then
adapt this notion to pIMCs. In practice, n-consistency is defined by induction
over the structure of 7.

Definition 23 (n-consistency). Let Z = (S, s0,¢, A, V) be an IMC and let
D : S — Dist(S) be a function that assigns a distribution on S to each state of
Z. State s € S is (n, D)-consistent iff for all s € S, D(s)(s') € ¢(s,s’), and, for
n >0, D(s)(s") > 0 implies s’ is (n — 1, D)-consistent.

We say that s is n-consistent if there exists D : S — Dist(S) such that s is
(n, D)-consistent.

Definition 23 is thus equivalent to the following intuitive inductive definition:
a state s is n-consistent iff there exists a distribution p satisfying all of its out-
going probability intervals and such that for all s’ € S, p(s’) > 0 implies that s’
is (n — 1)-consistent.

Theorem 2. Given an IMC T = (S, s0,$,A,V), T is consistent iff so is |\S]-

consistent.
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Example 8. Let us consider the example in Fig. 4b. All states but s, are 0-
consistent. Indeed it is possible to find probabilities within the exiting intervals
that add up to 1. It is not the case for state s;, which has a probability of 0.6 to
which we should add one that is at least 0.5, so the sum is at least 1.1. Then, for
state ss to be 1-consistent, it must not have s, has a successor. This is possible by
choosing 0 as the probability to go from s, to s4. In the remaining two intervals,
choosing probability 0.5 leads to a sum of 1. Therefore, state s, is 1-consistent.
One can check that all states but s, are n-consistent, for all n.

For the problem of consistency of pIMCs, the aim is not only to decide
whether a given pIMC is consistent, but also to synthesise all parameter valua-
tions that ensure consistency of the resulting IMC. For this purpose, we adapt
the notion of n-consistency defined above to pIMCs.

We first define the local consistency of a state w.r.t. some subset S’ of its
successors: the sum of upper bounds should be greater than 1, the sum of lower
bounds smaller than 1, and all successors in S’ have a valid interval.

LC(s,S8") = | > Up(¢p(s, ) > 1

s'eS’

N [Z Low(¢p(s,s)) < 1}

s'eS’

n [ M Low(or(s,s)) < Up(asp(s,s'))]
s'eS’

Let us start by fixing a set of states X that we want to avoid and then
compute the set of valuations Cons;\ (s) that ensure n-consistency of s through
a distribution p that avoids states from X. Formally, Cons:\ (s) is defined as: let
Cons{ (s) = LC(s,Succ(s) \ X) N [N, cx Low(¢p(s,s’)) = 0] and for n > 1,

Cons:X(s) = ﬂ Cons,_1(s") | N[LC(s,Succ(s)\ X)]
s’€8Succ(s)\ X

N ﬂ Low(¢p(s,s')) =0
s'e X
The set of valuations ensuring n-consistency is then the union, for all po-
tential choices of X, of ConsX (s). We need to choose X as a subset of the set
Z(s) of states which can be avoided, by transitions that have 0 or a parameter
as lower bound. Therefore, we define Cons,,(s) = Uxcyz(s) ConsX (s).

Theorem 3. Given a pIMCZ? = (S, 59, ¢p, A, V, P) and a parameter valuation
Y : P —[0,1], we have ¢ € Cons|g|(so) iff the IMC (I"') is consistent.

Ezxample 9. Tt is easily shown that the consistency of the PIMC in Fig. 4c is
(0 <07)N(¢>03)]U(g=1).

This section has shown the crucial property of consistency in both parametric

and non-parametric interval Markov chains. It thus sets the necessary elements
before model checking such probabilistic models.

23



3.4 Further reading

The definitions and properties stated in this section are detailed in [DLP16].
They were revised in [PP18], where both inductive and co-inductive definitions
of consistency are given, implemented with forward and backward algorithms.
[DLP16] also addresses some properties: consistent avoidability, existential and
universal consistent reachability.

4 Parametric Petri Nets

We now consider a parametric extension of Petri nets in which the weights of the
arcs can be parameters. This extension was mainly studied in the Ph.D. thesis of
Nicolas David [Dav17] and many of those results can also be found in [Dav+15;
Dav+17].

