Real-Time C++

Christopher Kormanyos

Real-Time C++

Efficient Object-Oriented and Template Microcontroller Programming

Fourth Edition

Christopher Kormanyos Reutlingen Germany

ISBN 978-3-662-62995-6 ISBN 978-3-662-62996-3 (eBook) https://doi.org/10.1007/978-3-662-62996-3

© Springer-Verlag GmbH Germany, part of Springer Nature 2013, 2015, 2018, 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE, part of Springer Nature.

The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface to the Fourth Edition

C++20, the newest evolution of C++, adds various major new language features that can significantly simplify and clarify program expression. At the same time, using C++ in microcontroller programming is steadily gaining popularity and the methods of its use are maturing in the embedded systems community. These steps are matched by the widespread support of modern post-C++11,14,17 adherence delivered by many high-quality microcontroller compiler vendors.

The fourth edition of this book keeps up with these progressions in C++. In addition to covering new C++ language elements, particular emphasis is placed on improving and extending the depth of the examples. Several interesting sample projects requiring additional chips and exercising advanced software and laboratory techniques have been added. Furthermore, one of the new computationally intensive examples has also been adapted to both our target with the 8-bit microcontroller as well as to a modern single-board computer with a powerful 32-bit processor.

These efforts are intended to widen the scope of applicability of this book for students, practitioners, and hobbyists alike by exemplifying practical, hands-on methods to leverage the power of portable C++ with lean, efficient real-time code.

New or Significantly Modified Sections

The fourth edition of this book contains several new or significantly modified parts. These include:

- Section 1.10 adapted to add detailed comments regarding using reinterpret_cast sparingly,
- Section 3.2 extended to include example chapter03_02 that calculates prime numbers and provides an insightful preview of numerous C++ techniques,
- Section 3.21 (new) on std::span from C++20's library that can be used for delimiting pointer ranges,

- Section 3.22 (new) briefly showing how to use the <random> library for generating sequences of pseudo-random integers,
- Section 4.4 which has been significantly expanded to include two full detailed examples exercising dynamic polymorphism with an intuitive LED class hierarchy,
- Chapters 4, 7, and 8 which have been reworked in order to improve code sequences and clarity of text passages,
- Section 5.13 (new) describing how to make effective and powerful use of template integer sequences at compile time with std::integer_sequence,
- Section 6.14 with the addition of example chapter06_14 extending the
 original CRC32 calculation of example chapter06_01 to make use of custom
 ROM-based iterators and containers specifically designed for accessing readonly program code,
- Section 6.21 (new) quantifying potential resource consumption resulting from using runtime type information (RTTI),
- Section 9.5 has been reworked to implement a portable, all-software SPITM driver subsequently used in examples chapter04_04, chapter04_04a, chapter10_08, chapter10_08a, chapter10_09, and chapter16_08,
- Section 10.8 (new) providing a detailed example that uses external SRAM ICs to calculate up to 100, 001 decimal digits of π with an application architecture that uses custom SRAM pointers, iterators and containers, and numerical algorithms,
- Section 10.9 (new) which adapts the π calculations of Sect. 10.8 to the powerful 32-bit Arm[®]-based Raspberry Pi[®]Zero WH single-board computer system,
- Section 11.7 has been modified to include a sample that exemplifies preemptive multitasking scheduling,
- Section 12.2 has been slightly expanded to include common standardized mathematical constants such as $\sqrt{2}$, π , $\log 2$, e, etc. in the <numbers> header,
- Section 16.7 (new) describing a portable implementation of big integer types such as uint128 t, uint256 t, uint512 t, etc.,
- Section 16.8 (new) which develops a basic hardware-based custom random engine that can serve as an efficient and practical, hobby-quality drop-in replacement for std::default_random_engine and also presents example chapter16_08 which performs primality testing of random 128-bit big integers,
- Section 16.9 (new) on the freestanding implementation,
- Section A.9 enlarged to treat C++20 enhancements of lambda expression syntax including template parameter lists and new capture style for this,
- Section A.16 broadened to include std::variant from C++20 in the new <variant> addition to the STL,
- Section A.18 (new) covering a three-way comparison with the co-called *space-ship* operator within the context of generalized equality and inequality,

Improved or New Examples and Code Snippets

Several new examples have been added. All of the example projects have been modernized and checked for compatibility with GCC version 10.1.0 built for avr-g++. The portability and range of use of each example project have been improved. In particular, test and verification of the examples have been carried out with various GCC versions ranging from 5 through 9 using the language standards flags -std=c++11, -std=c++14, -std=c++17, and -std=c++20 (as available).

- The chapter03_02 sample project (new) in Sect. 3.2 uses fixed-size integer types and various other C++ techniques to compute the first 100 prime numbers.
- The chapter04_04 and chapter04_04a sample projects (new) in Sect. 4.4 exercise various forms of polymorphism and class relationships through the example of an LED class hierarchy.
- The chapter06_14 sample project (new) in Sect. 6.14 shows how to create custom ROM-based iterators and containers used to calculate a CRC32 check-sum.
- The sample projects chapter 10_08 and chapter 10_08a (new, advanced) found in Sect. 10.8 use external memory ICs to extend available SRAM to up to 2 Mbyte for calculations of as many as 100,001 decimal digits of the mathematical constant π .
- The chapter10_09 sample project (new, advanced) in Sect. 10.9 adapts the π calculations of example chapter10_08a to the well-known 32-bit Arm®-based Raspberry Pi®Zero WH single-board computer system, running OS-less in bare metal mode. Seamlessly porting this application's C++ algorithms from an 8-bit platform to a high-performance 32-bit Arm®-based system provides keen insight into effective cross development on multiple systems.
- The chapter11_07 sample project (new, advanced) exemplifies intuitive use of a preemptive multitasking scheduler constrained by small RAM/ROM resource footprint.
- The chapter16_08 sample project (new, advanced) in Sect. 16.8 computes 128-bit prime numbers using a Miller–Rabin primality test.

With the fourth edition of this book, the detailed code snippets available in the public domain now cover approximately two-thirds of code samples in the text. Each code snippet comprises a complete and portable, single-file C++ program. Every program can be compiled and run on a PC or easily adapted to a microcontroller environment.

To obtain run-ability on a PC, code snippets have usually been embellished with a main() subroutine. Some code snippets have been augmented with <thread>support, simulated hardware registers or other C++ mechanisms in order to elucidate the topic of the program. Outputs of the code snippets are typically printed to the console with <iostream> and potentially formatted with the help of <iomanip>. File names of the code snippets correspond to chapter and section numbers in the book.

