Skip to main content

Intelligent and Immersive Visual Analytics of Health Data

  • Chapter
  • First Online:
Advanced Computational Intelligence in Healthcare-7

Part of the book series: Studies in Computational Intelligence ((SCI,volume 891))

Abstract

Massive amounts of health data have been created together with the advent of computer technologies and next generation sequencing technologies. Analytical techniques can significantly aid in the processing, integration and interpretation of the complex data. Visual analytics field has been rapidly evolving together with the advancement in automated analysis methods such as data mining, machine learning and statistics, visualization, and immersive technologies. Although automated analysis processes greatly support the decision making, conservative domains such as medicine, banking, and insurance need trusts on machine learning models. Explainable artificial intelligence could open the black boxes of the machine learning models to improve the trusts for decision makers. Immersive technologies allow the users to engage naturally with the blended reality in where they can look the information in different angles in addition to traditional screens. This chapter reviews and discusses the intelligent visualization, artificial intelligence and immersive technologies in health domain. We also illustrate the ideas with various case studies in genomic data visual analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, J., Lai, J., Wood, D.L., Sajjanhar, A., Wang, C., Tevz, G., Lehman, M.L., Nelson, C.C.: RNASeqBrowser: a genome browser for simultaneous visualization of raw strand specific RNAseq reads and UCSC genome browser custom tracks. BMC Genom. 16, 145 (2015). https://doi.org/10.1186/s12864-015-1346-2

    Article  Google Scholar 

  2. Arya, A., Nowlan, N., Sauriol, N.: Data-driven framework for an online 3D immersive environment for educational applications. In: Proceedings of the International Conference on Education and New Learning Technologies, pp. 4726–4736 (2010)

    Google Scholar 

  3. Bhavnani, S., Ganesan, A., Hall, T., Maslowski, E., Eichinger, F., Martini, S., Saxman, P., Bellala, G., Kretzler, M.: Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations. BMC Res. Notes 3(1), 296 (2010). https://doi.org/10.1186/1756-0500-3-296

    Article  Google Scholar 

  4. Borgo, R., Kehrer, J., Chung, D.H., Maguire, E., Laramee, R.S., Hauser, H., Ward, M., Chen, M.: Glyph-based visualization: foundations, design guidelines, techniques and applications. In: Eurographics (STARs), pp. 39–63 (2013)

    Google Scholar 

  5. Boudreaux, E.D., Waring, M.E., Hayes, R.B., Sadasivam, R.S., Mullen, S., Pagoto, S.: Evaluating and selecting mobile health apps: strategies for healthcare providers and healthcare organizations. Transl. Behav. Med. 4(4), 363–371 (2014). https://doi.org/10.1007/s13142-014-0293-9

    Article  Google Scholar 

  6. Breiman, L.: Radom forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  7. Calì, C., Baghabra, J., Boges, D.J., Holst, G.R., Kreshuk, A., Hamprecht, F.A., Srinivasan, M., Lehväslaiho, H., Magistretti, P.J.: Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues. J. Comp. Neurol. 524(1), 23–38 (2016). https://doi.org/10.1002/cne.23852

    Article  Google Scholar 

  8. Camilleri, V., de Freitas, S., Montebello, M., McDonagh-Smith, P.: A case study inside virtual worlds: use of analytics for immersive spaces (2013). https://doi.org/10.1145/2460296.2460341

  9. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in information visualization: using vision to think. The Morgan Kaufmann series in interactive technologies. Morgan Kaufmann Publishers, an Francisco, California (1999)

    Google Scholar 

  10. Chang, Y., Peng Xu, W., Wang, L.: Research on 3D Visualization of Underground Antique Tomb Based on Augmented Reality, vol. 336–338 (2013). https://doi.org/10.4028/www.scientific.net/AMM.336-338.1434

  11. Chelaru, F., Smith, L., Goldstein, N., Bravo, H.C.: Epiviz: interactive visual analytics for functional genomics data. Nat. Methods 11(9), 938–940 (2014). https://doi.org/10.1038/nmeth.3038

    Article  Google Scholar 

  12. Claudia, E., Peter, E., Bernd, E., Katrin, E., Torsten, E.: Interactive 3D visualization of structural changes in the brain of a person with corticobasal syndrome. Front. Neuroinformatics 8 (2014). https://doi.org/10.3389/fninf.2014.00042

  13. David, B.D., Clifford, A.W., Gibson, J.D., John, M.B., Max, W.: Augmented reality: advances in diagnostic imaging. Multimodal Technol. Interact. 1(4), 29 (2017). https://doi.org/10.3390/mti1040029

    Article  Google Scholar 

  14. Dockx, K., Bekkers, E.M.J., Van den Bergh, V., Ginis, P., Rochester, L., Hausdorff, J.M., Mirelman, A., Nieuwboer, A.: Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst. Rev. 12 (2016). https://doi.org/10.1002/14651858.cd010760.pub2

  15. Fuchs, R., Waser, J., Groller, M.E.: Visual human + machine learning. IEEE Trans. Vis. Comput. Graph 15(6), 1327–1334 (2009). https://doi.org/10.1109/TVCG.2009.199

    Article  Google Scholar 

  16. García-Hernández, R.J., Anthes, C., Wiedemann, M., Kranzlmüller, D.: Perspectives for using virtual reality to extend visual data mining in information visualization. In: 2016 IEEE Aerospace Conference, 5–12, pp. 1–11 (2016). https://doi.org/10.1109/aero.2016.7500608

  17. Gold, J.I., Belmont, K.A., Thomas, D.A.: The neurobiology of virtual reality pain attenuation. Cyberpsychology Behav. Impact Internet, Multimed. Virtual Real. Behav. Soc. 10(4), 536 (2007). https://doi.org/10.1089/cpb.2007.9993

    Article  Google Scholar 

  18. Goldman, M., Craft, B., Swatloski, T., Cline, M., Morozova, O., Diekhans, M., Haussler, D., Zhu, J.: The UCSC cancer genomics browser: update 2015. Nucleic. Acids Res. 43, D812–817 (2015). https://doi.org/10.1093/nar/gku1073

  19. Golestan Hashemi, F.S., Razi Ismail, M., Rafii Yusop, M., Golestan Hashemi, M.S., Nadimi Shahraki, M.H., Rastegari, H., Miah, G., Aslani, F.: Intelligent mining of large-scale bio-data: bioinformatics applications. Biotechnol. Biotechnol. Equip. 32(1), 10–29 (2017). https://doi.org/10.1080/13102818.2017.1364977

    Article  Google Scholar 

  20. Green, T.M., Ribarsky, W., Fisher, B.: Visual analytics for complex concepts using a human cognition model. In: 2008 IEEE Symposium on Visual Analytics Science and Technology, vol. 19–24, pp. 91–98 (2008). https://doi.org/10.1109/vast.2008.4677361

  21. Joseph, A.C., David, S.W.: Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2, 59–78 (2006)

    Google Scholar 

  22. Keahey, T.A.: Using visualization to understand big data. Adv. Vis. (2013)

    Google Scholar 

  23. Keefe, J.F., Huling, A.D., Coggins, J.M., Keefe, F.D., Rosenthal, M.Z., Herr, R.N., Hoffman, G.H.: Virtual reality for persistent pain: a new direction for behavioral pain management. Pain 153(11), 2163–2166 (2012). https://doi.org/10.1016/j.pain.2012.05.030

    Article  Google Scholar 

  24. Kiper, P., Szczudlik, A., Agostini, M., Opara, J., Nowobilski, R., Ventura, L., Tonin, P., Turolla, A.: Virtual reality for upper limb rehabilitation in subacute and chronic stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 99(5), 834–842.e834 (2018). https://doi.org/10.1016/j.apmr.2018.01.023

    Article  Google Scholar 

  25. Krisa, D., Tailor, S.I.: Data visualization in health care: optimizing the utility of claims data through visual analysis (2014)

    Google Scholar 

  26. Lau, C.W., Nguyen, Q.V., Qu, Z., Simoff, S., Catchpoole, D.: Immersive intelligence genomic data visualisation. Paper Presented at the ACM (2019)

    Google Scholar 

  27. Laver, K.E., Lange, B., George, S., Deutsch, J.E., Saposnik, G., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Database of Syst. Rev. 11 (2017). https://doi.org/10.1002/14651858.cd008349.pub4

  28. Leung, M.K.K., Delong, A., Alipanahi, B., Frey, B.J.: Machine learning in genomic medicine: a review of computational problems and data sets. Proc. IEEE 104(1), 176–197 (2016). https://doi.org/10.1109/jproc.2015.2494198

    Article  Google Scholar 

  29. Lex, A., Streit, M., Kruijff, E., Schmalstieg, D.: Caleydo: design and evaluation of a visual analysis framework for gene expression data in its biological context. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), vol. 2–5, pp. 57–64 (2010). https://doi.org/10.1109/pacificvis.2010.5429609

  30. Lin, Q., Xu, Z., Li, B., Baucom, R., Poulose, B., Landman, B.A., Bodenheimer, R.E.: Immersive virtual reality for visualization of abdominal CT. In: Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment. International Society for Optics and Photonics, p. 867317 (2013)

