LUniversidad Autdonoma
de Madrid

Biblos-e Archevo

Ecposit_orio Institucional UAM

Repositorio Institucional de la Universidad Autbnoma de Madrid
https://repositorio.uam.es

Esta es la version de autor del articulo publicado en:
This is an author produced version of a paper published in:

Workshop papers presented at Petri Nets 2019. Lecture
Notes in Computer Science, volume 12530. Springer, 2019.
27-49

DOI: https://doi.org/10.1007/978-3-662-63079-2

Copyright: © 2019 Springer, Berlin Heidelberg.

El acceso a la version del editor puede requerir la suscripcion del recurso
Access to the published version may require subscription

https://repositorio.uam.es/

Extensible Structural Analysis of Petri Net
Product Lines

Elena Gémez-Martinez[0000-0002=7753-3345] ' Jyan de Taral0000-0001-9425-6362]
and Esther Guerra/0000—0002—2818—2278]

Modelling and Software Engineering Research Group,
Universidad Auténoma de Madrid,
C/ Francisco y Valiente, 11, 28049 Madrid, Spain
{MariaElena. Gomez,Juan.DelLara,Esther. Guerra}@uam .es
http://miso.es

Abstract. Petri nets are a popular formalism to represent concurrent
systems. However, their standard form does not offer variability support
to model and effectively analyse large sets of variants of a given sys-
tem. For this purpose, we propose a notion of product line of Petri nets
to represent a set of similar concurrent systems. The formalization en-
riches Petri nets with a feature model characterizing the variability of
the systems. Moreover, places, transitions and arcs can define presence
conditions that determine the subset of system variants they belong to.
To enable an efficient analysis of the set of all net variants, we have
lifted several structural analysis methods for Petri nets, to the product
line level. Currently, we support the lifted checking of the marked graph,
state-machine, and (extended) free-choice properties, which avoids their
analysis on each particular net of the product line in isolation.

We demonstrate the feasibility of our proposal using examples in the
domain of flexible assembly lines, and introduce an extensible tool in-
frastructure. The tool is based on Eclipse and FeatureIDE, and permits
adding new analysis methods externally. Moreover, we present an eval-
uation that shows the efficiency gains of our method with respect to an
enumerative approach that analyses the properties on every net within
the product line separately.

Keywords: Petri nets - Structural analysis - Product lines - Model-
driven engineering.

1 Introduction

Petri nets are a popular formalism to model concurrent systems [2I]. They are
widely used due to their rich body of theoretical results enabling analysis, and the
plethora of existing supporting toolslﬂ However, some scenarios require modelling
(possibly a large set of) variants of similar systems. Some examples reported in
the literature include the design of the variants of controllers for cyber-physical

! See for example https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/

http://miso.es
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/

2 Gomez-Martinez et al.

systems [20], modelling all possible variants of flexible assembly lines [24], or
building families of workflow process models [28]. In these cases, the designer
needs to build many variations of a base model. However, if there are many vari-
ants, then building, maintaining and analysing this large set of variants becomes
challenging.

To facilitate the management of large sets of net variants, we combine Petri
nets with software product lines (SPLs) [25l27] to define a notion of Petri net
product line (PNPL). This allows modelling the variability space using a fea-
ture model, and automatically producing specific Petri nets from given feature
configurations [I5].

As the main contribution of this paper, we propose lifting some structural
analysis techniques of Petri nets to the product line level. This means that we do
not need to analyse each Petri net that can be produced from a PNPL separately,
but our analysis techniques work on the whole set of Petri nets directly. In this
paper, we explain how to lift the analysis of the marked graph, state-machine,
and (extended) free-choice [I1] properties to PNPLs, but other structural anal-
ysis techniques like (extended) asymmetric choice [2] or equal conflict nets [32]
can be lifted in a similar way. In the above-mentioned scenarios, these struc-
tural analysis techniques can be used to assess soundness of workflow nets [1] by
analysing if some/all nets are free choice; to check whether synchronization can
interfere with conflicts in a flexible assembly line by analysing if some/all nets
are free choice; or checking whether any variant of a controller design can lead
to conflicts by checking if all variants are marked graphs.