Companion Code

Based on new and reworked material in the fourth edition, the companion code has been significantly improved and extended.

The entire companion code can be found here:

http://github.com/ckormanyos/real-time-cpp

The complete reference application is at:

http://github.com/ckormanyos/real-time-cpp/tree/master/ref_app

Example projects are stored here:

http://github.com/ckormanyos/real-time-cpp/tree/master/examples

Code snippets are located at:

http://github.com/ckormanyos/real-time-cpp/tree/master/code_snippets

Further Notes on Coding Style

The coding style in the fourth edition of this book stays consistent with that used in the first through third editions. The code is intended to be easy to read and straightforward to comprehend while simultaneously utilizing the full spectrum of C++'s traditional and modern features.

Reutlingen, Germany November 2020 Christopher Kormanyos

Updated Trademarks and Acknowledgments

In the prefaces to first and third editions, several trademarks and acknowledgments are listed. Meanwhile, the authors/holders of certain trademarks/copyrights and the scope of some of the acknowledgments have changed.

- Microchip® and AVR® are registered trademarks of Microchip Technology Incorporated or its subsidiaries in the USA and other countries.
- ARDUINO® is a registered trademark of the Arduino Group.
- Arm[®], Arm11TM and Arm1176JZF-STM are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the USA and/or elsewhere.
- The word AUTOSAR is a registered trademark of the AUTOSAR Development Partnership.
- Cypress[®] and MoBL[®] are registered trademarks of Cypress Semiconductor Corporation. At the time of writing the fourth edition, Cypress is an Infineon Technologies Company.
- Broadcom[®] is a registered trademark of Broadcom Corporation and/or its affiliates in the USA, certain other countries, and/or the EU.
- Raspberry $\text{Pi}^{\text{\tiny{0}}}$ is a registered trademark of the Raspberry Pi Foundation.
- SPITM is a trademark of Motorola, Inc.
- LCD character displays used in various examples including chapter10_-08a, chapter10_09, and chapter16_08 and pictured in the associated Figs. 10.2, 10.4 and 16.4 are products of Newhaven Display International that are bound by the terms and conditions provided at Newhaven Display International's Internet website.
- Several other trademarks are associated with electronic components that appear prominently in some of the figures. These components and trademarks include 74xx logic ICs in Figs. 10.4 and 16.4 from Harris® Corp. Semiconductor Sector, an LM2903 dual voltage comparator in Fig. 16.4 from FairchildTM Semiconductor International, Inc., electrolytic capacitors in various figures from Vishay® Roederstein, potentiometers in various figures from Piher Sensing Systems (an Amphenol® company), an SMD-to-DIP adapter of type PA0208 with text PROTO-ADVANTAGE.COM in Fig. 10.2, and a micro SD card inserted in a

- tray in Fig. 10.4 from Transcend[®] Information, Inc. All these and any other trademarks mentioned or shown in the figures are the property of their respective companies.
- Nonetheless this is neither an official publication of nor has it been authorized, sponsored, or approved by any of the aforementioned copyright authors, copyright holders, or their subsidiaries.
- The circuits of all target hardware described and depicted in various chapters and appendices have been designed and assembled on solderless prototyping breadboards by myself.
- All photographs of target hardware shown in various chapters and appendices were taken by myself.

Preface to the Third Edition

C++ is a modern, expressive object-oriented programming language that continues to evolve. In keeping up with the exciting development of C++, the third edition of this book has been updated for C++17.

With this iteration of the language, the purpose of this book remains the same—to show through example and text how to leverage C++'s powerful object-oriented and template features in the realm of microcontroller programming with the goal of improving software quality and robustness while simultaneously fulfilling efficiency requirements.

Several new sections have been added and others have been modified or adapted. These changes cover new language elements and library features in C++17. They also reflect the trend of improved compiler support for C++11 and C++14.

More errors have been identified, predominantly reported by careful and patient readers. All errors that have been found have been corrected.

New or Significantly Modified Sections

The third edition of this book contains several new or significantly modified sections. These include:

- Section 2.2 updated for a newer GCC toolchain with a more simple decorated name (i.e., GCC version 7.2.0 built for the target avr-g++).
- Section 3.4 adding information on C++17 nested namespace definitions,
- Section 3.17 now including descriptions of the (in the second edition of this book missing) standardized suffixes if, i, and il from the <complex> library,
- Section 3.18 (new) detailing the specifiers alignof and alignas,

¹At the time of writing the third edition of this book, state-of-the-art compilers support C++17. The specification process is ongoing, and some language experts predict that C++20 will be the next revision of the C++ standard, potentially available in 2020.

- Section 3.19 (new) for the specifier final,
- Section 3.20 (new) on defining types with C++11 alias,
- Section 9.8 (new) portraying a full example that animates an RGB LED to produce a colorful light display,
- Section 12.4 covering inclusion of additional mathematical special functions in <math> specified in the C++17 standard,
- several sections in Chap. 13 reflecting improvements of the fixed_point class in the companion code,
- Section 16.6 (new) presenting an extended-complex template class that promotes the functionality of the <complex> library to user-defined types other than float, double, and long double,
- Chapter 17 (new) showing how to use C code in a C++ project (hereby "Additional Reading" has been moved from Chaps. 17 to 18),
- the tutorial of Appendix A, in particular Sect. A.4 updating static_assert for C++17, Sect. A.15 (new) about the <type_traits> library, Sect. A.16 (new) on using std::any from the C++17 <any> library, and Sect. A.17 (new) introducing structured binding declarations (also from C++17).

Improved or New Examples and Code Snippets

All sample projects have been modernized for GCC version 7.2.0 built for avr-g++, and five new examples have been added.

- The chapter06_01 sample project (new) shows step-by-step how to perform the benchmark of the CRC calculation described in Sects. 6.1 and 6.2.
- The chapter09_07 example in Sect. 9.7 has been adapted to architectural improvements found in the new chapter09 08 sample of Sect. 9.8,
- The chapter09_08 sample project (new) animates an industry-standard off-the-shelf RGB LED. This example incorporates several real-time C++ features including object-oriented design, peripheral driver development, and multitasking. They are merged together within the context of a coherent, intuitive, and visible project. By means of simulation on a PC, the chapter09_08 sample also exemplifies cross-development and methods for creating portable code.
- The chapter12_04 example (new) performs highly detailed calculations of several mathematical special functions. These are used to provide a benchmark of floating-point operations.
- The chapter17_03 sample project (new) takes an existing C library used for CRC calculations and wraps the procedural functions in classes that can be employed in object-oriented C++. This practical exercise shows how to leverage the power of valuable existing C code within a modern C++ project.
- The chapter17_03a sample project (new) uses the CRC classes of the chapter17_03 example and distributes the work of the calculations among successive time slices in a multitasking environment.

