Skip to main content

Combining Merkle Hash Tree and Chaotic Cryptography for Secure Data Fusion in IoT

  • Conference paper
  • First Online:
Transactions on Computational Science XXXV

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 11960))

Abstract

With the wide applicability of sensors in our daily lives, security has become one of the primary concerns in an Internet of Things (IoT) environment. Particularly, user’s privacy and unauthorized access to sensitive information needs to be kept in mind while designing security algorithms. This paper puts forward a security protocol that integrates authentication of the deployed IoT devices and encryption of the generated data. We have modified the well-known Merkle Hash Tree to adapt to an IoT environment for authenticating the devices and utilized the concepts of Chaos theory for developing the encryption algorithm. The use of chaos in cryptography are known to satisfy the basic requirements of the cryptosystem such as, high sensitivity, high computational speed and high security. In addition, we have proposed a chaotic map named Quadratic Sinusoidal Map which exhibits better array of chaotic regime when compared to the traditional quadratic map. The security analysis demonstrate that the proposed protocol is simple having low computational requirements, has strong security capabilities and highly resilient to security attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, B., Zhang, D., Yu, Z., Liang, Y., Wang, Z., Zhou, X.: From the Internet of Things to embedded intelligence. World Wide Web 16(4), 399–420 (2013)

    Article  Google Scholar 

  2. Satyadevan, S., Kalarickal, B.S., Jinesh, M.K.: Security, trust and implementation limitations of prominent IoT platforms. In: Satapathy, S.C., Biswal, B.N., Udgata, S.K., Mandal, J.K. (eds.) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. AISC, vol. 328, pp. 85–95. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12012-6_10

    Chapter  Google Scholar 

  3. Weber, R.H.: Internet of Things-new security and privacy challenges. Comput. Law Secur. Rev. 26(1), 23–30 (2010)

    Article  MathSciNet  Google Scholar 

  4. Lampropoulos, K., Denazis, S.: Identity management directions in future Internet. IEEE Commun. Mag. 49(12), 74–83 (2011)

    Article  Google Scholar 

  5. Suhardi, R.A.: A survey of security aspects for Internet of Things in healthcare. In: Kim, K., Joukov, N. (eds.) Information Science and Applications (ICISA) 2016. Lecture Notes in Electrical Engineering, vol. 376. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0557-2_117

    Chapter  Google Scholar 

  6. Alasmari, S., Anwar, M.: Security & privacy challenges in IoT-based health cloud. In: 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 198–201. IEEE (2016)

    Google Scholar 

  7. Islam, S.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.-S.: The Internet of Things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015)

    Article  Google Scholar 

  8. Roman, R., Najera, P., Lopez, J.: Securing the Internet of Things. Computer 44(9), 51–58 (2011)

    Article  Google Scholar 

  9. Kalra, S., Sood, S.K.: Secure authentication scheme for IoT and cloud servers. Pervasive Mob. Comput. 24, 210–223 (2015)

    Article  Google Scholar 

  10. Amin, R., Kumar, N., Biswas, G., Iqbal, R., Chang, V.: A light weight authentication protocol for IoT-enabled devices in distributed cloud computing environment. Future Gener. Comput. Syst. 78, 1005–1019 (2018)

    Article  Google Scholar 

  11. Zhou, L., Li, X., Yeh, K.-H., Su, C., Chiu, W.: Lightweight IoT-based authentication scheme in cloud computing circumstance. Future Gener. Comput. Syst. 91, 244–251 (2019)

    Article  Google Scholar 

  12. Mookherji, S., Sankaranarayanan, S.: Traffic data classification for security in IoT-based road signaling system. In: Nayak, J., Abraham, A., Krishna, B.M., Chandra Sekhar, G.T., Das, A.K. (eds.) Soft Computing in Data Analytics. AISC, vol. 758, pp. 589–599. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0514-6_57

    Chapter  Google Scholar 

  13. Nesa, N., Ghosh, T., Banerjee, I.: Outlier detection in sensed data using statistical learning models for IoT. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2018)

    Google Scholar 

  14. Nesa, N., Ghosh, T., Banerjee, I.: Non-parametric sequence-based learning approach for outlier detection in IoT. Future Gener. Comput. Syst. 82, 412–421 (2018)

    Article  Google Scholar 

  15. Rathore, H., Jha, S.: Bio-inspired machine learning based wireless sensor network security. In: 2013 World Congress on Nature and Biologically Inspired Computing, pp.140–146. IEEE (2013)

    Google Scholar 

  16. Bodei, C., Chessa, S., Galletta, L.: Measuring security in IoT communications. Theor. Comput. Sci. 764, 100–124 (2019)

    Article  MathSciNet  Google Scholar 

  17. Bodei, C., Degano, P., Ferrari, G.-L., Galletta, L.: Where do your iot ingredients come from? In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686, pp. 35–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39519-7_3

    Chapter  Google Scholar 

  18. Nesa, N., Ghosh, T., Banerjee, I.: Design of a chaos-based encryption scheme for sensor data using a novel logarithmic chaotic map. J. Inf. Secur. Appl. 47, 320–328 (2019)