As a second contribution, we present extensible prototype tool support to
model and analyse PNPLs. Our tool is based on Eclipse, and has an extension
point to enable contributing further analysis techniques externally. Moreover,
we use our tool to evaluate the efficiency of our lifted analysis techniques, which
show good improvement compared to enumerating and analysing each Petri net
within the product line.

This paper extends our work in [I2] by a more comprehensive formalization
of the lifting process (Section, the lifted analysis of two additional properties
(free-choice and extended free-choice), improved tool support and an expanded
evaluation.

In the following, Section [2| introduces PNPLs; Section [3| proposes lifting the
analysis of structural properties to PNPLs and lifts the analysis of the marked
graph and (extended) free-choice properties; Section 4] presents tool support;
Section [f] evaluates the efficiency of our lifted analysis; Section [6] compares with
related research; and Section [7] concludes. The Appendix details the lifting of
the state-machine property.

2 Petri Net Product Lines

This section defines PNPLs, and how to derive concrete Petri nets via feature
configurations. We consider a simple notion of Petri net, as given in Definition
but the approach can be easily adapted to other more complex versions.

Extensible Structural Analysis of Petri Net Product Lines 3

A feature model
defines the variants
that can be selected

Presence conditions

(boolean formulae)
[Def 3]

150%
Petri net

A 150% net i Feature model
contains all H

variants i Flexible
superimposed ' AssemblyLine
1

1

1

1

1

1

1

[Def3]

PartA, PartB

Feature combinations
allowed by the feature
model

geng cnvg geng cnvg [Def 4]

proc
gen, cnv,

Petri nets that can be
derived from each

configuration (called
roducts

proc
gen, chv,

Fig. 1. Ingredients of a PNPL.

Definition 1 (Petri net). A Petri net is a tuple PN = (P, T, A), where P and
T are disjoint sets of places and transitions, and A C (P x T) U (T x P) is the
set of arcs connecting either places to transitions or vice versa.

Given an arc a € A, we use ag to refer to its source, and aq to refer to its
target.

We define a notion of PNPL to support the definition of net variants. Fig.
shows the concepts that it involves. Firstly, the variability space is represented
as a set of features in a feature model. Then, the main idea is to superimpose
all net variants within a single net — called 150% Petri netE| — and annotate its
elements with presence conditions (logic formulae over the features in the feature
model). Users can retrieve a particular net variant by selecting a subset of the
available features. Such a choice is called a configuration. Then, the selected
features are substituted by true in the presence conditions, and the unselected
ones by false. This makes each presence condition to evaluate either to true or
false. The elements whose presence condition evaluates to false are eliminated
from the 150% net, and the remaining elements form the selected net variant.
In the following, we define each component of the approach in detail.

PNPLs build on the notion of a feature model that defines the variability
space of possible configurations.

Definition 2 (Feature model). A feature model FM = (F,¥) consists of a
set of propositional variables F = { f1, ..., fn} called features, and a propositional
formula ¥ over the variables in F.

2 The term 150% model is standard in software product lines. It refers to the fact that
a single model contains many variants superimposed.

4 Gomez-Martinez et al.

(a) [FlexibleAssemblyLine | ©

1 1
1 1
I mandatory optional 1
| Process | | OutProducts | ' ﬁ :

' alternatlve or I
[PartA | [PartB |{ QualityControl || Parallel | | Prodi | | Prod2 | ! (exactly one) (at least one)

(b) FM=({FlexibleAssemblyLine, InParts, Process, OutProducts, PartA, PartB, QualityControl, ...},
FlexibleAssemblyLinealnPartsaAProcessAOutProductsa(PartAvPartB)A(Prod1vProd2))

Fig. 2. Feature model for the flexible assembly line using (a) the diagrammatic notation
of feature models [I5], and (b) Definition

Remark The propositional formula ¥ in the feature model is used to determine
the allowed combinations of feature values (those making the formula true).

Example As an illustration, we will be using a family of Petri nets describing
the behaviour of a flexible assembly line, that is, a production system that can
be quickly reconfigured in different set-ups to produce a variety of goods or
adapt to customer demands [24]. Here, the problem is to model all such possible
configurations in a compact way, and analyse properties of all configurations
efficiently. Fig.[2|(a) shows the feature model using a diagrammatic notation [15],
and Fig. (b) using Definition [2 Our assembly line can be configured to accept
one or two kinds of input parts (PartA, PartB), can optionally have a quality
control process (QualityControl) and a parallel conveyor (Parallel), and can produce
one or two kinds of products (Prodl, Prod2).