With the third edition of this book, code snippets have been made available in the public domain. The code snippets correspond to certain code samples that appear in the text. Each code snippet comprises a complete and portable, single-file C++ program. Every program can be compiled and run on a PC or easily adapted to a microcontroller environment.

To obtain run-ability on a PC, code snippets have been embellished with a main() subroutine. Some code snippets have been augmented with <thread> support or other higher-level mechanisms in order to elucidate the topic of the program. Outputs are printed to the console with <iostream>. The file names of the code snippets correspond to chapter and section numbers in the book.

Companion Code

The companion code has been improved and extended based on new and reworked sections of the third edition. Contemporary compiler toolchains are used. Legacy directories that previously provided for certain aspects of C++11 compatibility have been removed, as modern compilers now support these.

The entire companion code can be found here:

http://github.com/ckormanyos/real-time-cpp

The reference application is at:

http://github.com/ckormanyos/real-time-cpp/tree/master/ref_app

Example projects can be found here:

http://github.com/ckormanyos/real-time-cpp/tree/master/examples

Code snippets are located at:

http://github.com/ckormanyos/real-time-cpp/tree/master/code_snippets

Further Notes on Coding Style

The coding style in the third edition of this book stays consistent with that used in the first and second editions. The code is intended to be easy to read and straightforward to comprehend while simultaneously utilizing the full spectrum of C++'s traditional and modern features.

Updated Trademarks and Acknowledgments

In the preface to first edition of this book, we listed several trademarks and acknowledgments. Meanwhile the authors/holders of certain trademarks/copyrights and the scope of some of the acknowledgments have changed.

- MICROCHIP®, ATMEL®, and AVR® are registered trademarks of Microchip Technology Incorporated or its subsidiaries in the USA and other countries.
- Real-Time C++: Efficient Object-Oriented and Template Microcontroller Programming, Third Edition is a book authored by Christopher Kormanyos and published by Springer Verlag and has not been authorized, sponsored, or otherwise approved of by Microchip Technology Incorporated.
- ARDUINO® is a registered trademark of the Arduino Group.
- The word AUTOSAR is a registered trademark of the AUTOSAR Development Partnership.
- The circuits of all target hardware described in this book and depicted in various chapters such as Chaps. 2, 9, and Appendix D, were designed and assembled on solderless prototyping breadboards by Christopher Kormanyos.
- All photographs of target hardware in this book shown in chapters including Chaps. 2, 9, Appendix D and any others were taken by Christopher Kormanyos.

Reutlingen, Germany February 2018 Christopher Kormanyos

Preface to the Second Edition

C++ seamlessly blends object-oriented techniques with generic template methods, creating a modern powerful programming language useful for problem-solving in countless domains. The most recent evolution of C++ from C++11 to C++14 has brought yet further improvements to this rich language. As C++ becomes even more expressive, growing numbers of embedded systems developers are discovering new and fascinating ways to utilize its multifaceted capabilities for creating efficient and effective microcontroller software.

The second edition of this book retains its original purpose to serve as a practical guide to programming real-time embedded microcontroller systems in C++. New material has been incorporated predominantly reflecting changes introduced in the C++14 standard. Various sections have been reworked according to reader suggestions. Selected passages have been reformulated in a continued effort to improve clarity. In addition, all known errors throughout the text have been corrected.

New sections have been added (in particular for C++14) covering:

- digit separators (Sect. 3.15),
- binary literals (Sect. 3.16),
- user-defined literals (Sect. 3.17),
- variable templates (Sect. 5.12),
- and the chapter09_07 sample project (Sect. 9.7) controlling an industry-standard seven-segment display.

Two new sample projects, chapter02_03a and chapter09_07, have been added to the companion code.

¹At the time of writing the second edition of this book, C++14 is brand new. World-class compilers are shipped with support for C++14. Work is in progress on C++1z, the next specification of C++ (sometimes known as C++17). Experts anticipate that the specification of C++1z could be finished in 2017.

- The chapter02_03a sample project implements LED toggling at 1/2 Hz with timing provided by a simple multitasking scheduler in combination with a timer utility.
- The chapter09_07 sample project in the newly added Sect. 9.7 uses many of the advanced programming methods in this book to animate an industry-standard seven-segment display.

Significantly reworked or corrected parts of this book include:

- ✓ corrections and clarifications in Chap. 1 on getting started with C++,
- ✓ the description of the chapter 02 02 project in Sect. 2.2,
- ✓ parts of Chap. 3 on the jump-start in real-time C++,
- ✓ corrections and clarifications in Chap. 5 on templates,
- ✓ Sects. 6.1 and 6.2 on optimization and performance,
- ✓ parts of Chap. 10 on custom memory management,
- ✓ parts of Chaps. 12 and 13 on mathematics,
- ✓ the literature list in Sect. 18.1,
- ✓ parts of Appendix A in the C++ tutorial,
- ✓ and repairs and extensions of the citations in some chapter references.

Companion Code

The companion code continues to be supported and numerous developers have successfully worked with it on various cross-development platforms. The scope of the companion code has been expanded to include a much wider range of target microcontrollers. In addition, the <code>chapter02_03a</code> and <code>chapter09_07</code> sample projects that are mentioned above have been added to the companion code.

The companion code is available at:

http://github.com/ckormanyos/real-time-cpp

More Notes on Coding Style

The second edition of this book features slight changes in coding style. These can be encountered in the code samples throughout the text.

Compiler support for standard C99 and C++11 macros of the form UINT8_C(), UINT16_C(), UINT32_C(), etc. and corresponding macros for signed types in the <stdint.h> and <cstdint> headers has become more prevalent (see also Sect. 3.2). Consequently, these macros are used more frequently throughout the code samples.

These macros are useful for creating integer numeric literal values having specified widths. The code below, for example, utilizes UINT8_C() to initialize an 8-bit integer variable with a numeric literal value.

```
#include <cstdint>
std::uint8_t byte_value = UINT8_C(0x55);
```

Digit separators have become available with C++14 (Sect. 3.15). These are used in selected code samples to improve clarity of long numeric literals. Digit separators are shown in the code sample below.

```
#include <cstdint>
constexpr std::uint32_t prime_number =
   UINT32_C(10'006'721);
constexpr float pi = 3.1415926535'8979323846F;
```

Other than these minor changes, however, the coding style in the second edition of this book remains consistent with that of the first edition and is intended to be clean and clear.

Reutlingen, Germany Seattle, Washington May 2015 Christopher Kormanyos

Preface to the First Edition

This book is a practical guide to programming real-time embedded microcontroller systems in C++. The C++ language has powerful object-oriented and template features that can improve software design and portability while simultaneously reducing code complexity and the risk of error. At the same time, C++ compiles highly efficient native code. This unique and effective combination makes C++ well-suited for programming microcontroller systems that require compact size, high performance, and safety-critical reliability.

The target audience of this book includes hobbyists, students, and professionals interested in real-time C++. The reader should be familiar with C or another programming language and should ideally have had some exposure to microcontroller electronics and the performance and size issues prevalent in embedded systems programming.

About This Book

This is an interdisciplinary book that includes a broad range of topics. Real-world examples have been combined with brief descriptions in an effort to provide an intuitive and straightforward methodology for microcontroller programming in C++. Efficiency is always in focus, and numerous examples are backed up with real-time performance measurements and size analyses that quantify the true costs of the code down to the very last byte and microsecond.

Throughout the chapters, C++ is used in a bare-bones, no-frills fashion without relying on any libraries other than those specified in the language standard itself. This approach facilitates portability.

This book has three parts and several appendices. The three parts generally build on each other with the combined goal of providing a coherent and effective set of C++ methods that can be used with a wide range of embedded microcontrollers.

- Part I provides a foundation for real-time C++ by covering language technologies. Topics include getting started in real-time C++, object-oriented methods, template programming, and optimization. The first 3 chapters have a particularly hands-on nature and are intended to boost competence in real-time C++. Chapter 6 has a unique and important role in that it is wholly dedicated to optimization techniques appropriate for microcontroller programming in C++.
- Part II presents detailed descriptions of a variety of C++ components that are widely used in microcontroller programming. These components can be either used as presented, or adapted for other projects. This part of the book uses some of C++'s most powerful language elements, such as class types, templates, and the STL, to develop components for microcontroller register access, low-level drivers, custom memory management, embedded containers, multitasking, etc.
- Part III describes mathematical methods and generic utilities that can be employed to solve recurring problems in real-time C++.
- The appendices include a C++ language tutorial, information on the real-time C++ development environment, and instructions for building GNU GCC cross-compilers and a microcontroller circuit.

C++ is a rich language with many features and details, the description of which can fill entire bookshelves. This book, however, primarily concentrates on how to use C++ in a real-time microcontroller environment. Along those lines, C++ language tutorials have been held terse, and information on microcontroller hardware and compilers is included only insofar as it is needed for the examples. A suggested list of additional reading material is given in Chap. 18 for those seeking supplementary information on C++, the C++ standard library and STL, software design, C++ coding guidelines, the embedded systems toolchain, and microcontroller hardware.

When units are needed to express physical quantities, the MKS (meter, kilogram, second) system of units is used.

Companion Code, Targets, and Tools

The companion code includes three introductory projects and one reference project. The introductory projects treat various aspects of the material presented in Chaps. 1 and 2. The reference project is larger in scope and exercises many of the methods from all the chapters.

The companion code is available at:

http://github.com/ckormanyos/real-time-cpp

The C++ techniques in this book specifically target microcontrollers in the *small-to-medium* size range. Here, small-to-medium spans the following approximate size and performance ranges.

- 4 kbyte ... 1 Mbyte program code
- 256 byte ... 128 kbyte RAM

- 8-bit ... 32-bit CPU
- 8 MHz... 200 MHz CPU frequency

Most of the methods described in this book are, however, scalable. As such, they can be used equally well on larger or smaller devices, even on PCs and workstations. In particular, they can be employed if the application has strict performance and size constraints.

A popular 8-bit microcontroller clocked with a frequency of 16 MHz has been used as the primary target for benchmarking and testing the code samples in this book. Certain benchmarks have also been performed with a well-known 32-bit microcontroller clocked at 24 MHz. An 8-bit microcontroller and a 32-bit microcontroller have been selected in order to exercise the C++ methods over a wide range of microcontroller performance.

All the C++ examples and benchmarks in the book and the companion code have been compiled with GNU GCC versions 4.6.2 and 4.7.0. Certain examples and benchmarks have also been compiled with other PC-based compilers.

The most recent specification of C++11 in ISO/IEC 14882:2011 is used throughout the text. At the time this book is written, the specification of C++11 is brand new. The advent of C++11 has made C++ significantly more effective and easy-to-use. This will profoundly influence C++ programming. The well-informed reader will, therefore, want to keep in touch with C++11 best practice as it evolves in the development community.

Notes on Coding Style

A consistent coding style is used throughout the examples in this book and in the companion code.

Code samples are written with a fixed-width font. C++ language keywords and built-in types use the same font, but they are in boldface. For instance,

```
constexpr int version = 7;
```

In general, the names of all symbols such as variables, class types, members, and subroutines are written in lower case. A single underscore (_) is used to separate words and abbreviations in names. For instance, a system-tick variable expressed with this style is shown in the code sample below.

```
unsigned long system_tick;
```

Using prefixes, suffixes, or abbreviations to incorporate type information in a name, sometimes known as *Hungarian notation*, is not done. Superfluous prefixes,

suffixes, and abbreviations in Hungarian notation may obscure the name of a symbol, and symbol names can be more intuitive and clear without them. For example,

```
std::uint16_t name_of_a_symbol;
```

Names that are intended for use in public domains are preferentially long and descriptive rather than short and abbreviated. Here, clarity of expression is preferred over terseness. Symbols used for local subroutine parameters or private implementation details with obvious meanings, however, often have terse or abbreviated names.

The global subroutine below, for example, uses this naming style. It returns the **float** value of the squared Euclidean distance from the origin of a point in two-dimensional Cartesian space \mathbb{R}^2 .

C++ references are heavily used because this can be advantageous for small microcontrollers. Consider an 8-bit microcontroller. The work of copying subroutine parameters or the work of pushing them onto the stack for anything wider than 8-bits can be significant. This workload can potentially be reduced by using references. In the previous code sample, for instance, the floating-point subroutine parameters x and y, each four bytes wide, have been passed to the subroutine by reference (i.e., const float&).

Fixed-size integer types defined in the std namespace of the C++ standard library such as std::uint8_t, std::uint16_t, std::uint32_t, and the like are preferentially used instead of plain built-in types such as char, short, int, etc. This improves clarity and portability. An unsigned login response with exactly 8 bits, for instance, is shown below.

```
std::uint8_t login_response;
```

Code samples often rely on one or more of the C++ standard library headers such as <algorithm>, <array>, <cstdint>, <limits>, <tuple>, <vector>, etc. In general, code samples requiring library headers do not explicitly include their necessary library headers.

Preface to the First Edition xxv

The declaration of login_response above, for example, actually requires <cstdint> for the definition of std::uint8_t. The library file is, however, not included. In general, the code samples focus on the core of the code, not on the inclusion of library headers.

It is easy to guess or remember, for example, that std::array can be found in <array> and that std::vector is located <vector>. It can, however, be more difficult to guess or remember that std::size_t is in <cstddef> or that std::accumulate() is in <numeric>. With assistance from online help and other resources and with a little practice, though, it becomes routine to identify what standard library parts can be found in which headers.

In cases for which particular emphasis is placed on the inclusion of a header file, the relevant **#include** line(s) may be explicitly written. For instance,

```
#include <cstdint>
std::uint8_t login_response;
```

Namespaces are used frequently. In general, though, the **using** directive is not used to inject symbols in namespaces into the global namespace. This means that the entire namespace must be typed with the name of a symbol in it. This, again, favors non-ambiguity over brevity.

The unsigned 16-bit counter below, for example, uses a type from the std namespace. Since the "using namespace std" directive is not used, the name of the namespace (std) is explicitly included in the type.

```
std::uint16_t counter;
```

Suffixes are generally appended to literal constant values. When a suffix is appended to a literal constant value, its optional case is uppercase. For example,

```
constexpr float pi = 3.14159265358979323846F;
constexpr std::uint8_t login_key = 0x55U;
```

Certain established C++ coding guidelines have strongly influenced the coding style. For the sake of terseness and clarity, however, not every guideline has been followed all the time.

One clearly recognizable influence of the coding guidelines is the diligent use of C++-style casts when converting built-in types. The following code, for instance, explicitly casts from **float** to an unsigned integer type.

```
float f = 3.14159265358979323846F;
std::uint8_t u = static_cast<std::uint8_t>(f);
```

Even though explicit casts like these are not always mandatory, they can resolve ambiguity and eliminate potential misinterpretation caused by integer promotion.

Another influence of the coding guidelines on the code is the ordering of class members according to their access level in the class. The communication class below, for example, represents the base class in a hierarchy of communication objects. The members in the class definition are ordered according to access level. In particular,

```
class communication
{
public:
    virtual ~communication();

    virtual bool send(const std::uint8_t) const;
    virtual bool recv(std::uint8_t&);

protected:
    communication();

private:
    bool recv_ready;
    std::uint8_t recv_buffer;
};
```

C-style preprocessor macros are used occasionally. Preprocessor macros are written entirely in uppercase letters. Underscores separate the words in the names of preprocessor macros. The MAKE_WORD() preprocessor macro below, for example, creates an unsigned 16-bit word from two unsigned 8-bit constituents.

```
#define MAKE_WORD(lo, hi) \
(uint16_t) (((uint16_t) (hi) << 8) | (lo))
```

Acknowledgments

First and foremost, I would like to thank my wife and my daughter for encouraging me to write this book and also for creating a peaceful, caring atmosphere in which I could work productively. Thank you for your support and your time. You have my gratitude.

I would also like to express appreciation to family, friends, and associates, too numerous to list, who contributed to this project with their innovative ideas, support, friendship, and companionship.

Thanks go to the members of the C++ standards committee, Boost, the volunteers at GCC and all the developers in the vibrant C++, and embedded systems communities. Through your efforts, often times for no pay whatsoever, C++ has evolved to an unprecedented level of expressiveness, making object-oriented and generic programming more effective and easier than ever.

Working with Springer Verlag was a delightful experience. I thank my editor, who first identified the merit of this work and supported me throughout the writing process. I also thank the copy editing team and all the staff at Springer Verlag for their professionalism and capable assistance.

- ATMEL® and AVR® are registered trademarks of Atmel Corporation or its subsidiaries, in the USA and other countries.
- Real-Time C++: Efficient Object-Oriented and Template Microcontroller Programming is a book authored by Christopher Kormanyos and published by Springer Verlag and has not been authorized, sponsored, or otherwise approved of by Atmel Corporation.
- ARDUINO® is a registered trademark of the Arduino Group.
- SPITM is a trademark of Motorola Corporation.
- The circuit of the target hardware described in this book and depicted in Chap. 2 and Appendix D was designed and assembled on a solderless prototyping breadboard by Christopher Kormanyos.
- The photographs of the target hardware described in this book and depicted in Chap. 2 and Appendix D were taken by Christopher Kormanyos.

Reutlingen, Germany Seattle, Washington September 2012 Christopher Kormanyos

Contents

Pai	tI L	anguage Technologies for Real-Time C++	
1	Getti	ng Started with Real-Time C++	3
	1.1	The LED Program	3
	1.2	The Syntax of C++	6
	1.3	Class Types	6
	1.4	Members	10
	1.5	Objects and Instances	12
	1.6	#include	13
	1.7	Namespaces	14
	1.8	C++ Standard Library	16
	1.9	The main() Subroutine	16
	1.10	Low-Level Register Access	17
	1.11	Compile-Time Constant	18
	Refer	ences	19
2	Work	sing with a Real-Time C++ Program on a Board	21
	2.1	The Target Hardware	21
	2.2	Build and Flash the LED Program	22
	2.3	Adding Timing for Visible LED Toggling	26
	2.4	Run and Reset the LED Program	28
	2.5	Recognizing and Handling Errors and Warnings	28
	2.6	Reaching the Right Efficiency	30
	Refer	ences	33
3	An E	asy Jump Start in Real-Time C++	35
	3.1	Declare Locals When Used	35
	3.2	Fixed-Size Integer Types and Prime Number Example	36
	3.3	The bool Type	42
	3.4	Organization with Namespaces	42
	3.5	Basic Classes.	45
	3.6	Racio Templates	16

xxx Contents

	3.7	nullptr Replaces NULL	48
	3.8	Generalized Constant Expressions with constexpr	49
	3.9	static_assert	51
	3.10	Using imits>	51
	3.10	std::array	52
	3.11	Basic STL Algorithms	53
	3.12	<pre><numeric></numeric></pre>	54
	3.14	atomic_load() and atomic_store()	55
	3.15	Digit Separators	55
	3.16	Binary Literals	56
	3.17	User-Defined Literals	57
	3.17	Using alignof and alignas	60
	3.19	The Specifier final	61
	3.20	Alias as an Alternative to typedef	62
	3.21	Delimiting Pointer Ranges with 	64
	3.22	Generating Random Numbers with <random></random>	64
		ences	68
4	Objec	ct-Oriented Techniques for Microcontrollers	69
	4.1	Object Oriented Programming	69
	4.2	Objects and Encapsulation	74
	4.3	Inheritance	76
	4.4	Dynamic Polymorphism and a Detailed LED Example	77
	4.5	The Real Overhead of Dynamic Polymorphism	84
	4.6	Pure Virtual and Abstract	85
	4.7	Class Relationships	86
	4.8	Non-copyable Classes	88
	4.9	Constant Methods	89
	4.10	Static Constant Integral Members	93
	4.11	Class Friends	95
	4.12	Virtual Is Unavailable in the Base Class Constructor	97
	Refere	ences	100
5	C++ 7	Templates for Microcontrollers	101
	5.1	Template Functions	101
	5.2	Template Scalability, Code Re-Use and Efficiency	103
	5.3	Template Member Functions	106
	5.4	Template Class Types	109
	5.5	Template Default Parameters	110
	5.6	Template Specialization	111
	5.7	Static Polymorphism	113
	5.8	Using the STL with Microcontrollers	116
	5.9	Variadic Templates	118
	5.10	Template Metaprogramming	121
	5.11	Tuples and Generic Metaprogramming	125
	5.12	Variable Templates	129

Contents xxxi

	5.13	Template Integer Sequences	132
	Refer	ences	136
6	Ontir	nized C++ Programming for Microcontrollers	137
U	6.1	Use Compiler Optimization Settings	137
	6.2	Know the Microcontroller's Performance	141
	6.3	Know an Algorithm's Complexity	142
	6.4	Use Assembly Listings	144
	6.5	Use Map Files.	145
	6.6	Understand Name Mangling and De-mangling	145
	6.7	Know When to Use Assembly and When Not to	147
	6.8	Use Sensible Comments	149
	6.9	Simplify Code with typedef and Alias	149
	6.10	Use Native Integer Types	152
	6.11	Use Scaling with Powers of Two.	154
	6.12	Potentially Replace Multiply with Shift-and-Add	156
	6.13	Consider Advantageous Hardware Dimensioning	156
	6.14	Consider ROM-ability	158
	6.15	Minimize the Interrupt Frame	163
	6.16	Use Custom Memory Management	166
	6.17	Use the STL Consistently	167
	6.18	Use Lambda Expressions	169
	6.19	Use Templates and Scalability	170
	6.20	Use Metaprogramming to Unroll Loops	171
	6.21	Potential Costs of Runtime Type Information (RTTI)	171
		ences	174
	Refer		1,,
Pai	t II (Components for Real-Time C++	
7	Acces	ssing Microcontroller Registers	177
	7.1	Defining Constant Register Addresses	177
	7.2	Using Templates for Register Access	179
	7.3	Generic Templates for Register Access	182
	7.4	Bit-Mapped Structures	185
	Refer	ence	188
8	The F	Right Start	189
•	8.1	The Startup Code	189
	8.2	Initializing RAM	192
	8.3	Initializing the Static Constructors	194
	8.4	The Connection Between the Linker and Startup	196
	8.5	Understand Static Initialization Rules	198
	8.6	Avoid Using Uninitialized Objects	200

xxxii Contents

	8.7	Jump to main() and Never return	202
	8.8	When in main(), What Comes Next?	203
	Refer	rences	204
9	Low-	Level Hardware Drivers in C++	205
	9.1	An I/O Port Pin Driver Template Class	205
	9.2	Programming Interrupts in C++	207
	9.3	Implementing a System Tick	212
	9.4	A Software PWM Template Class	215
	9.5	A Serial SPI TM Driver Class	219
	9.6	CPU-Load Monitors	222
	9.7	Controlling a Seven-Segment Display	225
	9.8	Animating an RGB LED	232
		rences	237
10			
10		om Memory Management	239
	10.1	Dynamic Memory Considerations	239
	10.2	Using Placement-new	241
	10.3	Allocators and STL Containers	242
	10.4	The Standard Allocator	243
	10.5	Writing a Specialized ring_allocator	244
	10.6	Using ring_allocator and Other Allocators	247
	10.7	Recognizing and Handling Memory Limitations	249
	10.8	Off-Chip Memory and Computing 100,001 Digits of π	251
	10.9	Using Ample RAM on Arm®-Based Single-Board Computer	266
	Refer	rences	276
11	C++	Multitasking	279
	11.1	Multitasking Schedulers	279
	11.2	Task Timing	281
	11.3	The Task Control Block	282
	11.4	The Task List	284
	11.5	The Scheduler	285
	11.6	Extended Multitasking	286
	11.7	Preemptive Multitasking	288
	11.8	The C++ Thread Support Library	291
	Refer	rences	292
Par	t III	Mathematics and Utilities for Real-Time C++	
12	Float	ing-Point Mathematics	295
	12.1	Floating-Point Arithmetic	295
	12.2	Mathematical Constants	298
	12.3	Elementary Functions	300
	12.4	Special Functions	302

Contents xxxiii

	12.5	Complex-Valued Mathematics	312
	12.6	Compile-Time Evaluation of Functions with constexpr	316
	12.7	Generic Numeric Programming	320
	Refer	ences	327
13	Fixed	-Point Mathematics	329
	13.1	Fixed-Point Data Types	329
	13.2	A Scalable Fixed-Point Template Class	332
	13.3	Using the fixed_point Class	336
	13.4	Fixed-Point Elementary Transcendental Functions	338
	13.5	A Specialization of std::numeric_limits	349
	Refer	ences	351
14	High-	Performance Digital Filters	353
	14.1	A Floating-Point Order-1 Filter	353
	14.2	An Order-1 Integer Filter	356
	14.3	Order-N Integer FIR Filters	360
	14.4	Some Worked-Out Filter Examples	365
	Refer	ences	369
15	C++ 1	Utilities	371
	15.1	The nothing Structure	371
	15.2	The noncopyable Class	374
	15.3	A Template timer Class	376
	15.4	Linear Interpolation	379
	15.5	A circular buffer Template Class	382
	15.6	The Boost Library	386
	Refer	ences	387
16	Exten	nding the C++ Standard Library and the STL	389
	16.1	Defining the Custom dynamic array Container	389
	16.2	Implementing and Using dynamic array	392
	16.3	Writing Parts of the C++ Library if None Is Available	396
	16.4	Implementation Notes for Parts of the C++ Library and STL	396
	16.5	Providing now() for <chrono>'s High-Resolution Clock</chrono>	405
	16.6	Extended-Complex Number Templates	407
	16.7	An Embeddable Big Integer Class	410
	16.8	Customizing <random></random>	414
	16.9	Freestanding Implementation	424
	Refer	ences	425
17	Using	g C-Language Code in C++	427
	17.1	Accessing C Language Code in C++	427
	17.2	An Existing C-Language CRC Library	428
	17.3	Wrapping the C-Based CRC Library with C++ Classes	430
	17.4	Return to Investigations of Efficiency and Optimization	433
	Refer	ences	131