    Google Scholar 

  31. Llobera, J., González-Franco, M., Perez-Marcos, D., Valls-Solé, J., Slater, M., Sanchez-Vives, M.: Virtual reality for assessment of patients suffering chronic pain: a case study. Exp. Brain Res. 225(1), 105–117 (2013). https://doi.org/10.1007/s00221-012-3352-9

    Article  Google Scholar 

  32. Luboschik, M., Berger, P., Staadt, O.: On Spatial Perception Issues in Augmented Reality Based Immersive Analytics (2016). https://doi.org/10.1145/3009939.3009947

  33. Maani, C.V., Hoffman, H.G., Morrow, M., Maiers, A., Gaylord, K., McGhee, L.L., Desocio, P.A.: Virtual reality pain control during burn wound debridement of combat-related burn injuries using robot-like arm mounted VR goggles. J. Trauma: Inj. Infect. Crit. Care 71(1 supplement), S125–S130 (2011). https://doi.org/10.1097/TA.0b013e31822192e2

    Article  Google Scholar 

  34. Matte-Tailliez, O., Toffano-Nioche, C., Ferey, N., Kepes, F., Gherbi, R.: Immersive visualization for genome exploration and analysis. In: 2006 2nd International Conference on Information and Communication Technologies, vol. 24–28, pp. 3510–3515 (2006). https://doi.org/10.1109/ictta.2006.1684982

  35. Mills, M.: Artificial Intelligence in Law: The State of Play 2016 Thomson Reuters S031401/3–16 (2016)

    Google Scholar 

  36. Moran, A., Gadepally, V., Hubbell, M., Kepner, J.: Improving big data visual analytics with interactive virtual reality (2015). https://doi.org/10.1109/HPEC.2015.7322473

    Article  Google Scholar 

  37. Müller, C., Krone, M., Huber, M., Biener, V., Herr, D., Koch, S., Reina, G., Weiskopf, D., Ertl, T.: Interactive molecular graphics for augmented reality using Hololens. J. Integr. Bioinform. 15(2). https://doi.org/10.1515/jib-2018-0005

  38. Natalia Andrienko, G.A.: Intelligent visualisation and information presentation for civil crisis management. Trans. GIS 11(6), 11 (2007). https://doi.org/10.1111/j.1467-9671.2007.01078.x

    Article  Google Scholar 

  39. Nguyen, H., Marendy, P., Engelke, U.: Collaborative Framework Design for Immersive Analytics (2016). https://doi.org/10.1109/BDVA.2016.7787044

    Article  Google Scholar 

  40. Nguyen, Q.V., Alzamora, P., Ho, N., Huang, M.L., Simoff, S., Catchpoole, D.: Unlocking the complexity of genomic data of RMS patients through visual analytics. In: Paper presented at the 2012 International Conference on Computerized Healthcare, pp. 17–18. Hong Kong (2012)

    Google Scholar 

  41. Nguyen, Q.V., Gleeson, A., Ho, N., Huang, M.L., Simoff, S., Catchpoole, D.: Visual analytics of clinical and genetic datasets of acute lymphoblastic leukaemia. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) Neural Information Processing: 18th International Conference, ICONIP 2011, pp. 13–17. Shanghai, China. Proceedings, Part I. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 113–120 (2011). https://doi.org/10.1007/978-3-642-24955-6_14

  42. Nguyen, Q.V., Khalifa, N.H., Alzamora, P., Gleeson, A., Catchpoole, D., Kennedy, P.J., Simoff, S.: Visual analytics of complex genomics data to guide effective treatment decisions. J. Imaging 2(4), 29 (2016). UNSP 2910.3390/jimaging2040029

    Article  Google Scholar 

  43. Nguyen, Q.V., Qian, Y., Huang, M.L., Zhang, J.W.: TabuVis: a tool for visual analytics multidimensional datasets. Sci. China-Infr. Sci. 56(5), 1–12 (2013). ARTN 05210510.1007/s11432-013-4870-1

    Article  Google Scholar 

  44. Nguyen, Q.V., Nelmes, G., Huang, M.L., Simoff, S., Catchpoole, D.: Interactive visualization for patient-to-patient comparison. Genomics Inf. 12(1), 21–34 (2014). https://doi.org/10.5808/GI.2014.12.1.21

    Article  Google Scholar 

  45. Nilsson, N.J.: The Quest for Artifical Intelligence: A History of Ideas and Achievements (2009)

    Google Scholar 

  46. Olshannikova, E., Ometov, A., Koucheryavy, Y., Olsson, T.: Visualizing big data with augmented and virtual reality: challenges and research agenda. J. Big Data 2(1) (2015). https://doi.org/10.1186/s40537-015-0031-2