    Google Scholar 

  19. Shukla, P.K., Khare, A., Rizvi, M.A., Stalin, S., Kumar, S.: Applied cryptography using chaos function for fast digital logic-based systems in ubiquitous computing. Entropy 17(3), 1387–1410 (2015)

    Article  Google Scholar 

  20. Wang, W., et al.: An encryption algorithm based on combined chaos in body area networks (2017). http://www.sciencedirect.com/science/article/pii/S0045790617324138

  21. Hamad, N., Rahman, M., Islam, S.: Novel remote authentication protocol using heart-signals with chaos cryptography, In: International Conference on Informatics, Health & Technology (ICIHT), pp. 1–7. IEEE (2017)

    Google Scholar 

  22. Ning, H., Liu, H., Yang, L.T.: Aggregated-proof based hierarchical authentication scheme for the Internet of Things. IEEE Trans. Parallel Distrib. Syst. 26(3), 657–667 (2015)

    Article  Google Scholar 

  23. Liu, J., Su, H., Ma, Y., Wang, G., Wang, Y., Zhang, K.: Chaos characteristics and least squares support vector machines based online pipeline small leakages detection. Chaos, Solitons Fractals 91, 656–669 (2016)

    Article  Google Scholar 

  24. Furquim, G., Pessin, G., Faiçal, B.S., Mendiondo, E.M., Ueyama, J.: Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory. Neural Comput. Appl. 27(5), 1129–1141 (2016)

    Article  Google Scholar 

  25. Furquim, G., Mello, R., Pessin, G., Faiçal, B.S., Mendiondo, E.M., Ueyama, J.: An accurate flood forecasting model using wireless sensor networks and chaos theory: a case study with real WSN deployment in Brazil. In: Mladenov, V., Jayne, C., Iliadis, L. (eds.) EANN 2014. CCIS, vol. 459, pp. 92–102. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11071-4_9

    Chapter  Google Scholar 

  26. Yang, L., Fei, L.Y., Dong, Y.X., Yan, H.: Iris recognition system based on chaos encryption. In: 2010 International Conference on Computer Design and Applications (ICCDA), vol. 1, pp. V1–537. IEEE (2010)

    Google Scholar 

  27. Liu, X., Fang, X., Qin, Z., Ye, C., Xie, M.: A short-term forecasting algorithm for network traffic based on chaos theory and SVM. J. Netw. Syst. Manage. 19(4), 427–447 (2011)

    Article  Google Scholar 

  28. Li, H., Lu, R., Zhou, L., Yang, B., Shen, X.: An efficient merkle-tree-based authentication scheme for smart grid. IEEE Syst. J. 8(2), 655–663 (2014)

    Article  Google Scholar 

  29. Li, D., Aung, Z., Williams, J.R., Sanchez, A.: Efficient authentication scheme for data aggregation in smart grid with fault tolerance and fault diagnosis. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–8. IEEE (2012)

    Google Scholar 

  30. Nicanfar, H., Jokar, P., Leung, V.C.: Smart grid authentication and key management for unicast and multicast communications. In: 2011 IEEE PES Innovative Smart Grid Technologies, pp. 1–8. IEEE (2011)

    Google Scholar 

  31. Xu, K., Ma, X., Liu, C.: A hash tree based authentication scheme in SIP applications. In: IEEE International Conference on Communications, 2008. ICC 2008, pp. 1510–1514. IEEE (2008)

    Google Scholar 

  32. Liu, C., Ranjan, R., Yang, C., Zhang, X., Wang, L., Chen, J.: MuR-DPA: top-down levelled multi-replica merkle hash tree based secure public auditing for dynamic big data storage on cloud. IEEE Trans. Comput. 64(9), 2609–2622 (2015)

    Article  MathSciNet  Google Scholar 

  33. Zhang, H., Tu, T., et al.: Dynamic outsourced auditing services for cloud storage based on batch-leaves-authenticated Merkle hash tree. IEEE Trans. Serv. Comput. PP(99), 1 (2017)

    Google Scholar 

  34. Garg, N., Bawa, S.: RITS-MHT: relative indexed and time stamped Merkle hash tree based data auditing protocol for cloud computing. J. Netw. Comput. Appl. 84(Supplement C), 1–13 (2017). http://www.sciencedirect.com/science/article/pii/S1084804517300668

    Article  Google Scholar 

  35. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in Cryptology — CRYPTO 1989 Proceedings. CRYPTO 1989. Lecture Notes in Computer Science, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

  36. Moreira, F.J.S.: Chaotic dynamics of quadratic maps. IMPA (1993)

    Google Scholar 

  37. Lawande, Q., Ivan, B., Dhodapkar, S.: Chaos based cryptography: a new approach to secure communications, vol. 258, no. 258. BARC newsletter (2005)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the Ministry of Electronics & Information Technology (MeitY), Government of India under the Visvesvaraya PhD Scheme for Electronics & IT (PhD-PLA/4(71)/2015-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashreen Nesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nesa, N., Banerjee, I. (2020). Combining Merkle Hash Tree and Chaotic Cryptography for Secure Data Fusion in IoT. In: Gavrilova, M., Tan, C., Saeed, K., Chaki, N. (eds) Transactions on Computational Science XXXV. Lecture Notes in Computer Science(), vol 11960. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61092-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61092-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61091-6

  • Online ISBN: 978-3-662-61092-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics