Real-Time C++

Christopher Kormanyos

Real-Time C++

Efficient Object-Oriented and Template
Microcontroller Programming

Fourth Edition

@ Springer

Christopher Kormanyos
Reutlingen
Germany

ISBN 978-3-662-62995-6 ISBN 978-3-662-62996-3 (eBook)
https://doi.org/10.1007/978-3-662-62996-3

© Springer-Verlag GmbH Germany, part of Springer Nature 2013, 2015, 2018, 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE, part of
Springer Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-62996-3

To those who pursue the art of technical
creativity

Preface to the Fourth Edition

C++20, the newest evolution of C++, adds various major new language features
that can significantly simplify and clarify program expression. At the same time,
using C++ in microcontroller programming is steadily gaining popularity and the
methods of its use are maturing in the embedded systems community. These steps
are matched by the widespread support of modern post-C++11,14,17 adherence
delivered by many high-quality microcontroller compiler vendors.

The fourth edition of this book keeps up with these progressions in C++. In
addition to covering new C++ language elements, particular emphasis is placed
on improving and extending the depth of the examples. Several interesting sample
projects requiring additional chips and exercising advanced software and laboratory
techniques have been added. Furthermore, one of the new computationally intensive
examples has also been adapted to both our target with the 8-bit microcontroller as
well as to a modern single-board computer with a powerful 32-bit processor.

These efforts are intended to widen the scope of applicability of this book for
students, practitioners, and hobbyists alike by exemplifying practical, hands-on
methods to leverage the power of portable C++ with lean, efficient real-time code.

New or Significantly Modified Sections

The fourth edition of this book contains several new or significantly modified parts.
These include:

e Section 1.10 adapted to add detailed comments regarding using rein-
terpret cast sparingly,

» Section 3.2 extended to include example chapter03 02 that calculates prime
numbers and provides an insightful preview of numerous C++ techniques,

e Section 3.21 (new) on std: : span from C++20’s library that can be
used for delimiting pointer ranges,

vii

viii Preface to the Fourth Edition

e Section 3.22 (new) briefly showing how to use the <randoms> library for
generating sequences of pseudo-random integers,

* Section 4.4 which has been significantly expanded to include two full detailed
examples exercising dynamic polymorphism with an intuitive LED class hierar-
chy,

e Chapters 4, 7, and 8 which have been reworked in order to improve code
sequences and clarity of text passages,

e Section 5.13 (new) describing how to make effective and powerful use of
template integer sequences at compile time with std: : integer sequence,

» Section 6.14 with the addition of example chapter06 14 extending the
original CRC32 calculation of example chapter06 01 to make use of custom
ROM-based iterators and containers specifically designed for accessing read-
only program code,

e Section 6.21 (new) quantifying potential resource consumption resulting from
using runtime type information (RTTI),

* Section 9.5 has been reworked to implement a portable, all-software SPI™ driver
subsequently used in examples chapter04 04, chapter04 04a, chap-
terl0_ 08, chapterl0 08a,chapterl0 09, and chapterlé 08,

* Section 10.8 (new) providing a detailed example that uses external SRAM ICs to
calculate up to 100, 001 decimal digits of = with an application architecture that
uses custom SRAM pointers, iterators and containers, and numerical algorithms,

* Section 10.9 (new) which adapts the 7 calculations of Sect. 10.8 to the powerful
32-bit Arm®-based Raspberry Pi®Zero WH single-board computer system,

* Section 11.7 has been modified to include a sample that exemplifies preemptive
multitasking scheduling,

e Section 12.2 has been slightly expanded to include common standardized
mathematical constants such as ﬁ, 7, log?2, e, etc. in the <numbers > header,

e Section 16.7 (new) describing a portable implementation of big integer types
suchasuintl128 t,uint256 t,uint512 t,etc,

e Section 16.8 (new) which develops a basic hardware-based custom random
engine that can serve as an efficient and practical, hobby-quality drop-
in replacement for std::default random engine and also presents
example chapterl6 08 which performs primality testing of random 128-bit
big integers,

* Section 16.9 (new) on the freestanding implementation,

e Section A.9 enlarged to treat C++20 enhancements of lambda expression syntax
including template parameter lists and new capture style for this,

» Section A.16 broadened to include std: :variant from C++20 in the new
<variant> addition to the STL,

¢ Section A.18 (new) covering a three-way comparison with the co-called space-
ship operator within the context of generalized equality and inequality,

Preface to the Fourth Edition ix
Improved or New Examples and Code Snippets

Several new examples have been added. All of the example projects have been
modernized and checked for compatibility with GCC version 10.1.0 built for
avr-g++. The portability and range of use of each example project have been
improved. In particular, test and verification of the examples have been carried
out with various GCC versions ranging from 5 through 9 using the language
standards flags -std=c++11, -std=c++14, -std=c++17,and -std=c++20
(as available).

1 The chapter03_ 02 sample project (new) in Sect. 3.2 uses fixed-size integer
types and various other C++ techniques to compute the first 100 prime numbers.

> The chapter04 04 and chapter04 04a sample projects (new) in
Sect. 4.4 exercise various forms of polymorphism and class relationships through
the example of an LED class hierarchy.

1 The chapter06_14 sample project (new) in Sect. 6.14 shows how to create
custom ROM-based iterators and containers used to calculate a CRC32 check-
sum.

1= The sample projects chapter10 08 and chapterl0_ 08a (new, advanced)
found in Sect. 10.8 use external memory ICs to extend available SRAM to
up to 2Mbyte for calculations of as many as 100, 001 decimal digits of the
mathematical constant 7.

1 The chapter10_ 09 sample project (new, advanced) in Sect. 10.9 adapts the &
calculations of example chapter10 08a to the well-known 32-bit Arm®-
based Raspberry Pi®Zero WH single-board computer system, running OS-less in
bare metal mode. Seamlessly porting this application’s C++ algorithms from an
8-bit platform to a high-performance 32-bit Arm®-based system provides keen
insight into effective cross development on multiple systems.

1 The chapterll 07 sample project (new, advanced) exemplifies intuitive
use of a preemptive multitasking scheduler constrained by small RAM/ROM
resource footprint.

1 The chapterlé6 08 sample project (new, advanced) in Sect. 16.8 computes
128-bit prime numbers using a Miller—Rabin primality test.

With the fourth edition of this book, the detailed code snippets available in the
public domain now cover approximately two-thirds of code samples in the text. Each
code snippet comprises a complete and portable, single-file C++ program. Every
program can be compiled and run on a PC or easily adapted to a microcontroller
environment.

To obtain run-ability on a PC, code snippets have usually been embellished with
amain () subroutine. Some code snippets have been augmented with <thread>
support, simulated hardware registers or other C++ mechanisms in order to elucidate
the topic of the program. Outputs of the code snippets are typically printed
to the console with <iostream> and potentially formatted with the help of
<iomanip>. File names of the code snippets correspond to chapter and section
numbers in the book.

X Preface to the Fourth Edition
Companion Code

Based on new and reworked material in the fourth edition, the companion code has
been significantly improved and extended.
The entire companion code can be found here:

http://github.com/ckormanyos/real-time-cpp

The complete reference application is at:

http://github.com/ckormanyos/real-time-cpp/tree/master/ref_app

Example projects are stored here:

http://github.com/ckormanyos/real-time-cpp/tree/master/examples

Code snippets are located at:

http://github.com/ckormanyos/real-time-cpp/tree/master/code_snippets

Further Notes on Coding Style

The coding style in the fourth edition of this book stays consistent with that used
in the first through third editions. The code is intended to be easy to read and
straightforward to comprehend while simultaneously utilizing the full spectrum of
C++’s traditional and modern features.

Reutlingen, Germany Christopher Kormanyos
November 2020

http://github.com/ckormanyos/real-time-cpp
http://github.com/ckormanyos/real-time-cpp/tree/master/ref_app
http://github.com/ckormanyos/real-time-cpp/tree/master/examples
http://github.com/ckormanyos/real-time-cpp/tree/master/code_snippets

Updated Trademarks
and Acknowledgments

In the prefaces to first and third editions, several trademarks and acknowledgments
are listed. Meanwhile, the authors/holders of certain trademarks/copyrights and the
scope of some of the acknowledgments have changed.

Microchip® and AVR® are registered trademarks of Microchip Technology
Incorporated or its subsidiaries in the USA and other countries.

ARDUINO® is a registered trademark of the Arduino Group.

Arm®, Arm11™ and Arm1176JZF-S™ are trademarks or registered trademarks
of Arm Limited (or its subsidiaries) in the USA and/or elsewhere.

The word AUTOSAR is a registered trademark of the AUTOSAR Development
Partnership.

Cypress® and MoBL® are registered trademarks of Cypress Semiconductor
Corporation. At the time of writing the fourth edition, Cypress is an Infineon
Technologies Company.

Broadcom® is a registered trademark of Broadcom Corporation and/or its
affiliates in the USA, certain other countries, and/or the EU.

Raspberry Pi® is a registered trademark of the Raspberry Pi Foundation.

SPI™ is a trademark of Motorola, Inc.

LCD character displays used in various examples including chapterl0 -
08a, chapterl0_ 09, and chapterl6 08 and pictured in the associated
Figs. 10.2, 10.4 and 16.4 are products of Newhaven Display International that are
bound by the terms and conditions provided at Newhaven Display International’s
Internet website.

Several other trademarks are associated with electronic components that appear
prominently in some of the figures. These components and trademarks include
74xx logic ICs in Figs. 10.4 and 16.4 from Harris® Corp. Semiconductor Sector,
an LM2903 dual voltage comparator in Fig. 16.4 from Fairchild™ Semiconduc-
tor International, Inc., electrolytic capacitors in various figures from Vishay®
Roederstein, potentiometers in various figures from Piher Sensing Systems
(an Amphenol® company), an SMD-to-DIP adapter of type PA0208 with text
PROTO-ADVANTAGE.COM in Fig. 10.2, and a micro SD card inserted in a

xi

xii

Updated Trademarks and Acknowledgments

tray in Fig.10.4 from Transcend® Information, Inc. All these and any other
trademarks mentioned or shown in the figures are the property of their respective
companies.

Nonetheless this is neither an official publication of nor has it been authorized,
sponsored, or approved by any of the aforementioned copyright authors, copy-
right holders, or their subsidiaries.

The circuits of all target hardware described and depicted in various chapters
and appendices have been designed and assembled on solderless prototyping
breadboards by myself.

All photographs of target hardware shown in various chapters and appendices
were taken by myself.

Preface to the Third Edition

C++ is a modern, expressive object-oriented programming language that continues
to evolve. In keeping up with the exciting development of C++, the third edition of
this book has been updated for C++17.!

With this iteration of the language, the purpose of this book remains the same—
to show through example and text how to leverage C++’s powerful object-oriented
and template features in the realm of microcontroller programming with the goal of
improving software quality and robustness while simultaneously fulfilling efficiency
requirements.

Several new sections have been added and others have been modified or adapted.
These changes cover new language elements and library features in C++17. They
also reflect the trend of improved compiler support for C++11 and C++14.

More errors have been identified, predominantly reported by careful and patient
readers. All errors that have been found have been corrected.

New or Significantly Modified Sections

The third edition of this book contains several new or significantly modified
sections. These include:

e Section 2.2 updated for a newer GCC toolchain with a more simple decorated
name (i.e., GCC version 7.2.0 built for the target avr-g++).

e Section 3.4 adding information on C++17 nested namespace definitions,

e Section 3.17 now including descriptions of the (in the second edition of this book
missing) standardized suffixes 1f, i, and i1 from the <complex> library,

* Section 3.18 (new) detailing the specifiers alignof and alignas,

At the time of writing the third edition of this book, state-of-the-art compilers support C++17.
The specification process is ongoing, and some language experts predict that C++20 will be the
next revision of the C++ standard, potentially available in 2020.

xiii

Xiv Preface to the Third Edition

e Section 3.19 (new) for the specifier final,

e Section 3.20 (new) on defining types with C++11 alias,

e Section 9.8 (new) portraying a full example that animates an RGB LED to
produce a colorful light display,

e Section 12.4 covering inclusion of additional mathematical special functions in
<cmaths> specified in the C++17 standard,

» several sections in Chap. 13 reflecting improvements of the fixed point class
in the companion code,

e Section 16.6 (new) presenting an extended-complex template class that promotes
the functionality of the <complex> library to user-defined types other than
float, double, and long double,

e Chapter 17 (new) showing how to use C code in a C++ project (hereby
“Additional Reading” has been moved from Chaps. 17 to 18),

* the tutorial of Appendix A, in particular Sect. A.4 updating static_assert
for C++17, Sect. A.15 (new) about the <type traitss> library, Sect. A.16
(new) on using std: : any from the C++17 <any> library, and Sect. A.17 (new)
introducing structured binding declarations (also from C++17).

Improved or New Examples and Code Snippets

All sample projects have been modernized for GCC version 7.2.0 built for
avr-g++, and five new examples have been added.

i The chapter06_01 sample project (new) shows step-by-step how to perform
the benchmark of the CRC calculation described in Sects. 6.1 and 6.2.

i The chapter09 07 example in Sect. 9.7 has been adapted to architectural
improvements found in the new chapter09 08 sample of Sect. 9.8,

i The chapter09 08 sample project (new) animates an industry-standard off-
the-shelf RGB LED. This example incorporates several real-time C++ features
including object-oriented design, peripheral driver development, and multitask-
ing. They are merged together within the context of a coherent, intuitive, and
visible project. By means of simulation on a PC, the chapter09 08 sample
also exemplifies cross-development and methods for creating portable code.

1 The chapterl2 04 example (new) performs highly detailed calculations of
several mathematical special functions. These are used to provide a benchmark
of floating-point operations.

= The chapterl7 03 sample project (new) takes an existing C library used
for CRC calculations and wraps the procedural functions in classes that can be
employed in object-oriented C++. This practical exercise shows how to leverage
the power of valuable existing C code within a modern C++ project.

= The chapterl7 03a sample project (new) uses the CRC classes of the
chapterl7 03 example and distributes the work of the calculations among
successive time slices in a multitasking environment.

Preface to the Third Edition XV

With the third edition of this book, code snippets have been made available in the
public domain. The code snippets correspond to certain code samples that appear
in the text. Each code snippet comprises a complete and portable, single-file C++
program. Every program can be compiled and run on a PC or easily adapted to a
microcontroller environment.

To obtain run-ability on a PC, code snippets have been embellished with a
main () subroutine. Some code snippets have been augmented with <threads>
support or other higher-level mechanisms in order to elucidate the topic of the
program. Outputs are printed to the console with <iostreams. The file names
of the code snippets correspond to chapter and section numbers in the book.

Companion Code

The companion code has been improved and extended based on new and reworked
sections of the third edition. Contemporary compiler toolchains are used. Legacy
directories that previously provided for certain aspects of C++11 compatibility have
been removed, as modern compilers now support these.

The entire companion code can be found here:

http://github.com/ckormanyos/real-time-cpp

The reference application is at:

http://github.com/ckormanyos/real-time-cpp/tree/master/ref_app

Example projects can be found here:

http://github.com/ckormanyos/real-time-cpp/tree/master/examples

Code snippets are located at:

http://github.com/ckormanyos/real-time-cpp/tree/master/code_snippets

Further Notes on Coding Style

The coding style in the third edition of this book stays consistent with that used in the
first and second editions. The code is intended to be easy to read and straightforward
to comprehend while simultaneously utilizing the full spectrum of C++’s traditional
and modern features.

http://github.com/ckormanyos/real-time-cpp
http://github.com/ckormanyos/real-time-cpp/tree/master/ref_app
http://github.com/ckormanyos/real-time-cpp/tree/master/examples
http://github.com/ckormanyos/real-time-cpp/tree/master/code_snippets

XVi Preface to the Third Edition
Updated Trademarks and Acknowledgments

In the preface to first edition of this book, we listed several trademarks and
acknowledgments. Meanwhile the authors/holders of certain trademarks/copyrights
and the scope of some of the acknowledgments have changed.

« MICROCHIP®, ATMEL®, and AVR® are registered trademarks of Microchip
Technology Incorporated or its subsidiaries in the USA and other countries.

* Real-Time C++: Efficient Object-Oriented and Template Microcontroller Pro-
gramming, Third Edition is a book authored by Christopher Kormanyos and
published by Springer Verlag and has not been authorized, sponsored, or
otherwise approved of by Microchip Technology Incorporated.

« ARDUINO® is a registered trademark of the Arduino Group.

* The word AUTOSAR is a registered trademark of the AUTOSAR Development
Partnership.

* The circuits of all target hardware described in this book and depicted in various
chapters such as Chaps. 2, 9, and Appendix D, were designed and assembled on
solderless prototyping breadboards by Christopher Kormanyos.

» All photographs of target hardware in this book shown in chapters including
Chaps. 2, 9, Appendix D and any others were taken by Christopher Kormanyos.

Reutlingen, Germany Christopher Kormanyos
February 2018

Preface to the Second Edition

C++ seamlessly blends object-oriented techniques with generic template methods,
creating a modern powerful programming language useful for problem-solving in
countless domains. The most recent evolution of C++ from C++11 to C++14 has
brought yet further improvements to this rich language.! As C++ becomes even
more expressive, growing numbers of embedded systems developers are discovering
new and fascinating ways to utilize its multifaceted capabilities for creating efficient
and effective microcontroller software.

The second edition of this book retains its original purpose to serve as a practical
guide to programming real-time embedded microcontroller systems in C++. New
material has been incorporated predominantly reflecting changes introduced in
the C++14 standard. Various sections have been reworked according to reader
suggestions. Selected passages have been reformulated in a continued effort to
improve clarity. In addition, all known errors throughout the text have been
corrected.

New sections have been added (in particular for C++14) covering:

» digit separators (Sect. 3.15),

* binary literals (Sect. 3.16),

e user-defined literals (Sect. 3.17),

e variable templates (Sect. 5.12),

* and the chapter09 07 sample project (Sect.9.7) controlling an industry-
standard seven-segment display.

Two new sample projects, chapter02 03a and chapter09_ 07, have been
added to the companion code.

1 At the time of writing the second edition of this book, C++14 is brand new. World-class compilers
are shipped with support for C++14. Work is in progress on C++1z, the next specification of C++
(sometimes known as C++17). Experts anticipate that the specification of C++1z could be finished
in 2017.

XVii

XVviii Preface to the Second Edition

= The chapter02 03a sample project implements LED toggling at 1/2Hz
with timing provided by a simple multitasking scheduler in combination with a
timer utility.

= The chapter09 07 sample project in the newly added Sect. 9.7 uses many of
the advanced programming methods in this book to animate an industry-standard
seven-segment display.

Significantly reworked or corrected parts of this book include:

corrections and clarifications in Chap. 1 on getting started with C++,
the description of the chapter02 02 project in Sect. 2.2,

parts of Chap. 3 on the jump-start in real-time C++,

corrections and clarifications in Chap. 5 on templates,

Sects. 6.1 and 6.2 on optimization and performance,

parts of Chap. 10 on custom memory management,

parts of Chaps. 12 and 13 on mathematics,

the literature list in Sect. 18.1,

parts of Appendix A in the C++ tutorial,

and repairs and extensions of the citations in some chapter references.

SSSSSSNSNASNANSNS

Companion Code

The companion code continues to be supported and numerous developers have
successfully worked with it on various cross-development platforms. The scope of
the companion code has been expanded to include a much wider range of target
microcontrollers. In addition, the chapter02 03a and chapter09_ 07 sample
projects that are mentioned above have been added to the companion code.

The companion code is available at:

http://github.com/ckormanyos/real-time-cpp

More Notes on Coding Style

The second edition of this book features slight changes in coding style. These can
be encountered in the code samples throughout the text.

Compiler support for standard C99 and C++11 macros of the form UINT8_C (),
UINT16_ C(),UINT32 C(), etc. and corresponding macros for signed types in
the <stdint .h> and <cstdint> headers has become more prevalent (see also
Sect. 3.2). Consequently, these macros are used more frequently throughout the code
samples.

http://github.com/ckormanyos/real-time-cpp

Preface to the Second Edition Xix

These macros are useful for creating integer numeric literal values having
specified widths. The code below, for example, utilizes UINT8 C () to initialize
an 8-bit integer variable with a numeric literal value.

#include <cstdint>

std::uint8 t byte value = UINT8 C(0x55) ;

Digit separators have become available with C++14 (Sect. 3.15). These are used
in selected code samples to improve clarity of long numeric literals. Digit separators
are shown in the code sample below.

#include <cstdint>

constexpr std::uint32 t prime number =
UINT32 C(10'006’721) ;

constexpr float pi = 3.1415926535'8979323846F;

Other than these minor changes, however, the coding style in the second edition
of this book remains consistent with that of the first edition and is intended to be
clean and clear.

Reutlingen, Germany Christopher Kormanyos
Seattle, Washington
May 2015

Preface to the First Edition

This book is a practical guide to programming real-time embedded microcontroller
systems in C++. The C++ language has powerful object-oriented and template
features that can improve software design and portability while simultaneously
reducing code complexity and the risk of error. At the same time, C++ compiles
highly efficient native code. This unique and effective combination makes C++ well-
suited for programming microcontroller systems that require compact size, high
performance, and safety-critical reliability.

The target audience of this book includes hobbyists, students, and professionals
interested in real-time C++. The reader should be familiar with C or another pro-
gramming language and should ideally have had some exposure to microcontroller
electronics and the performance and size issues prevalent in embedded systems
programming.

About This Book

This is an interdisciplinary book that includes a broad range of topics. Real-
world examples have been combined with brief descriptions in an effort to provide
an intuitive and straightforward methodology for microcontroller programming
in C++. Efficiency is always in focus, and numerous examples are backed up with
real-time performance measurements and size analyses that quantify the true costs
of the code down to the very last byte and microsecond.

Throughout the chapters, C++ is used in a bare-bones, no-frills fashion without
relying on any libraries other than those specified in the language standard itself.
This approach facilitates portability.

This book has three parts and several appendices. The three parts generally build
on each other with the combined goal of providing a coherent and effective set of
C++ methods that can be used with a wide range of embedded microcontrollers.

XXi

XXii Preface to the First Edition

e Part I provides a foundation for real-time C++ by covering language technolo-
gies. Topics include getting started in real-time C++, object-oriented methods,
template programming, and optimization. The first 3 chapters have a particularly
hands-on nature and are intended to boost competence in real-time C++.
Chapter 6 has a unique and important role in that it is wholly dedicated to
optimization techniques appropriate for microcontroller programming in C++.

e Part II presents detailed descriptions of a variety of C++ components that are
widely used in microcontroller programming. These components can be either
used as presented, or adapted for other projects. This part of the book uses some
of C++’s most powerful language elements, such as class types, templates, and
the STL, to develop components for microcontroller register access, low-level
drivers, custom memory management, embedded containers, multitasking, etc.

e Part III describes mathematical methods and generic utilities that can be
employed to solve recurring problems in real-time C++.

* The appendices include a C++ language tutorial, information on the real-time
C++ development environment, and instructions for building GNU GCC cross-
compilers and a microcontroller circuit.

C++ is a rich language with many features and details, the description of
which can fill entire bookshelves. This book, however, primarily concentrates on
how to use C++ in a real-time microcontroller environment. Along those lines,
C++ language tutorials have been held terse, and information on microcontroller
hardware and compilers is included only insofar as it is needed for the examples.
A suggested list of additional reading material is given in Chap. 18 for those
seeking supplementary information on C++, the C++ standard library and STL,
software design, C++ coding guidelines, the embedded systems toolchain, and
microcontroller hardware.

When units are needed to express physical quantities, the MKS (meter, kilogram,
second) system of units is used.

Companion Code, Targets, and Tools

The companion code includes three introductory projects and one reference project.
The introductory projects treat various aspects of the material presented in Chaps. 1
and 2. The reference project is larger in scope and exercises many of the methods
from all the chapters.

The companion code is available at:

http://github.com/ckormanyos/real-time-cpp

The C++ techniques in this book specifically target microcontrollers in the small-
to-medium size range. Here, small-to-medium spans the following approximate size
and performance ranges.

e 4kbyte ... 1 Mbyte program code
e 256byte ... 128 kbyte RAM

http://github.com/ckormanyos/real-time-cpp

Preface to the First Edition XXiii

e 8-bit ... 32-bit CPU
e 8MHz... 200MHz CPU frequency

Most of the methods described in this book are, however, scalable. As such, they
can be used equally well on larger or smaller devices, even on PCs and workstations.
In particular, they can be employed if the application has strict performance and size
constraints.

A popular 8-bit microcontroller clocked with a frequency of 16 MHz has been
used as the primary target for benchmarking and testing the code samples in
this book. Certain benchmarks have also been performed with a well-known 32-
bit microcontroller clocked at 24 MHz. An 8-bit microcontroller and a 32-bit
microcontroller have been selected in order to exercise the C++ methods over a
wide range of microcontroller performance.

All the C++ examples and benchmarks in the book and the companion code
have been compiled with GNU GCC versions 4.6.2 and 4.7.0. Certain examples and
benchmarks have also been compiled with other PC-based compilers.

The most recent specification of C++11 in ISO/IEC 14882:2011 is used
throughout the text. At the time this book is written, the specification of C++11
is brand new. The advent of C++11 has made C++ significantly more effective and
easy-to-use. This will profoundly influence C++ programming. The well-informed
reader will, therefore, want to keep in touch with C++11 best practice as it evolves
in the development community.

Notes on Coding Style

A consistent coding style is used throughout the examples in this book and in the
companion code.

Code samples are written with a fixed-width font. C++ language key-
words and built-in types use the same font, but they are in boldface. For instance,

constexpr int version = 7;

In general, the names of all symbols such as variables, class types, members, and
subroutines are written in lower case. A single underscore () is used to separate
words and abbreviations in names. For instance, a system-tick variable expressed
with this style is shown in the code sample below.

unsigned long system tick;

Using prefixes, suffixes, or abbreviations to incorporate type information in a
name, sometimes known as Hungarian notation, is not done. Superfluous prefixes,

XXiv Preface to the First Edition

suffixes, and abbreviations in Hungarian notation may obscure the name of a
symbol, and symbol names can be more intuitive and clear without them. For
example,

std::uintlé_t name of a symbol;

Names that are intended for use in public domains are preferentially long and
descriptive rather than short and abbreviated. Here, clarity of expression is preferred
over terseness. Symbols used for local subroutine parameters or private implementa-
tion details with obvious meanings, however, often have terse or abbreviated names.

The global subroutine below, for example, uses this naming style. It returns the
float value of the squared Euclidean distance from the origin of a point in two-
dimensional Cartesian space R2.

float squared euclidean distance (const floaté& x,
const floaté& y)
{

return (x x x) + (y % Vy);

}

C++ references are heavily used because this can be advantageous for small
microcontrollers. Consider an 8-bit microcontroller. The work of copying subrou-
tine parameters or the work of pushing them onto the stack for anything wider
than 8-bits can be significant. This workload can potentially be reduced by using
references. In the previous code sample, for instance, the floating-point subroutine
parameters x and y, each four bytes wide, have been passed to the subroutine by
reference (i.e., const floaté&).

Fixed-size integer types defined in the std namespace of the C++ standard
library such as std: :uint8 t, std::uintlé t, std::uint32 t, and the
like are preferentially used instead of plain built-in types such as char, short,
int, etc. This improves clarity and portability. An unsigned login response with
exactly 8 bits, for instance, is shown below.

std::uint8 t login response;

Code samples often rely on one or more of the C++ standard library head-
ers such as <algorithms>, <arrays>, <cstdint>, <limits>, <tuple>,
<vectors, etc. In general, code samples requiring library headers do not explicitly
include their necessary library headers.

Preface to the First Edition XXV

The declaration of login response above, for example, actually requires
<cstdint> for the definition of std: :uint8_t. The library file is, however,
not included. In general, the code samples focus on the core of the code, not on the
inclusion of library headers.

It is easy to guess or remember, for example, that std: :array can be found
in <array> and that std: : vector is located <vectors>. It can, however, be
more difficult to guess or remember that std: : size tisin <cstddef> or that
std::accumulate () isin <numeric>. With assistance from online help and
other resources and with a little practice, though, it becomes routine to identify what
standard library parts can be found in which headers.

In cases for which particular emphasis is placed on the inclusion of a header file,
the relevant #include line(s) may be explicitly written. For instance,

#include <cstdint>

std::uint8 t login response;

Namespaces are used frequently. In general, though, the using directive is not
used to inject symbols in namespaces into the global namespace. This means that
the entire namespace must be typed with the name of a symbol in it. This, again,
favors non-ambiguity over brevity.

The unsigned 16-bit counter below, for example, uses a type from the std
namespace. Since the “using namespace std” directive is not used, the name
of the namespace (std) is explicitly included in the type.

std::uintlé_t counter;

Suffixes are generally appended to literal constant values. When a suffix is
appended to a literal constant value, its optional case is uppercase. For example,

constexpr float pi = 3.14159265358979323846F;

constexpr std::uint8 t login key = 0x55U;

Certain established C++ coding guidelines have strongly influenced the coding
style. For the sake of terseness and clarity, however, not every guideline has been
followed all the time.

XXVi Preface to the First Edition

One clearly recognizable influence of the coding guidelines is the diligent use of
C++-style casts when converting built-in types. The following code, for instance,
explicitly casts from £loat to an unsigned integer type.

float £ = 3.14159265358979323846F;

std::uint8 t u = static cast<std::uint8 t>(f);

Even though explicit casts like these are not always mandatory, they can resolve
ambiguity and eliminate potential misinterpretation caused by integer promotion.

Another influence of the coding guidelines on the code is the ordering of class
members according to their access level in the class. The communication class
below, for example, represents the base class in a hierarchy of communication
objects. The members in the class definition are ordered according to access level.
In particular,

class communication
public:
virtual ~communication() ;

virtual bool send(const std::uint8 t) const;
virtual bool recv(std::uint8 t&);

protected:
communication () ;

private:
bool recv ready;
std::uint8 t recv_buffer;

}i

C-style preprocessor macros are used occasionally. Preprocessor macros are
written entirely in uppercase letters. Underscores separate the words in the names of
preprocessor macros. The MAKE WORD () preprocessor macro below, for example,
creates an unsigned 16-bit word from two unsigned 8-bit constituents.

#define MAKE WORD (lo, hi) \
(

(uintl6_t) (((uintlé_t) (hi) << 8) | (lo))

Preface to the First Edition XXVii
Acknowledgments

First and foremost, I would like to thank my wife and my daughter for encouraging
me to write this book and also for creating a peaceful, caring atmosphere in which I
could work productively. Thank you for your support and your time. You have my
gratitude.

I would also like to express appreciation to family, friends, and associates, too
numerous to list, who contributed to this project with their innovative ideas, support,
friendship, and companionship.

Thanks go to the members of the C++ standards committee, Boost, the volunteers
at GCC and all the developers in the vibrant C++, and embedded systems commu-
nities. Through your efforts, often times for no pay whatsoever, C++ has evolved
to an unprecedented level of expressiveness, making object-oriented and generic
programming more effective and easier than ever.

Working with Springer Verlag was a delightful experience. I thank my editor,
who first identified the merit of this work and supported me throughout the writing
process. I also thank the copy editing team and all the staff at Springer Verlag for
their professionalism and capable assistance.

* ATMEL® and AVR® are registered trademarks of Atmel Corporation or its
subsidiaries, in the USA and other countries.

* Real-Time C++: Efficient Object-Oriented and Template Microcontroller Pro-
gramming is a book authored by Christopher Kormanyos and published by
Springer Verlag and has not been authorized, sponsored, or otherwise approved
of by Atmel Corporation.

« ARDUINO® is a registered trademark of the Arduino Group.

e SPI™ is a trademark of Motorola Corporation.

* The circuit of the target hardware described in this book and depicted in Chap. 2
and Appendix D was designed and assembled on a solderless prototyping
breadboard by Christopher Kormanyos.

* The photographs of the target hardware described in this book and depicted in
Chap. 2 and Appendix D were taken by Christopher Kormanyos.

Reutlingen, Germany Christopher Kormanyos
Seattle, Washington
September 2012

Contents

PartI Language Technologies for Real-Time C++

1

Getting Started with Real-Time C++.................ooooiiiiiiiiiin
1.1 The LED Programccoeeiiiiiiiiiiiiiiiiiiiiiiiaans
1.2 The Syntax of CH+ ..oviiiiiiiiiiiiiiii e
1.3 C1aSS TY PO e
L4 MEMDEIS ...ttt
1.5 Objects and INStANCeS.uuuuuuiiiiii e
1.6 #Finclude ...
1.7 INAMESPACES - - - et
1.8 C++ Standard Libraryccoooiiiiiiiiiiiiiiiiiiiiiiiiiiiias
1.9 Themain () Subroutine...........ccovviiiiiiiiiiiiiiiieennnnnn.
1.10 Low-Level Register ACCeSSvvvviiiiiiiiiiiiiiiiiiiiieinnennns
1.11 Compile-Time Constantceevriiiiiiieiiieeeeeeeeeeeennns
ReferenCes. ... covii e
Working with a Real-Time C++ Program on a Board..................
2.1 The Target Hardwarecooiiiiiiiiiiiiiiiiiiiiiiiiiiin
2.2 Build and Flash the LED Program...............ccoooviiiiunnnnnn.
2.3 Adding Timing for Visible LED Toggling...................c......
2.4 Runand Reset the LED Programcoooiiiiiiiiiiinnnn.
2.5 Recognizing and Handling Errors and Warnings...................
2.6 Reaching the Right Efficiencycooooiiiiiiiiiiiiii.
ReferenCes. .. coeii e
An Easy Jump Start in Real-Time C++......................coooeeaa.
31 Declare Locals When Usedooooiiiiiiiiiiiiiiiiiiinn
3.2 Fixed-Size Integer Types and Prime Number Example............
33 The BOOL TYPE .. .eun e
3.4 Organization with Namespacesccoeviiiiiiiiiiiinennnnnns
3.5 Basic Classes....ouuuuuiieee ittt
3.6 Basic Templates.uuuuuuiiiiiiiiiiiiiiiiiieeeas

XXiX

XXX

Contents
377 nullptr Replaces NULLoetiiiiiiiiiieeeiiiiiieeeennnnas 48
3.8 Generalized Constant Expressions with constexpr 49
3.9 Statdc @SSeIt ...ttt s 51
310 USIng <1dmitss> conniiiiiiii e 51
301 St 1@ AY ettt e, 52
3.12 Basic STL Algorithms.........c.oiiiiiiiiiiiiiiiiiiiiii s 53
313 CUME T C> ittt e, 54
3.14 atomic_load() and atomic_store()oe... 55
3.15 Digit SeParatorseeeeettiee et 55
3.16 Binary Literalsuveeeiii i 56
3.17 User-Defined LiteralS..........ccoeeiiiiiiiiiiiiiiiiiiii i, 57
3.18 Using alignof andalignas..........ccoeeeiviiiiiiiieeannnnn. 60
3.19 The Specifier £inaloooeuiiiiiiiiiiiiiiiiiiiiiiii s 61
3.20 Alias as an Alternative to typedefcoooiiiiii 62
3.21 Delimiting Pointer Ranges with 64
3.22 Generating Random Numbers with <random>................... 64
RefEIeNCES eeeei e 68
Object-Oriented Techniques for Microcontrollers...................... 69
4.1 Object Oriented Programmingcccevviiiiiiiiiniinn. 69
4.2 Objects and Encapsulationccooiiiiiiiiiiiiiiiiinnnnn. 74
4.3 INheritanceoeueiiiiiii e 76
4.4 Dynamic Polymorphism and a Detailed LED Example 77
4.5 The Real Overhead of Dynamic Polymorphism 84
4.6 Pure Virtual and AbStract............ccceeviiiiiiiiiiiiiiiiiiiean. 85
4.7 Class RelationShipsuuuuuniiii e 86
4.8 NON-COPYabIe ClaSSESuuuuuneeee e 88
4.9 Constant Methodsccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee e, 89
4.10 Static Constant Integral Membersccccevviiiieeeannn. 93
411 Class Friends.......ooooiiiiiiiiii i 95
4.12 Virtual Is Unavailable in the Base Class Constructor.............. 97
RefEreNCeS. ... eeeei e 100
C++ Templates for Microcontrollerscoooiiiiiiin. 101
5.1 Template FUNCtionsSuuuiiiiiiiiiiiiiiiiiiiiea 101
5.2 Template Scalability, Code Re-Use and Efficiency 103
5.3 Template Member Functions..............ooovviiiiiiiiiiiiinnnn., 106
5.4 Template Class TYPeS.uueetriiiiiiiiiiiieeeeeenes 109
5.5 Template Default Parameters.coooviiiiiiiiiiiiinnnnn. 110
5.6 Template Specializationcevviiiiiiiiiiiiiiieeiieeeenennns 111
5.7 Static Polymorphism ..o 113
5.8 Using the STL with Microcontrollers.cooovviuunnnnnn. 116
5.9 Variadic Templateseuviiiiiiiiiiiiiiiiiiiiiiieenns 118
5.10 Template Metaprogrammingeeeeeeeeeeereeeeeeeeeeeenns 121
5.11 Tuples and Generic Metaprogramming............c.c.cceevvvveeeennns 125
5.12 Variable Templatesoeviiiiiiiiiiiiiiiiiiiiiiieenns 129

Contents XXXi

5.13 Template Integer SeqUeNCes.ccovvuriiieeeriiiiieeeennnnnns 132
REfEIeNCES eeiei e 136
Optimized C++ Programming for Microcontrollers.................... 137
6.1 Use Compiler Optimization Settingsc..oovvveeeeernnnnn. 137
6.2 Know the Microcontroller’s Performance 141
6.3 Know an Algorithm’s Complexityccovuuuuuununnnnnnnnn. 142
6.4 Use Assembly LiStingsouviieiiiiiiiiiiiiiiiii s 144
6.5 Use Map Files. 145
6.6 Understand Name Mangling and De-mangling 145
6.7 Know When to Use Assembly and When Notto 147
6.8 Use Sensible Comments...........coeviiiiiiieiiiniiieeeennnnnns 149
6.9 Simplify Code with typedef and Aliascoevvvnen 149
6.10 Use Native Integer TYyPes....o.uvueeeeiiiiiiiiiiiiiiiiii s 152
6.11 Use Scaling with Powers of TWo..........coooiiiiiiiiiiiinnnnn. 154
6.12 Potentially Replace Multiply with Shift-and-Add 156
6.13 Consider Advantageous Hardware Dimensioning 156
6.14 Consider ROM-abilitycccvviiiiiiiiiiiiiiiiiiiiiiiieennns 158
6.15 Minimize the Interrupt Frame................ooooiiiiiiiiiiiiinnn 163
6.16 Use Custom Memory Management...........cccoovvuuueeeeennnnnnns 166
6.17 Use the STL Consistentlycevviiiiiiiiiiiiiiiiiiiieeenennns 167
6.18 Use Lambda EXPressions...........eeeeiiiiiiiiiieieeieeeeeeeeeeenns 169
6.19 Use Templates and Scalabilityccooviiiiiiiiiinnnnnnn. 170
6.20 Use Metaprogramming to Unroll LoopsS..........ccccevvvvviinnnn. 171
6.21 Potential Costs of Runtime Type Information (RTTI) 171
REfEIeNCeS. ... eeeei e 174

Part I Components for Real-Time C++

7

Accessing Microcontroller Registers 177
7.1 Defining Constant Register Addresses.o.o.uvuuuuuuuuunnnnn. 177
7.2 Using Templates for Register AcCess..........coovuiiiiiniiinnnnn. 179
7.3 Generic Templates for Register ACCESS.........uvuuuuuuruninnnnnnn. 182
7.4 Bit-Mapped Structuresccooooiiiiiiiiiiiiiiiiiiiinnn, 185
Reference.coovniii i 188
The Right Start 189
8.1 The Startup Codecooviiiiiii i i 189
8.2 Initializing RAM 192
8.3 Initializing the Static Constructors.............ccovviiiiieeeeinnnn.. 194
8.4 The Connection Between the Linker and Startup 196
8.5 Understand Static Initialization Rulescooooiiin 198

8.6 Avoid Using Uninitialized Objects ..., 200

XXXii Contents

8.7 Jumptomain () and Never return................ccevvvnnnn..
8.8 When inmain (), What Comes Next?.....ooovviiiiiiininnnnnn..
REfEIeNCES ee et
9 Low-Level Hardware Driversin C++coooiiiiiiiiiin
9.1 An /0 Port Pin Driver Template Classccovvvinnnnnnnn.
9.2 Programming Interrupts in C++.......cooviiiiiiiiiiiiiiiinnnnns
9.3 Implementing a System Tick............ooooiiiiiiiiiiiiiiii
9.4 A Software PWM Template Classccovvviiiiiiiiiiinnnnnnns
9.5 A Serial SPI™ Driver Classc.ooeuiviiiiiiininiiiinnns.
9.6 CPU-Load MONItOIS eettnitiitee ettt e e
9.7 Controlling a Seven-Segment Displayooooeeeiiiii.
9.8 Animating an RGBLEDooiiiiiiiiiiiiiiiiiiiiiiiiin
ReferenCes. .. coeei e
10 Custom Memory Managementccoevviiiiiiiiinnniiennnns
10.1 Dynamic Memory Considerationsccceevvevveieenennnnns
10.2 Using Placement-mewcvviiiiiiiiiiiiiiiiieiieeeeeeeennns
10.3 Allocators and STL CONtainerseevvveeiiiieeeeeeeeeeenens
10.4 The Standard AllOCAtOT........vvviiiiiiiiiiiiiiiiiiieeens
10.5 Writing a Specialized ring _allocator...............cooeeeen
10.6 Using ring allocator and Other Allocators
10.7 Recognizing and Handling Memory Limitations
10.8 Off-Chip Memory and Computing 100,001 Digitsof 7
10.9 Using Ample RAM on Arm®-Based Single-Board Computer
ReferenCes. .. .coovi i
11 CH++Multitasking ...
11.1 Multitasking Schedulers...........ccooiiiiiiiiiiiiiiiiiiiiiinnnns
11.2 0 Task TIMING ..o vvvetetttitt e eeeees
11.3 The Task Control BIocKcoooiiiiiiiiiiiiiiiiiiiiiiiiinns
11.4 The Task LiSt.....ouuuuiiiiii e
11.5 The Scheduler...........coooiiiiiiiiiii s
11.6 Extended Multitaskingccooiiiiiiiiiiiiiiiiiiiiiiinnn.
11.7 Preemptive Multitaskingccoooiiiiiiiiiiiiiiiiiiiiiinnnn.
11.8 The C++ Thread Support Libraryccoovviiiiiiiiiinnnn.
ReferenCes. .. covii e

Part II' Mathematics and Utilities for Real-Time C++

12 Floating-Point Mathematics ...,
12.1 Floating-Point Arithmeticooooiiiiiiiiiiiiiiiiiiin
12.2 Mathematical Constantscccoviiiiiiiiiiiiiiiineeeeannn.
12.3 Elementary Functionsccoiiiiiiiiiiiiiiiean.

12.4 Special Functionsoooiiiiiiiii i

Contents XXXiii

13

14

15

16

17

12.5 Complex-Valued Mathematicscccooviiiieiiiiiiiieennn. 312
12.6 Compile-Time Evaluation of Functions with constexpr 316
12.7 Generic Numeric Programming.................ccooiiiiiiiiian. 320
RefEIeNCeS. ... eeiti e 327
Fixed-Point Mathematicso. i 329
13.1 Fixed-Point Data TYPes.uuuuuuuuuiiiiiiiiiiiiiiiiiinans 329
13.2 A Scalable Fixed-Point Template CIasscccoevuuunnnnnn. 332
13.3 Using the fixed point Classcooooiiiiiiiiin... 336
13.4 Fixed-Point Elementary Transcendental Functions 338
13.5 A Specialization of std: :numeric limits.................. 349
REfEIeNCeS. ... e et 351
High-Performance Digital Filters............................. 353
14.1 A Floating-Point Order-1 Filtercoiiiiiiiiiiiii. 353
142 AnOrder-11Integer Filter............coooiiiiiiiiiiiiiiiiiiiiiinnnn. 356
14.3 Order-N Integer FIR Filters ..o 360
14.4 Some Worked-Out Filter Examples...............coooviiiiiiin... 365
ReferenCes. ... coei e 369
CH+Utilities ... 371
15.1 The nothing Structurecooveiiiiiiiiiieieiiiiiiaaeeeannns 371
15.2 The noncopyable Class.......ccooveiiiiiiiiiieieiiiiiiaaeennanns 374
153 A Template timer Classcvviiiiiiiiiiiiiiiiiiiiiiiiieeienns 376
15.4 Linear Interpolation............ccoviiiiiiiiiiiiiiiiiiiiiiiiiiiennns 379
15,5 Acircular buffer Template Classo.oes 382
15,6 The BoOSt Libraryeeviiiiiiiiiiiiiiiiiiieienns 386
ReferenCes. .. covii e 387
Extending the C++ Standard Library and the STL 389
16.1 Defining the Custom dynamic_array Container............... 389
16.2 Implementing and Using dynamic_array...................... 392
16.3 Writing Parts of the C++ Library if None Is Available 396
16.4 Implementation Notes for Parts of the C++ Library and STL...... 396
16.5 Providing now () for <chrono>’s High-Resolution Clock...... 405
16.6 Extended-Complex Number Templatesccevveen... 407
16.7 An Embeddable Big Integer Classcccvviiiiiiiiiinninnnns 410
16.8 Customizing <¥andOmM>.....uuttiiiiteiiiiieeeeeeeeeeeeeeeeeeeeeens 414
16.9 Freestanding Implementationccooeiiiiiiiiiiiiinnnnn. 424
References. .. .oovinn i 425
Using C-Language Codein C++ ..., 427
17.1 Accessing C Language Code in C++ ..., 427
17.2 An Existing C-Language CRC Library 428
17.3 Wrapping the C-Based CRC Library with C++ Classes........... 430
17.4 Return to Investigations of Efficiency and Optimization 433