  47. Patrick, H., Wen, P., SriSatish, A.: Ideas on interpreting machine learning. O’Reilly (2017)

    Google Scholar 

  48. Pavlopoulos, G.A., Malliarakis, D., Papanikolaou, N., Theodosiou, T., Enright, A.J., Iliopoulos, I.: Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future. Gigascience 4, 38 (2015). https://doi.org/10.1186/s13742-015-0077-2

    Article  Google Scholar 

  49. Perez-Llamas, C., Lopez-Bigas, N.: Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE 6(5), e19541 (2011). https://doi.org/10.1371/journal.pone.0019541

    Article  Google Scholar 

  50. Polys, N., Mohammed, A., Iyer, J., Radics, P., Abidi, F., Arsenault, L., Rajamohan, S.: Immersive analytics: crossing the gulfs with high-performance visualization (2016). https://doi.org/10.1109/IMMERSIVE.2016.7932376

  51. Qu, Z., Lau, C.W., Nguyen, Q.V., Zhou, Y., Catchpoole, D.R.: visual analytics of genomic and cancer data: a systematic review. Cancer Inform. 18, 1176935119835546 (2019)

    Article  Google Scholar 

  52. Qu, Z., Zhou, Y., Nguyen, Q.V., Catchpoole, D.R.: Using visualization to illustrate machine learning models for genomic data. Paper Presented at the ACM (2019)

    Google Scholar 

  53. Ribeiro, M., Singh, S., Guestrin, C.: Why Should I Trust You? Explaining the Predictions of Any Classifier. arXivorg (2016)

    Google Scholar 

  54. Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P.: Integrative genomics viewer. Nat. Biotechnol. 29(1), 24–26 (2011). https://doi.org/10.1038/nbt.1754

    Article  Google Scholar 

  55. Sennaar, K.: Machine Learning in Genomics—Current Efforts and Future Applications (2018). https://www.techemergence.com/machine-learning-in-genomics-applications/

  56. Shan, Q., Doyle, T.E., Samavi, R., Al-Rei, M.: Augmented reality based brain tumor 3D visualization. In: 8th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2017), vol. 113, pp. 400–407 (2017). https://doi.org/10.1016/j.procs.2017.08.356

  57. Shilling, C.: How Augmented Reality will Change Data Visualization (2017). http://blog.i2econsulting.com/how-augmented-reality-will-change-data-visualization/

  58. Simpson, R.M., LaViola, J.J., Laidlaw, D.H., Forsberg, A.S., van Dam, A.: Immersive VR for scientific visualization: a progress report. IEEE Comput. Graphics Appl. 20(6), 26–52 (2000). https://doi.org/10.1109/38.888006

    Article  Google Scholar 

  59. Slater, M., Sanchez-Vives, M.V.: Enhancing Our Lives with Immersive Virtual Reality 3(74) (2016). https://doi.org/10.3389/frobt.2016.00074

  60. Stevens, E.A., Rodriguez, C.P.: Genomic medicine and targeted therapy for solid tumors 111 (2015). https://doi.org/10.1002/jso.23699

  61. Tang, J., Liu, R., Zhang, Y.L., Liu, M.Z., Hu, Y.F., Shao, M.J., Zhu, L.J., Xin, H.W., Feng, G.W., Shang, W.J., Meng, X.G., Zhang, L.R., Ming, Y.Z., Zhang, W.: Application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients. Sci. Rep. 7, 42192 (2017). https://doi.org/10.1038/srep42192

    Article  Google Scholar 

  62. Venson, J., Berni, J., Maia, C., Da Silva, A., D’Ornelas, M., Maciel, A.: Medical imaging VR: Can Immersive 3D Aid in Diagnosis? 02–04 (2016). https://doi.org/10.1145/2993369.2996333

  63. Wachtel, M., Runge, T., Leuschner, I., Stegmaier, S., Koscielniak, E., Treuner, J., Odermatt, B., Behnke, S., Niggli, F., Schafer, B.: Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J. Clin. Oncol. 24(5), 816–822 (2006). https://doi.org/10.1200/JCO.2005.03.4934

    Article  Google Scholar 

  64. Ware, C.: Information Visualization Perception for Design (2013)

    Google Scholar 

  65. Wei, L., Huang, X., Huang, M.L., Nguyen, Q.V.: Applying graph layout techniques to web information visualization and navigation. In: Paper Presented at the IEEE Int’l Conference on Computer Graphics, Imaging and Vision (CGIV07). Bangkok, Thailand, 13 Aug 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang Vinh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qu, Z., Lau, C.W., Catchpoole, D.R., Simoff, S., Nguyen, Q.V. (2020). Intelligent and Immersive Visual Analytics of Health Data. In: Maglogiannis, I., Brahnam, S., Jain, L. (eds) Advanced Computational Intelligence in Healthcare-7. Studies in Computational Intelligence, vol 891. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61114-2_3

Download citation

Publish with us

Policies and ethics