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Preface

This book came about during my PhD studies at the Technische Universitdt Wien, from
2012 until 2016.

It originally appeared as my PhD dissertation in 2016, for which I was awarded the
E. W. Beth Dissertation Prize for outstanding contributions in the domains of logic,
language, and information by the Association for Logic, Language, and Information
(FoLLI) in 2017.

As a result, this book is now being published in the FoLLI Publications on Logic,
Language, and Information, in Springer’s Lecture Notes in Computer Science series.

The theme of this book is “The Extension of Parameterized Complexity Theory to
Higher Levels of the Polynomial Hierarchy.”

This theme allows for theoretical explorations that are motivated by the aim to
develop theoretical tools that can be used to classify whether computational problems
can be solved by the approach of first reducing them to SAT in fixed-parameter
tractable time, and then solving them by invoking a SAT solving algorithm.

This toolbox is relevant for computational problems from all kinds of domains, in
fact, many of the theoretical developments and applications in this book are driven by
concrete, natural problems from a variety of areas of computer science and artificial
intelligence.

I hope that this book will serve as a starting point for future theoretical investiga-
tions on this topic.

I am grateful to all the people that supported me throughout my PhD studies;
helping me directly or indirectly in writing this book.

In particular, I owe many thanks to my PhD supervisor Stefan Szeider, for showing
me how to do theoretical research, and for giving me the freedom to discover, as well
as become an expert in an area of research that fits my interests.

September 2019 Ronald de Haan
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