Ezxample 10. In order to illustrate the usefulness of this parameterised formal-
ism, we consider the example, taken from [Davl7], of a financial loan. It is
modelled in Fig. 5.

locks X
months interestOk

——
f /‘( loanFinished
O, &= O O
N N\ N\
initialisation funds total loanOk

lock locka

Fig.5: Modelling a financial loan with parametric Petri nets

In the general case, a client has a certain amount of money, say «, and is
ensured to get income b every month. To finance his project, the client needs to
define with the bank the amount loaned ¢, the duration of reimbursement « (in
months) and the amount of each reimbursement ¢. At the end of the process,
the bank expects to get back the initial amount loaned ¢ plus the interest /. The
amount of money possessed by the client is depicted in place funds. The signature
of the contract is symbolised through the firing of transition which
imposes to the bank to loan an amount ¢ for a term of ¢ months. Each month,
we can fire : the client receives its own income 0 that is added to its
capital in funds and in parallel an amount ¢ is reimbursed to the bank. When we
consider that the reimbursement is finished, we fire that removes the
token from lock; and allows us to enable the transitions of the second part of
this example. We can then check if the bank can get its money back by testing if
loanOk can be marked and if the bank can get the interest by checking interestOk
can be marked or both by checking if loanFinished can be marked.
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With this example in mind, we now proceed to the corresponding formal
definitions.

Definition 24 (Parametric Petri Net [Dav+15]). A (marked) parametric
Petri Net (PPN) is a tuple N = (P, T,P,Pre, Post,mg) where P is a finite set
of places, T is a finite set of transitions such that PNT = (), P is a finite
set of parameters, Pre : P x T — NUP s the backward incidence function,
Post : P x T — NUP is the forward incidence function, mg € N is the initial
marking.

Let A be a parametric Petri net. A valuation v of the parameters of A is a
mapping from P to N.

We denote by v(N) the Petri net obtained by replacing all parameters by
the value they are given by v.

A marking of a (non-parametric) Petri net is a mapping from P to N. Mark-
ings can be compared component by component: m > m' if Vp € P,m(p) >
' (p).

A transition t € T is enabled by marking m if for all p € P, m(p) > Pre(p, t).
A transition ¢ enabled by marking m can be fired, leading to a new marking m’
defined by Vp € P, m/(p) = m(p) — Pre(p,t) + Post(p, t). We note m Lom'.

A run in the Petri net is a possibly infinite alternating sequence of markings

and transitions mitims ... such that m; = mg and for all ¢ > 1, m; LN Myt

4.1 Problems of interest

We extend classic problems defined for Petri nets to the parametric setting.
These problems are reachability, coverability, and (un)boundedness.

A marking m is reachable if there exists a finite run mytyme . .. t,my41 such
that my,4+1 = m.

A marking m is coverable if there exists a reachable marking m’ such that
m' > m.

A (non-parametric) Petri net is k-bounded if for all reachable markings m,
we have Vp € P,m(p) < k. It is bounded if there exists some k such that it
is k-bounded. If a net is not bounded, we say it is unbounded and then for all
B > 0 there exists a place p and a reachable marking m such that m(p) > B.

Similarly a Petri net is simultaneously X unbounded [Dem13], for some subset
X of P, if for all B > 0, there exists a reachable marking m such that for all
places p € X, we have m(p) > B.

We consider two associated parametric decision problems: the existential and
the universal problems. In the former we want to decide the existence of a
parameter valuation for which some property holds, and in the latter we want
to decide if it holds for all the possible parameter valuations. The property in
question can be any of those defined above.

For instance, the existential parametric reachability problem asks, given a
target marking m, if there exists a parameter valuation v such that m is reach-
able in v(A). Similarly, the universal coverability problem asks, given a target
marking m, if for all valuations v of the parameters, m is coverable in v(N).
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We finally define synthesis problems, in which we want to effectively compute
the set of all parameter valuations for which some property holds. Note that if
we can effectively compute this set, and check its emptiness or universality, then
we can also solve the two decision problems above.

4.2 Undecidability Results for Parametric Petri Nets

We start with a few negative results.

Theorem 4 ([Dav+15]). The existential and universal parametric coverabil-
ity, reachability, and (simultaneous) unboundedness problems are undecidable.

This theorem is proved by reducing the halting, and counter-boundedness
problems for 2-counter machines [Min67] to those parametric problems for para-
metric Petri nets. We encode the value of each counter as the number of tokens
in a place and we use parametric arcs to test for emptiness of that place (i.e.
counter value 0).

As a consequence, we need to consider meaningful subclasses for which we
might obtain some decidability results.

4.3 Subclasses of Parametric Petri Nets

The basic observation guiding us in defining interesting subclasses of PPNs is
that, in the 2-counter machine reduction briefly outlined above, we need both
a post arc with a parametric weight a and a pre arc with the same parametric
weight a.

We thus define preT-PPNs, postT-PPNs, and distinctT-PPNs according to
whether the parameters are allowed only in pre arcs, in post arcs, or in both but
not with the same parameters.

Definition 25 (preT- and postT-PPNs). A preT-PPN (resp. postT-PPN)
is a PPN in which the Post (resp. Pre) function has the form P x T — N.

Definition 26 (distincT-PPNs). A distinctT-PPN is a PPN in which the
set of parameters used in the Pre function and the set of those used in the Post
function are disjoint.

We could also consider classic Petri nets in which the initial marking is pa-
rameterised. The corresponding formalism is called P-PPN. Such a parametric
initial marking is easily simulated with an initial transition that has parametric
weights in its post arcs and sets the initial marking. Interestingly, it can also be
proved that postT-PPNs can be (weakly) simulated by P-PPNs [Dav+15].

Fig. 6 [Dav+15] summarises this hierarchy of subclasses.
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distinctT-PPN

Caption:

——> : is a syntactical subclass of

— — — —>: is a weak-bisimulation subclass of

Fig. 6: Subclasses of PPNs

Class Reachability S. Unboundness Coverability
PPN
preT-PPN
postT-PPN
P-PPN

distinct T-PPN

Table 2: Un(decidability) and complexity results for the universal parametric
problems

Class S. Unboundedness

PPN

Reachability Coverability

preT-PPN
postT-PPN

P-PPN Decidable [pav+1s)

distinct T-PPN

Table 3: Un(decidability) and complexity results for the existential parametric
problems

4.4 Global Results

We now summarise the current state-of-the art for the study of PPNs. Table 2
gives the decidability results and whenever relevant the complexities for the
universal problems, while Table 3 gives them for the existential problems.

In order to establish the decidability results, we use a variety of techniques.
The most basic is that preT- and postT-PPNs have a strong monotonicity prop-
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erty [Dav+15]: increasing (resp. decreasing) the value of parameters in a postT-
PPN (resp. preT-PPN) can only add behaviours. Second we can reduce universal
coverability in preT-PPNs to simultaneous unboundedness, and existential cov-
erability in postT-PPNs to coverability in the w Petri nets of [Gee+15]. Both of
these reductions can be found in [Dav+17]. Finally, we can adapt the Karp &
Miller algorithm [KM69] to preT- and postT-PPNs [Dav17].

Table 4 presents results for the synthesis problem [Dav+17]. In the cases
where we can compute the set of adequate valuations (v'), we mostly rely on the
use of an algorithm to compute upward-closed sets by Valk and Jantzen [VJ85].
The negative results (X) come from the fact that the emptiness or the univer-
sality of the set cannot be decided as a direct consequence of the undecidability
results above, so there is little hope to find a useful representation of that set.
The case of distinctT-PPNs is similar in so far as if we can compute the solu-
tion and test its intersection with equality constraints we can solve the synthesis
problem for any PPN, by replacing parameters used both in pre and post arcs
by different parameters (which gives a distinctT-PPN) and then constraining
the solution set with equality constraints on these different parameters.

Class Reachability|S. Unboundedness|Coverability
PPN
preT-PPN
postT-PPN
P-PPN

distinctT-PPN

Table 4: Results for the synthesis problem

4.5 Conclusion

Parametric Petri nets are a powerful formalism to model flexible systems. In
the general case, the interesting problems are undecidable but still useful sub-
classes can be obtained by restricting the use of parameters. For most of these
subclasses, it is possible to actually synthesise the values of the parameters such
that the net is unbounded, or such that some marking is coverable. It would
nevertheless be interesting to design semi-algorithms or incomplete algorithms
for the most expressive cases that do not fit in this restricted setting. A problem
also remains open, i.e. the decidability of universal reachability for Petri nets
with a parameterised initial marking.
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Fig.7: A simple mixed transition system

5 Action synthesis

One of the classical approaches to verification and specification of concurrent
systems employs Kripke structures as models and branching-time logics such
as CTL as property description languages. In contrast to the models presented
earlier, Kripke structures allow only for specifying sequential behaviours. Ad-
vanced data structures such as Binary Decision Diagrams [Bry86] (BDDs) to-
gether with algorithms based on fixed-point specification of CTL enable efficient
verification of models whose state spaces exceed 10%° [Bur+90]. Here, we extend
Action-Restricted Computation Tree Logic ARCTL [PR06] and its models with
parameters, to obtain a framework that benefits from BDD-based fixed-point
algorithms.

5.1 Mixed Transition Systems

Mixed Transition Systems [PR06] (MTS) are essentially Kripke structures with
transitions labelled by actions.

Definition 27 (MTS). Let AP be a set of propositional variables. A Mixed
Transition System is a 5-tuple M = (S,s°, A, T, L), where:

— S is a finite set of states, and s° € S is the initial state,
— A is a non-empty finite set of actions,

— T CS xAxS is a transition relation,

— L:8 — 24P is a (state) valuation function.

We write s 5 s’ if (s,a,8') € T. Let B C A and 7 = (8¢, ao, 51,0a1,...) be a
finite or infinite sequence of interleaved states and actions. By |7| we denote the
number of states in 7 if 7 is finite, and w if 7 is infinite. A sequence 7 is a path
over B iff s; &% 5,41 and a; € B for each i < || and either 7 is infinite or its
final state does not have a B-successor state in S, i.e. 7 = (8o, g, $1,a1, - - -, Sm)
for some m € N and there is no s’ € S and a € B such that s, — s'. By m; we
denote the i—th state of 7 for all ¢ € N.
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The set of all paths over B in M is denoted by IT(M, B), and the set of all
paths 7 € IT(M, B) starting from a given state s € S is denoted by II(M, B, s).
We typically omit the symbol M, writing II(B) and II(B,s). By II*(B) and
IT1¥(B, s) we mean the corresponding sets restricted to the infinite paths only.

Ezample 11 (MTS). A MTS with AP = {p,safe}, A =
{left, , }, and initial state s; is shown in Fig. 7.

The path 7« = (so,left,s1, ,s4) belongs to IT({left, b,
but not to the set IT({left, ; }). The reason is that while
7w is a maximal path over {left, }, it is not maximal over
{left, , } as it can be extended e.g. into the infinite path
’ = (S(), ,S1, , 54, , 50, , 51, , 54, ,S(),...) S

L ({left, right, back}).

5.2 Parametric Action-Restricted CTL

The main difference between ARCTL and CTL is that in ARCTL each path
quantifier is subscripted with a set of actions, e.g. Ey. 1G (B¢ yFsafe)
may be read as “there exists a path over and , on which it holds globally
that o state satisfying safe is reachable along some path over 7,

Parametric ARCTL (pmARCTL) extends ARCTL by allowing free variables
in place of sets of actions, e.g. Ey G(Ez Fsafe) is a formula of pmARCTL, where
Y and Z are free variables.

Definition 28 (pmARCTL syntax). Let A be a finite set of actions, X a finite
set of variables, AP a set of propositional variables, and ActSets = 24\ {0}.
The set of formulae of pmARCTL is defined by the following grammar:

¢:=p|[-0|dVo|EX¢|EGP|EJGP| Eal U),
where p € AP and a € ActSets U X.

The basic path quantifiers and modalities of pmARCTL have the same meaning
as in CTL. The superscript ¢ restricts the quantification to the infinite paths,
whereas the subscript ,, restricts the quantification to the paths over a.

The semantics of pmARCTL is defined w.r.t. parameter valuations, i.e. func-
tions v: X — ActSets. ParVals denotes the set of all parameter valuations. For
conciseness, for v € ParVals we write v(a) = B if a = B C A and v(a) = v(Y)
if « =Y € X. Moreover, we assume that O° = O, for O € {E, A, IT}.

Definition 29 (pmARCTL semantics). Let M = (S,5°, A, T, L) be an MTS
and v € ParVals a parameter valuation. The relation =, is defined as follows:

—skEvpiffpe L(s),

- S):vﬁ¢iﬁslféu¢7

— sEu VY iff sy ¢ or sy b,

— s Eo X iff 7] > 1 and m1 =y @, for some m € II(v(a), s),
sEu ELGO iff mi o ¢ for all i < |7|, for some m € II"(v(a), s),
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— sy Ea(o UY) iff m; b= ¢ for some @ < |m| and 7; =, ¢ for all 0 < j <,
for some w € I (v(a), s),

where p € AP, ¢,% € pmARCTL, r € {w, €}, and o € ActSets U X.

Ezample 12. For the MTS in Fig. 7 we have sy =, Ey G(EzFsafe) iff €
v(Z).

5.3 Parameter Synthesis for pmARCTL

In this subsection we show how to recursively characterise pmARCTL using the
basic operator of parametric pre-image. These equivalences give rise to fixed-
point algorithms that can be implemented using BDDs.

Let ¢ € pmARCTL. Our goal is to construct the function f,: S — 2FerVals
s.t. for all s € S we have s =, ¢ iff v € fy(s). In other words, the set fy(s)
consists of all the parameter valuations that make ¢ true in state s. Let us show
how to build this function recursively, case by case. We omit the treatment of
non-parametric modalities as the classical non-parametric methods of symbolic
verification carry here with minimal alterations [HR04; RLO7].

Boolean Connectives and Non-parametric Modalities. For each p € AP, ¢, €
pmARCTL we have fy(s) = ParVals if p € L(s) and f,(s) = 0 otherwise;

f=¢(s) = ParVals \ fy(s); and fovy(s) = fo(s) U fu(s).

Parametric Pre-image and NeXt. Let f: S — 2Pa7Vals he a function. The para-
metric pre-image of f w.r.t. Y € X is defined as the function parPreil,(f) :S—

2ParVals s.t. parPre?/(f)(S) = {U | 35/65 ElaEU(Y) S i> s'Ave f(S/)} for each

s € S. Intuitively, for each ¢ € pmARCTL in parPrej (f4)(s) we collect all the
parameter valuations v s.t. some state s’ satisfying s’ =, ¢ can be reached by
firing in s € S an action from v(Y"). We therefore have fg, x4 = parPrei-(f4)(s)

Parametric Temporal Modalities. We employ the following equations to deal
with two versions of the Globally modality:

feeco(s) = fo(s) NparPrey (freco)(s),
fEvae(s) = fo(s) N (parPrey (fae co)(s) U f-By xtrue(s)).

The following equation characterises the Until modality:

Foy (ovw)(8) = Fu(s) U (fo(s) N parPrey (fpy (sup))(S))-

We refer to [KMP15; KP15] on how to turn the above equations into fixed-
point algorithms and implement them using BDDs. In all the cases, the returned
result of running the overall synthesis algorithm for ¢ € pmARCTL is the BDD
that represents fg. This structure can be then queried for individual parameter
valuations; for a certain class of formulae it is possible to synthesise minimal
parameter valuations using prime implicants.

As a closing note let us mention that the emptiness problem for pmARCTL,
i.e. the question whether fy(s?) # 0 for ¢ € pmARCTL is known to be NP-
complete [KMP15].
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6 Tools

In this section, we finally briefly review tools related to the aforementioned
formalisms.

6.1 IMITATOR

IMITATOR [And+12] is a software tool for parametric verification and robust-
ness analysis of PTAs augmented with integer variables and stopwatches. Pa-
rameters can be used both in the model and in the properties. Verification capa-
bilities include reachability-synthesis, deadlock-freeness-synthesis [And16], non-
Zeno model checking [And+17], minimal-time synthesis [And+19], and trace-
preservation-synthesis. IMITATOR is fully written in OCaml, and makes use of
the Parma Polyhedra Library [BHZ08]. It also features distributed capabilities
to run over a cluster.