A PNPL is a Petri net whose elements can be annotated with boolean for-
mulae, having as variables the features of the feature model.

Definition 3 (Petri net product line). A PNPL PNL = (FM,PN,®) is
made of a feature model FM, a Petri net PN (called the 150% Petri net), and
a mapping @ which consists of pairs (x,P,) mapping an element x € PUTU A
to a propositional formula @, (called the presence condition (PC) of x) over the
features in FM.

PNL is well-formed if Ya€ A: (g = Pg,) N (P = Py,) is true.

As noticed, we use an annotative approach to facilitate the analysis. The
approach relies on the definition of a 150% Petri net that contains all variants
of the PNPL, and the assignment of PCs to its elements. Then, a particular
Petri net can be obtained by removing the elements whose PC evaluates to
false given a choice (a configuration) of feature values. This kind of variability
which starts from a maximal description of a set of systems (the 150% Petri net)
and deletes elements upon certain conditions is called negative [10]. Instead,
other approaches to SPLs use positive variability, i.e., they start from a minimal
description of the systems to which new elements are added depending on the
selected features [29]. Our method can also be applied to positive variability
approaches as long as they permit deriving a 150% Petri net.

Extensible Structural Analysis of Petri Net Product Lines 5

In Definition [3] the well-formedness condition requires the PC of an arc to be
stronger than the PC of its source and target elements. This ensures that, if the
arc is present in a product Petri net (i.e., a Petri net derived from a configuration
by deleting from the 150% net the elements whose PC is false), its source and
target elements will be present as well. Definitions [l and [5] will provide the formal
notions of configuration and Petri net derivation.

out;, cnv, ing;

Fig. 3. 150% Petri net with PC annotations, modelling a flexible assembly line.

Example Figures[2] and [3]show the feature model and the 150% net composing
the PNPL of the flexible assembly line. The 150% Petri net in Fig. [3]uses dashed
regions as a shortcut to assign the same PC to all the elements in the region.
For example, formula PartB in the top-left corner is attached to transition geng,
to place cnvg, and to the arcs from/to place cnvg. If an element does not show
an attached PC, then we assume that its PC is true.

The way to obtain a specific product Petri net from a PNPL is by selecting
a subset of the features in its feature model. This selection is called a feature
configuration. In the following definition, we use ¥[X/true, Y/ false] to denote
the substitution of all variables in X by true, and all variables in Y by false,
in formula ¥.

Definition 4 (Feature configuration). A valid feature configuration p C F'
of a PNPL PNL with feature model FM = (F,¥) is a subset of its features
satisfying ¥, i.e., W[p/true, F' \ p/false] evaluates to true when each f € p is
substituted by true, and each f € F\ p is substituted by false. We use P(FM) =
{p:i} for the set of all valid feature configurations of PNL.

To improve readability, in the remaining of the paper, feature configurations
omit features that are mandatory in any configuration.

Example Fig.[2] admits 36 feature configurations. In all of them, PartA or PartB
(inclusive) need to be selected, and similarly, Prodl or Prod2 need to be se-
lected as well. For instance, some valid configurations are py = {PartA, Prod1},
p1 = {PartA, PartB, Prodl}, and py = {PartB, Parallel, Prodl}. As mentioned

6 Gomez-Martinez et al.

above, these configurations would also include features FlexibleAssemblyLine, In-
Parts, Process and OutProducts, but we do not show them as they are mandatory.

Given a feature configuration, we obtain the corresponding product Petri net
by removing from the 150% Petri net any element whose PC is false.

Definition 5 (Petri net derivation). Given « PNPL PNL = (FM,PN =
(P, T,A),®) and a configuration p € P(FM), we derive the net PN, = (P,,T,, A,)
building each set X, C X (for X = {P,T,A}) as {z € X | $y[p/true, F \
p/false] = true}. We use Prod(PNL) = {PN, | p € P(FM)} for the set of all
derivable nets from PN L.

Example Fig. 4] shows a Petri net derivation example using the feature con-
figuration po = {PartB, Parallel, Prod1}. This way, PN,, contains exactly those
elements whose PC evaluates to true.

. .
\geng cnvgl out; cnv; inc, ,/prody

188Ny cnVyr | WY=L _-=~- [W5, VN /- —~
T S Bttty]
S - _ QualityControl_ -~ Prod2
ke
p, = {PartB, Parallel, Prod1}
v'vlv
geng Cnvg out, cnv, inc, prod PN,,

out, cny, inc,

proc

Fig. 4. Petri net derivation example.

To analyse a property in every Petri net that can be derived from a PNPL,
a naive method would derive and analyse each product Petri net one by one.
However, this can be time-consuming since the number of derivable Petri nets
can be exponential on the number of features in the worst case. Hence, the next
section proposes a method to lift the analysis of structural properties to the
product line level.

3 Structural Analysis of Petri Net Product Lines

This paper is focused on the efficient analysis of structural properties of the set of
nets that can be derived from a PNPL. Structural properties depend only on the

Extensible Structural Analysis of Petri Net Product Lines 7

PNL

@, is satisfied by
configurations p s.t. PN =P

Prod(PNL)
PN=P | weak satisfaction of P . weak satisfaction of P
i 3PN,eProd(PNL): PN,=P L SAT(yA®,)
strong satisfaction of P i strong satisfaction of P
: VPN, eProd(PNL): PN;=P i =SAT(y A-D,)
@ (b) ’ (c)

Fig. 5. (a) Checking a structural property P on a Petri net PN. (b) Checking a struc-
tural property P on a PNPL PNL using an enumerative approach. (c¢) Checking a
structural property P on a PNPL PN L using a lifted approach.

net topology and are independent of the initial marking [2I]. These properties
include connectedness, state-machine, marked graph, and (extended) free-choice,
among others.

In the following, we first introduce the general scheme and required concepts
for the lifted analysis of structural properties (Section . Then, we lift the
analysis for the marked graph (Section [3.2), free-choice (Section and ex-
tended free-choice properties (Section he appendix contains the lifting of
the state-machine property.

3.1 Lifting the analysis of structural properties

Structural properties look at connectivity patterns of a given Petri net to as-
sert the occurrence of some particular structure. These properties are frequently
formulated using first-order logic and auxiliary functions, such as the pre- and
post-sets of each place and transition in the net. Fig. a) illustrates the formal-
ization of a structural property using a formula P, which is checked on a Petri
net PN. We write PN [= P to indicate that property P holds on the Petri net
PN.

To check a structural property in the set of nets of a PNPL, we can sepa-
rately check the property in each derivable net PNN;, as Fig. b) shows. Because
we now look at a set of nets, instead of at individual ones, we can distinguish
between weak and strong property satisfaction. Weak satisfaction requires that
some product Petri net of the PNPL satisfies the property P (e.g., the marked
graph property, cf. Definition , while strong satisfaction requires that all prod-
uct Petri nets satisfy P. The problem with this solution is that checking P on
each product net might be too costly as there may be an exponential number of
them.

Instead, we propose the solution outlined in Fig. c) to improve the effi-
ciency of the analysis of structural properties for a PNPL. In this solution, we
first lift the property P to the product line level. For this purpose, we encode P

8 Gomez-Martinez et al.

as a formula @p which takes into account the PCs of the elements in the 150%
Petri net, and is satisfied by those configurations p such that PN, = P. Then,
we recast the checking of weak/strong property satisfaction as a constraint satis-
faction problem. Specifically, if SAT(¥ A ®p) (with SAT a predicate that holds
if the formula is satisfiable, and ¥ the formula of the feature model), then there
is some valid configuration which produces a Petri net that satisfies the property
P. We can use a constraint solver to obtain a feature configuration that satisfies
the formula ¥ A @p. If such a configuration exists, then we have weak property
satisfaction.

Conversely, the formula —=®p is satisfied by those configurations that produce
Petri nets where P does not hold. This way, we have strong satisfiability if
SAT (W A—Pp) does not hold. This means that no valid configuration (satisfying
V) produces a Petri net that does not satisfy P (where =@ p holds).

The structural properties that we consider in this paper — state-machine,
marked graph, (extended) free-choice — make use of the pre- and post-sets of
each place p and each transition ¢ (written *p, p®, *t and t* respectively). Hence,
we need to incorporate the PCs within those sets, as Definition [6] shows.