R OIS . it 434

XXXiV Contents

18 Additional Reading..................oooiiiiiiiiiiiiiiii e 435

18.1 Literature LiSt......oovuuuiiiiiiii i 435

RefEIeNCES. ... e et 437

A A Tutorial for Real-Time C++..................oiiiiiiiiii 439

Al CH4 Cast OPerators. 439

A.2 Uniform Initialization Syntaxccoooiiiiiiiiiiiiiiinnn.. 440

A3 OVerloadinguuee 443

A4 Compile-Time ASSEIt.uuueee e 443

A5 Numeric LImits ...ooooiniiiiii e 444

A6 STL CONtAINETS ..ottt ettt et eaaeeeens 448

AT STL ETators eeeeett ettt e et een 450

A.8 STL AIZOTithmsuuuei e 453

A9 Lambda EXPressions.uueuiiiiiiiiiiiiiiiiinns 457

A 10 Initializer Listsoooiniiiii i e 458
A.11 Type Inference and Type Declaration with auto

ANd AECLEY PO it 460

A.12 Range-Based £OX(1)....uuuuuunniiiiiiii e 462

A3 TUPIE oo 462

A.14 Regular EXpressionsuuuiiiiiiiiiiiiiiiiiiiiinns 466

A.15 The <type traits>Libraryoooi 468

A.16 Using std::anyand std: :variant..........ccoovvinnnnnnn. 471

A.17 Structured Binding Declarationscoovviinninnnnn. 474

A.18 Three-Way COmMPATISONuuuunneee e 475

ReferenCes. ... ooeei e 475

B A Robust Real-Time C++ Environment.................................. 477

B.1 Addressing the Challenges of Real-Time C++..................... 477

B.2 Software Architecturecooeeiiiiiiiiiiiiiiiiiiieen. 479

B.3 Establishing and Adhering to Runtime Limits 480

ReferencCes. .. .oovinn i 481

C Building and Installing GNU GCC Cross Compilers................... 483

C.1 The GCC PrerequiSiteso.uuueeeeinuiiiiieeiiiiieeeeaanas 483

C2 Getting Started ..ottt 484

C3 BuildingGMP ... 485

C4 Building MPFR ... 486

C.5 Building MPC ... o 486

C.6 Building PPL... ... 487

C.7 Building ISL ... 488

C.8 Building the Binary Utilities for the Cross Compiler.............. 488

C.9 Building the Cross Compiler.................ooooiiiiiiiiiiii. 490

C.10 Using the Cross Compiler..............ooooiiiiiiiiiiiiiiiiiin, 491

R OTENCES . o it 492

Contents XXXV

D Building a Microcontroller Circuit 493
D.1 The Circuit Schematic...........ooooiiiiiiiiiiiii i, 493
D.2 Assembling the Circuit on a Breadboard 495
RefeIeNCes. . .. eeeei e 496
GlOSSALY ... 497

Acronyms

A =E O

2

ADC
ASCII

AUTOSAR

AWG
binutils

C

C99

Cl11

C++
C++98

C++03

C represents the set of complex numbers in mathematics.

R represents the set of real numbers on the real axis in mathematics.
RR? represents two-dimensional Cartesian space in mathematics and
geometry.

RR? represents three-dimensional Cartesian space in mathematics and
geometry.

Z represents the set of integer numbers in mathematics.
Analog-Digital Converter.

American Standard Code for Information Interchange [25] is a
numerical representation of characters, often used in areas such as
computer programming and telecommunication.

AUTomotive Open System ARchitecture [2] is a worldwide coopera-
tion of automotive manufacturers and companies supplying electron-
ics, semiconductors and software that concentrates on, among other
things, a standardized architecture for automotive microcontroller
software.

American Wire Gauge.

Binary Utilities [6] are the GNU binary utilities such as archiver,
assembler, linker, object file parsers, etc. for GCC.

C is the C programming language, which is often referred to as
ANSI-C [1] or C89 [2]. Later versions of C include C99 [13] and
C11[17].

C99 refers to the C programming language, as specified in ISO/IEC
9899:1999 [13].

C11 refers to the C programming language, as specified in ISO/IEC
9899:2011 [17].

C++ refers to the C++ programming language.

C++98 refers to the C++ programming language, as specified in
ISO/IEC 14882:1998 [12].

C++03 refers to the C++ programming language, as specified in
ISO/IEC 14882:2003 [15].

XXX Vil

XXXViii

C++11

C++14

C++17

C++20

CLooG
CRC
CPU
ctor
DIL

DSP
dtor

FIR
FLASH

FPU

GAS
GCC

GMP

GNU

GUI

HEX

ICE

ISL

Acronyms

C++11 refers to the C++ programming language, as specified in
ISO/IEC 14882:2011 [18].

C++14 refers to the C++ programming language, as specified in
ISO/IEC 14882:2014 [19].

C++17 refers to the C++ programming language, as specified in
ISO/IEC 14882:2017 [20].

C++20 [26] is predicted by some C++ language experts to be the
next revision of the C++ standard, possibly to become available in
the year 2020.

Chunky Loop Generator [4] is a software library used for geometric
polyhedron analysis.

Cyclic Redundancy Check [27].

Central-Processing Unit.

constructor of a class object in object-oriented programming is a
special subroutine that is called when an object is created.

Dual In-Line electronic component packaging.

Digital Signal Processor.

destructor of a class object in object-oriented programming is a
special subroutine that is called when an object is destroyed or
deleted.

Finite-Impulse Response is a kind of digital filter.

Flash Memory is a nonvolatile computer memory that can be electri-
cally written and erased. Flash is commonly used as an alternative to
ROM.

Floating-Point Unit implements floating-point arithmetic in hard-
ware. Many modern high-performance microcontrollers use an FPU
to accelerate floating-point calculations.

is the GNU ASsembler.

GNU Compiler Collection [7] is a collection of free compilers for
several popular programming languages including, among others,
C and C++. GCC is supported for a wide range of targets.

GMP is the GNU Multiple-Precision library [9]. It implements highly
efficient multiple-precision representations of integer and floating-
point data types.

Is a xnix-like computer operating system consisting entirely of free
software [8].

Graphical User Interface.

Hexadecimal representation is a base-16 numerical representation
commonly used to store program data in computer engineering.
In-Circuit Emulator is a highly sophisticated hardware device used to
debug embedded microcontroller software with an emulated bond-
out processor.

Integer Set Library [11] is a software library used for manipulating
sets of integers.