xxxiv Contents

18	Addit	tional Reading	435
	18.1	Literature List	435
	Refere	ences	437
A	A Tut	torial for Real-Time C++	439
	A.1	C++ Cast Operators	439
	A.2	Uniform Initialization Syntax	440
	A.3	Overloading	443
	A.4	Compile-Time Assert	443
	A.5	Numeric Limits	444
	A.6	STL Containers	448
	A.7	STL Iterators	450
	A.8	STL Algorithms	453
	A.9	Lambda Expressions	457
	A.10	Initializer Lists	458
	A.11	Type Inference and Type Declaration with auto	
		and decltype	460
	A.12	Range-Based for(:)	462
	A.13	Tuple	462
	A.14	Regular Expressions	466
	A.15	The <type_traits> Library</type_traits>	468
	A.16	Using std::any and std::variant	471
	A.17	Structured Binding Declarations	474
	A.18	Three-Way Comparison	475
	Refere	ences	475
В	A Rol	bust Real-Time C++ Environment	477
	B.1	Addressing the Challenges of Real-Time C++	477
	B.2	Software Architecture	479
	B.3	Establishing and Adhering to Runtime Limits	480
	Refere	ences	481
C	Dulld	ing and Installing GNU GCC Cross Compilers	483
C	C.1	The GCC Prerequisites	483
	C.1	Getting Started	484
	C.2 C.3	Building GMP	485
	C.3	Building MPFR	486
	C.4 C.5		486
	C.5 C.6	Building MPC	487
	C.6 C.7		
	C.7 C.8	Building ISL Building the Pinery Utilities for the Cross Compiler	488
	C.8 C.9	Building the Binary Utilities for the Cross Compiler	488
		Building the Cross Compiler	490
	C.10	Using the Cross Compiler	491
	Keter	ences	492

Contents	xxxv
----------	------

D	Build	ing a Microcontroller Circuit	493
	D.1	The Circuit Schematic	493
	D.2	Assembling the Circuit on a Breadboard	495
	Refer	ences	496
Glo	ssary .		497
Ind	ex		499

Acronyms

 \mathbb{C}

 \mathbb{R}

 \mathbb{R}^2

 \mathbb{R}^3

geometry.

	geometry.
$\mathbb Z$	\mathbb{Z} represents the set of integer numbers in mathematics.
ADC	Analog-Digital Converter.
ASCII	American Standard Code for Information Interchange [25] is a
	numerical representation of characters, often used in areas such as
	computer programming and telecommunication.
AUTOSAR	AUTomotive Open System ARchitecture [2] is a worldwide coopera-
	tion of automotive manufacturers and companies supplying electron-
	ics, semiconductors and software that concentrates on, among other
	things, a standardized architecture for automotive microcontroller
	software.
AWG	American Wire Gauge.
binutils	Binary Utilities [6] are the GNU binary utilities such as archiver,
	assembler, linker, object file parsers, etc. for GCC.
C	C is the C programming language, which is often referred to as
	ANSI-C [1] or C89 [2]. Later versions of C include C99 [13] and
	C11 [17].
C99	C99 refers to the C programming language, as specified in ISO/IEC
	9899:1999 [13].
C11	C11 refers to the C programming language, as specified in ISO/IEC
	9899:2011 [17].
C++	C++ refers to the C++ programming language.
C++98	C++98 refers to the C++ programming language, as specified in
	ISO/IEC 14882:1998 [12].
C++03	C++03 refers to the C++ programming language, as specified in
	ISO/IEC 14882:2003 [15].

 $\ensuremath{\mathbb{C}}$ represents the set of complex numbers in mathematics.

 ${\mathbb R}$ represents the set of real numbers on the real axis in mathematics.

 \mathbb{R}^2 represents two-dimensional Cartesian space in mathematics and

 \mathbb{R}^3 represents three-dimensional Cartesian space in mathematics and

xxxviii Acronyms

C++11 C++11 refers to the C++ programming language, as specified in ISO/IEC 14882:2011 [18]. C++14C++14 refers to the C++ programming language, as specified in ISO/IEC 14882:2014 [19]. C++17 refers to the C++ programming language, as specified in C++17ISO/IEC 14882:2017 [20]. C++20C++20 [26] is predicted by some C++ language experts to be the next revision of the C++ standard, possibly to become available in the year 2020. Chunky Loop Generator [4] is a software library used for geometric CLooG polyhedron analysis. CRC Cyclic Redundancy Check [27]. CPU Central-Processing Unit. ctor constructor of a class object in object-oriented programming is a special subroutine that is called when an object is created. DIL Dual In-Line electronic component packaging. DSP Digital Signal Processor. destructor of a class object in object-oriented programming is a dtor special subroutine that is called when an object is destroyed or deleted. FIR Finite-Impulse Response is a kind of digital filter. FLASH Flash Memory is a nonvolatile computer memory that can be electrically written and erased. Flash is commonly used as an alternative to ROM. **FPU** Floating-Point Unit implements floating-point arithmetic in hardware. Many modern high-performance microcontrollers use an FPU to accelerate floating-point calculations. is the GNU ASsembler. **GAS** GCC GNU Compiler Collection [7] is a collection of free compilers for several popular programming languages including, among others, C and C++. GCC is supported for a wide range of targets. GMP is the GNU Multiple-Precision library [9]. It implements highly **GMP** efficient multiple-precision representations of integer and floatingpoint data types. Is a *nix-like computer operating system consisting entirely of free **GNU** software [8].

GUI Graphical User Interface.

HEX Hexadecimal representation is a base-16 numerical representation commonly used to store program data in computer engineering.

ICE In-Circuit Emulator is a highly sophisticated hardware device used to debug embedded microcontroller software with an emulated bond-out processor.

ISL Integer Set Library [11] is a software library used for manipulating sets of integers.