Definition 6 (Lifted pre-/post-sets). Given a PNPL PNL = (FM,PN =
(P,T,A),®), for any element x € PUT, the lifted pre-set of x is °x = {(y, P(y,2)) |
(y,x) € A}, while its lifted post-set is ° = {(y, Pz,y)) | (z,y) € A}.

Remark. In the previous definition, we can use the PC of the arc (@,,) instead of
the PC of its source or target place or transition (@,,, P4,) because, according to
Definition 3} in a well-formed PNPL, @&, = ®q, A Py = P, , and so, Py A Dy, =
D, =Dy N\ Dy, .

As an illustration, the following subsections apply this approach to lift the
analysis of the marked graph, free-choice and extended free-choice properties.
Since the state-machine property is the dual of the marked graph property, we
show it in the Appendix. Other structural properties like asymmetric choice can
be lifted in a similar way.

3.2 Lifted analysis of the marked graph property

Firstly, we provide the definition of the marked graph (MG) property. In a MG
Petri net, each place has exactly one input transition and one output transition,
whereas each transition may have multiple input and output places. Therefore,
a MG allows concurrent and synchronization structures with no conflict.

Definition 7 (Marked graph, from [21]). A Petri net PN = (P, T, A) is a
marked graph, written PN |= MG, ifVp € P: |*p| = |p*| = 1.

We lift this definition of MG to the product line level. Therefore, a PNPL
strongly (weakly) satisfies the MG property if all (some of) its derivable nets are
MGs.

Extensible Structural Analysis of Petri Net Product Lines 9

Definition 8 (Strong and weak MG product line). A Petri net product
line PNL is a strong marked graph #if VPN, € Prod(PNL) : PN, = MG.
PNL is a weak marked graph iif 3PN, € Prod(PNL): PN, |= MG.

If we can derive from the product line PNL a net that is not a MG, then
PN L is not a strong MG product line. In particular, given a feature configuration
p, a Petri net derivation PN, is not a MG if it has a place p with more than one
input transition, more than one output transition, no input transitions, or no
output transitions. Therefore, for a PNPL to be a strong MG, we require that
the size of the lifted pre-set °p = {(to, Pty,p))s s (tns P, p))} and the lifted
post-set p° = {(to, P(p,ty)), -+ (tn, P(pyt,))} of every place p to be one for every
possible configuration. For the case of the pre-set, this is the case if the following
formula is true:

®o, £ false V
(é(toyp) A ﬁqﬁ(tl,p) VANRTRIVAN ﬁ@(tn,p)) vV
(_'ds(to,p) A é(thp) VANRTRIVAN _‘Qs(tn7p)) Vo
("Pto.p) A = P(arp) A v A Pl)

(1)

The formula is made of a disjunction of conjunctions, where only one term in
each conjunction can be true. This ensures that, regardless of the configuration,
the pre-set of the place will have size one. The disjunctions start with false, so
that @, is false when °p is empty. The terms @, ;) are the PCs in the lifted
pre-set of p (°p). The formula that ensures that the size of the post-set of a place
is one for every possible configuration is defined similarly, but using the terms
D(p.1,) in the lifted post-set of p (p°).

This way, a PNPL includes some Petri net that is a MG if there is a feature
configuration p such that for every place p in the PNPL:

— pis not in PN, therefore &, is false; or
— pisin PN,, and therefore ®-, and ®,o need to be true.

We can express these conditions as the logical formula in Equation [2]
DPrig = Npep [Py V (Pp A Doy A Do)] 2)

If SAT (¥ A ®pri) is true, then the PNPL is a weak MG. In such a case, we
can use a constraint solver to obtain a feature configuration that satisfies the
formula. The Petri net derived using this feature configuration is ensured to be
a MG.

Conversely, the feature configurations making the formula @,;¢ false yield
Petri nets that are not MGs. Hence, a PNPL is a strong MG if SAT(¥ A =P i)
is unsatisfiable (i.e., no valid configuration produces a net that is not a MG).