Acronyms

ISP

ISR
JTAG

LED

MCAL

MinGW
MKS
MPC

MPFR

MSYS

newlib

nop

opcode

PC
POSIX

PPL

PWM

XXXiX

In-System-Programming is the act of programming the program
code of a microcontroller using a communication interface while the
microcontroller is fitted in the application, rather than as a standalone
non-soldered component.

Interrupt Service Routine.

Joint Test Action Group, later standardized as IEEE 1149.1 [10], is a
protocol and hardware interface used for printed circuit board testing,
boundary scan and recently more and more for debugging embedded
systems.

Light-Emitting Diode is a semiconductor-based light source used in
diverse applications such as lighting, consumer electronics, and toys.
Microcontroller Abstraction Layer is a low-level layer in a lay-
ered software architecture (such as AUTOSAR). The interface of
the MCAL is typically written in a portable fashion. The MCAL
implementation itself, however, contains partially non-portable com-
ponents that access microcontroller peripherals and their registers,
such as PWM signal generators, timers, serial UARTS, and other
communication interfaces.

Minimalist GNU [21] is an open-source programming toolset that
emulates xnix-like environments.

Meter, Kilogram, Second is a system of units used to express physical
quantities.

Multiple-Precision Complex [22] is a GNU C library that implements
multiple-precision arithmetic of complex numbers.
Multiple-Precision Floating-Point with correct Rounding [5, 23] is
the GNU multiple-precision floating-point library. It is built on top of
GMP and places special emphasis on efficiency and correct rounding.
Minimal SYStem [21] is a collection of GNU utilities that enhance
and extend the MinGW shell.

newlib [24] is a free implementation of the C standard library. It is
well-suited for use with embedded systems and has been ported to a
variety of CPU architectures.

No OPeration is a common assembly instruction that simply does no
operation. One or more nops are often chained sequentially in order
to be used for ultra low-level functions such as creating very short
delays or flushing an instruction pipeline.

OPeration CODE is a machine language instruction containing the
operation to be done.

Personal Computer.

Portable Operating System Interface is an open standardized operat-
ing system specified in ISO/IEC 9945:2003 [14].

Parma Polyhedra Library [3] is a software library for abstract geo-
metrical polyhedron representations.

Pulse-Width Modulated signal is a square wave that usually has a
fixed period and a variable duty cycle.

x1

Acronyms

RAM Random Access Memory is computer memory with nearly constant

access time regardless of address or memory size. RAM is volatile in
the sense that data are typically lost when the power is switched off.

ROM Read-Only Memory is a class of computer memory that, once

written, can only be modified with external programming tools—or
not be modified at all. ROM has permanent character in the sense that
data are retained throughout power on/off cycles.

SPI™ Serial Peripheral Interface bus is a four-wire serial communication

interface commonly used for communication between a microcon-
troller and one or more off-chip devices on the printed circuit board.

STL Standard Template Library is part of the C++ standard library.

The standard template library contains a vast collection of generic
containers, iterators and algorithms.

TO-220 Transistor Outline electronic component packaging, number 220.
TRI1 C++ Technical Report 1 includes the standard library extensions

that are specified in ISO/IEC TR 19768:2007 [16]. TR1 has been
predominantly integrated in C++11 (ISO/IEC 14882:2011 [18]).

UART Universal Asynchronous Receiver/Transmitter is an asynchronous

receiver and transmitter commonly used for serial communication
between a PC and a microcontroller.

References

—

VNN

13.

14.

15.

ISEN--CI o

. ANSI, ANSI X3.159-1989 American National Standard for Information Systems — Program-

ming Language C (American National Standard for Information, New York, 1989)

. AUTOSAR, Automotive Open System Architecture (2017), http://www.autosar.org
. BUGSENG, Parma Polyhedra Library (PPL) (2012), http://www.bugseng.com/products/ppl
. CLooG, Chunky Loop Generator (2015), http://www.cloog.org

L. Fousse, G. Hanrot, V. Lefévre, P. Pélissier, P. Zimmermann, MPFR: a multiple-precision
binary floating-point library with correct rounding. ACM Trans. Math. Soft. 33(2) (2007).
Atrticle 13

. Free Software Foundation, GNU Binutils (2011), http://www.gnu.org/software/binutils
. Free Software Foundation, GNU Compiler Collection (2015), http://gcc.gnu.org
. Free Software Foundation, GNU Operating System (2015), http://gnu.org

GMP, GNU Multiple Precision Arithmetic Library (2012), http://gmplib.org

. IEEE Computer Society, IEEE Std 1149.1 — 1990: IEEE Standard Test Access Port and

Boundary-Scan Architecture (1990). Available at http://standards.ieee.org/findstds/standard/
1149.1-1990.html

. ISL, Integer Set Library (2015), http://isl.gforge.inria.fr
12.

ISO/IEC, ISO/IEC 14882:1998 : Programming languages — C++ (International Organization
for Standardization, Geneva, 1998)

ISO/IEC, ISO/IEC 9899:1999 : Programming languages — C (International Organization for
Standardization, Geneva, 1999)

ISO/EC, ISO/IEC 9945:2003 : Information Technology — Portable Operating System Inter-
face (POSIX) (International Organization for Standardization, Geneva, 2003)

ISO/EC, ISO/IEC 14882:2003 : Programming languages — C++ (International Organization
for Standardization, Geneva, 2003)

http://www.autosar.org
http://www.bugseng.com/products/ppl
http://www.cloog.org
http://www.gnu.org/software/binutils
http://gcc.gnu.org
http://gnu.org
http://gmplib.org
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://isl.gforge.inria.fr

Acronyms xli

16.

17.

18.

19.

20.

21.
22.
23.
24.
25.
26.
27.

ISO/EC, ISO/IEC TR 19768:2007 : Information technology — Programming languages —
Technical Report on C++ Library Extensions (International Organization for Standardization,
Geneva, 2007)

ISO/IEC, ISO/IEC 9899:2011 : Programming languages — C (International Organization for
Standardization, Geneva, 2011)

ISO/IEC, ISO/IEC 14882:2011 : Information technology — Programming languages — C++
(International Organization for Standardization, Geneva, 2011)

ISO/IEC, ISO/IEC 14882:2014 : Information technology — Programming languages — C++
(International Organization for Standardization, Geneva, 2014)

ISO/IEC, ISO/IEC 14882:2017 : Programming languages — C++ (International Organization
for Standardization, Geneva, 2017)

MinGW, Home of the MinGW and MSYS Projects (2012), http://www.mingw.org

MPC, GNU MPC (2012), http://www.multiprecision.org

MPFR, GNU MPFR Library (2013), http://www.mpfr.org

Red Hat, newlib (2013), http://sourceware.org/newlib

Wikipedia, ASCII (2017), http://en.wikipedia.org/wiki/ASCII

Wikipedia, C++20 (2017), http://en.wikipedia.org/wiki/C%2B%2B20

Wikipedia, Cyclic Redundancy Check (2017), http://en.wikipedia.org/wiki/Cyclic_
redundancy_check

http://www.mingw.org
http://www.multiprecision.org
http://www.mpfr.org
http://sourceware.org/newlib
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/C%2B%2B20
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Cyclic_redundancy_check

	Preface to the Fourth Edition
	New or Significantly Modified Sections
	Improved or New Examples and Code Snippets
	Companion Code
	Further Notes on Coding Style

	Updated Trademarks and Acknowledgments
	Preface to the Third Edition
	New or Significantly Modified Sections
	Improved or New Examples and Code Snippets
	Companion Code
	Further Notes on Coding Style
	Updated Trademarks and Acknowledgments

	Preface to the Second Edition
	Companion Code
	More Notes on Coding Style

	Preface to the First Edition
	About This Book
	Companion Code, Targets, and Tools
	Notes on Coding Style
	Acknowledgments

	Contents
	Acronyms
	References