Acronyms xxxix

ISP In-System-Programming is the act of programming the program code of a microcontroller using a communication interface while the microcontroller is fitted in the application, rather than as a standalone non-soldered component.

ISR Interrupt Service Routine.

JTAG Joint Test Action Group, later standardized as IEEE 1149.1 [10], is a protocol and hardware interface used for printed circuit board testing, boundary scan and recently more and more for debugging embedded systems.

LED Light-Emitting Diode is a semiconductor-based light source used in diverse applications such as lighting, consumer electronics, and toys.

MCAL Microcontroller Abstraction Layer is a low-level layer in a layered software architecture (such as AUTOSAR). The interface of the MCAL is typically written in a portable fashion. The MCAL implementation itself, however, contains partially non-portable components that access microcontroller peripherals and their registers, such as PWM signal generators, timers, serial UARTs, and other communication interfaces.

MinGW Minimalist GNU [21] is an open-source programming toolset that emulates *nix-like environments.

MKS Meter, Kilogram, Second is a system of units used to express physical quantities.

MPC Multiple-Precision Complex [22] is a GNU C library that implements multiple-precision arithmetic of complex numbers.

MPFR Multiple-Precision Floating-Point with correct Rounding [5, 23] is the GNU multiple-precision floating-point library. It is built on top of GMP and places special emphasis on efficiency and correct rounding.

MSYS Minimal SYStem [21] is a collection of GNU utilities that enhance and extend the MinGW shell.

newlib [24] is a free implementation of the C standard library. It is well-suited for use with embedded systems and has been ported to a variety of CPU architectures.

nop No OPeration is a common assembly instruction that simply does *no operation*. One or more nops are often chained sequentially in order to be used for ultra low-level functions such as creating very short delays or flushing an instruction pipeline.

opcode OPeration CODE is a machine language instruction containing the operation to be done.

PC Personal Computer.

POSIX Portable Operating System Interface is an open standardized operating system specified in ISO/IEC 9945:2003 [14].

PPL Parma Polyhedra Library [3] is a software library for abstract geometrical polyhedron representations.

PWM Pulse-Width Modulated signal is a square wave that usually has a fixed period and a variable duty cycle.

xl Acronyms

RAM	Random Access Memory is computer memory with nearly constant
	access time regardless of address or memory size. RAM is volatile in
	the sense that data are typically lost when the power is switched off.
ROM	Read-Only Memory is a class of computer memory that, once
	written, can only be modified with external programming tools—or
	not be modified at all. ROM has permanent character in the sense that
	data are retained throughout power on/off cycles.
SPI^{TM}	Serial Peripheral Interface bus is a four-wire serial communication
	interface commonly used for communication between a microcon-
	troller and one or more off-chip devices on the printed circuit board.
STL	Standard Template Library is part of the C++ standard library.
	The standard template library contains a vast collection of generic
	containers, iterators and algorithms.
TO-220	Transistor Outline electronic component packaging, number 220.
TR1	C++ Technical Report 1 includes the standard library extensions
	that are specified in ISO/IEC TR 19768:2007 [16]. TR1 has been
	predominantly integrated in C++11 (ISO/IEC 14882:2011 [18]).
UART	Universal Asynchronous Receiver/Transmitter is an asynchronous
	receiver and transmitter commonly used for serial communication
	between a PC and a microcontroller.

References

- 1. ANSI, ANSI X3.159-1989 American National Standard for Information Systems Programming Language C (American National Standard for Information, New York, 1989)
- 2. AUTOSAR, Automotive Open System Architecture (2017), http://www.autosar.org
- 3. BUGSENG, Parma Polyhedra Library (PPL) (2012), http://www.bugseng.com/products/ppl
- 4. CLooG, Chunky Loop Generator (2015), http://www.cloog.org
- L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Soft. 33(2) (2007). Article 13
- 6. Free Software Foundation, GNU Binutils (2011), http://www.gnu.org/software/binutils
- 7. Free Software Foundation, GNU Compiler Collection (2015), http://gcc.gnu.org
- 8. Free Software Foundation, GNU Operating System (2015), http://gnu.org
- 9. GMP, GNU Multiple Precision Arithmetic Library (2012), http://gmplib.org
- IEEE Computer Society, IEEE Std 1149.1 1990: IEEE Standard Test Access Port and Boundary-Scan Architecture (1990). Available at http://standards.ieee.org/findstds/standard/ 1149.1-1990.html
- 11. ISL, Integer Set Library (2015), http://isl.gforge.inria.fr
- 12. ISO/IEC, ISO/IEC 14882:1998: Programming languages C++ (International Organization for Standardization, Geneva, 1998)
- 13. ISO/IEC, ISO/IEC 9899:1999: Programming languages C (International Organization for Standardization, Geneva, 1999)
- 14. ISO/IEC, ISO/IEC 9945:2003: Information Technology Portable Operating System Interface (POSIX) (International Organization for Standardization, Geneva, 2003)
- 15. ISO/IEC, ISO/IEC 14882:2003: Programming languages C++ (International Organization for Standardization, Geneva, 2003)

Acronyms xli

 ISO/IEC, ISO/IEC TR 19768:2007: Information technology – Programming languages – Technical Report on C++ Library Extensions (International Organization for Standardization, Geneva, 2007)

- 17. ISO/IEC, ISO/IEC 9899:2011 : Programming languages C (International Organization for Standardization, Geneva, 2011)
- 18. ISO/IEC, ISO/IEC 14882:2011: Information technology Programming languages C++ (International Organization for Standardization, Geneva, 2011)
- 19. ISO/IEC, ISO/IEC 14882:2014: Information technology Programming languages C++ (International Organization for Standardization, Geneva, 2014)
- 20. ISO/IEC, ISO/IEC 14882:2017: Programming languages C++ (International Organization for Standardization, Geneva, 2017)
- 21. MinGW, Home of the MinGW and MSYS Projects (2012), http://www.mingw.org
- 22. MPC, GNU MPC (2012), http://www.multiprecision.org
- 23. MPFR, GNU MPFR Library (2013), http://www.mpfr.org
- 24. Red Hat, newlib (2013), http://sourceware.org/newlib
- 25. Wikipedia, ASCII (2017), http://en.wikipedia.org/wiki/ASCII
- 26. Wikipedia, C++20 (2017), http://en.wikipedia.org/wiki/C%2B%2B20
- Wikipedia, Cyclic Redundancy Check (2017), http://en.wikipedia.org/wiki/Cyclic_redundancy_check