IMITATOR comes with a benchmarks library available under an open source
license [And19a).

IMITATOR was successfully used in several application domains such as para-
metric schedulability analysis of a prospective architecture for the flight control
system of the next generation of spacecrafts designed at ASTRIUM Space Trans-
portation [Fri+12], formal timing analysis of music scores [FJ13], verification of
software product lines [Lut+17], monitoring logs from the automotive domain
against parametric properties [AHW18], and was used to propose a solution to
a challenge related to a distributed video processing system by Thales [SAL15].

Related tools The first tool to support modelling and verification using para-
metric timed automata was HyTECH [HHWO97]. In fact, HYTECH supports linear
hybrid automata (including clocks, parameters, stopwatches and general contin-
uous variables); it can compute the state space, and perform operations (such as
intersection, convex hull, difference) between sets of symbolic states. Therefore,
it can be used to perform parametric model checking using reachability check-
ing [Ace+98]. HYTECH is not maintained anymore, but can still be found online
in the form of a standalone binary for Linux.®

In [Hun+02], an extension of UPPAAL implementing parametric difference
bound matrices (PDBMs) and hence allowing for verification using PTAs is
mentioned. However, this tool does not seem to be available anywhere online.

PHAVer [Fre08] is a tool for verifying safety properties of hybrid systems. It
notably relies on exact arithmetic (with unlimited precision) using the Parma
Polyhedra Library [BHZ08]; on the other hand, it also supports approximations.

SpaceEx [Fre+11] can be seen as a successor of PHAVer, and also tackles
verification of reachability properties for hybrid systems. Parameters are not
natively supported, but can be encoded using variables that are arbitrarily set
up upon system start, and then remain subsequently constant (with a 0-slope).
SpaceEx seems to have a lot of interesting recent developments.

8 https://embedded.eecs.berkeley.edu/research/hytech/
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PSyHCoS [And+13] allows the synthesis of parameters for a parametric ex-
tension of the process algebra Stateful timed CSP [Sun+13], itself a timed ex-
tension of Hoare’s communicating sequential processes [Hoa85]. When compared
to other formalisms such as (parametric) timed automata, (parametric) state-
ful timed CSP has the advantage of giving the designer the ability to specify
hierarchical systems.

Finally, Symrob is not strictly a tool for synthesis, but allows robustness
measurement for timed automata [Sanl5].

6.2 Roméo

RowmEo [Lim+09] is a model-checking tool for a selection of hybrid extensions of
Petri nets, enriched with discrete variables. In particular, it supports parametric
time Petri nets, a formalism shown to be close to PTAs in terms of expressive-
ness [Bér+05; TLR09]. RoMEO allows the use of parametric linear expressions
in the time intervals of the transitions, and the addition of linear constraints on
the parameters to restrict their domain. ROMEO provides a simulator and an
integrated model-checker supporting a subset of parametric TCTL (including
reachability-synthesis and unavoidability-synthesis), in which “Until” modali-
ties cannot be nested. It also features optimal cost reachability and parame-
ter synthesis for cost-bounded reachability. ROMEO implements in particular an
original algorithm for integer parameter synthesis using a symbolic (continuous)
representation [JLR15]. ROMEO is mainly written in C++, and makes use of the
Parma Polyhedra Library [BHZO08]. It has been successfully used in a few and
diverse case-studies including the analysis of resilience properties in oscillatory
biological systems [AMI16]; the synthesis of environment requirements for an
aerial video tracking system [Par416]; and the analysis of operational scenarios
modelling in the DGA OMOTESC project [Sei09].

6.3 Spatula

Spatula [Kna; KMP15] implements the theory of action synthesis outlined in Sec-
tion 5. The tool is written in C++ and employs CUDD library [Som] for rep-
resenting and manipulating BDDs. Spatula accepts models represented as net-
works of automata written in a simplified C-like input language and pmARCTL
as property description language. The result of synthesis for a given property is a
BDD that represents all the valuations that make the property true. Spatula can
also list all the minimal valuations (w.r.t. bitwise comparison) for the existential
part of the logic.
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