Example In the PNPL consisting of the feature model in Fig. [2| and the 150%
net in Fig. [3] the interesting cases are those for places in and ctrl. In the latter
case, any Petri net that contains either both transitions inc; and inca, or both

10 Gomez-Martinez et al.

transitions prod and fix, is not a MG because place ctrl would have either two
incoming or two outgoing arcs. This is the case for the Petri nets derived from
configurations that select the features Parallel or QualityControl. Similarly, place
in will have two incoming arcs for configurations that select the feature Quality-
Control, and two outgoing arcs for configurations that select the feature Parallel,
resulting in nets that are not MGs. Overall, the example PNPL is not a strong
MG product line. However, it is a weak MG product line as, for example, the
configuration that only selects features PartA and Prodl produces a Petri net
that is a MG. In practice, if we would like to have no conflicts in the flexible
assembly line, we might rule out the problematic variants (i.e., those that are not
MGs) by extending the formula ¥ in the feature model. The concrete formula,
not reduced, corresponding to the MG property of our example PNPL is the
following:

Dy = (mPartA vV (PartA A PartA A PartA)) A
(=PartB V (PartB A PartB A PartB)) A (QualityControl A Parallel) A
(=Parallel v (Parallel N Parallel A Parallel)) A
(Parallel A QualityControl) A (—~Prodl V (Prodl A Prodl A
(Prodl A Prod2))) A (=Prod2 V (Prod2 A Prod2 A (Prodl A Prod2))) A
((=(Prodl A Prod2)) V ((Prodl A Prod2) A (Prodl A Prod2)))

Then, to assess the MG property on the PNPL, we analyse the satisfiability
of the conjunction of this formula @,;5 and the formula of the feature model ¥.

Interestingly, the lifted analysis of the MG property is very similar to the
analysis of the state-machine property. A state-machine (SM) is a subclass of
Petri net where each transition ¢ has exactly one input place and one output
place, while each place may have multiple input and output transitions. This
way, analysing whether a PNPL is a weak/strong SM product line is dual to
checking the MG property in a PNPL but replacing transitions by places and
vice versa (details in the Appendix).

3.3 Lifted analysis of the free-choice property

Next, we define the free-choice (FC) property. In a FC net, it is not possible to
mix choice and synchronization into one routing construct, i.e., either a choice is
preceded by a synchronization, or vice versa. FC Petri nets do not have conflicts
since every transition has a unique input place.

Definition 9 (Free-choice, from [7]). A Petri net PN = (P,T, A) is a free-
choice Petri net, written PN = FC, if for every two transitions t1 and ty € T,
i1 #tg D%t N %ty 7é g = |.t1| = |.t2| =1.

In other words, a Petri net is FC if every place is either connected to a
unique output transition, or all its output transitions have a unique input place.
Formally:

Vpe P:|p*|=1vVvtep®: |t =1 (3)

Extensible Structural Analysis of Petri Net Product Lines 11

Following the rationale of the previous analysis, we first lift the definition of
property FC to the product line level. Hence, a PNPL is a strong (weak) FC if
all (some) its derivable nets are FC.

Definition 10 (Strong and weak FC product line). A Petri net product
line PNL is a strong free-choice iif VPN, € Prod(PNL): PN, = FC. PNL
is a weak free-choice iif 3PN, € Prod(PNL): PN, = FC.

According to Equation [3] every outgoing arc from a place either is unique, or
is the only incoming arc to the target transition of the arc. Therefore, a PNPL
includes a FC Petri net if there is a feature configuration p such that for every
place p in the PNPL:

— pis not in PN, therefore &, is false; or
— pisin PN,, and therefore either &, is true, or for every transition ¢ in the
post-set p*:
e tis not in PN,, therefore &; is false; or
e tisin PN, and therefore ®.; needs to be true.

Equation [4] shows the encoding of these conditions as a logical formula ex-
pressing the cases in which a PNPL is a FC product line.

Prc = Npep[Pp V (Pp A (Ppe V (Ateps [7Pe V (Dr A Doy)])))] (4)

If SAT (¥ A Ppc) is satisfied, then the PNPL is a weak FC product line. On
the contrary, configurations leading to nets that are not FC satisfy ¥ A =@ pc.
Therefore, a PNPL is a strong FC product line if SAT (¥ A—®r¢) does not hold.

Example The sets of conflicting transitions in the PNPL of Fig. 3| (out; and outa;
prod and fix) only have one input place, and therefore, the example is a strong
FC product line. In practice, this means that our example has a sound design: in
no variant of our flexible assembly line, synchronization (i.e., sequencing of part
production or movement through the conveyors in the assembly line) interferes
with conflicts (i.e., choice of paths for parts in the assembly line).

3.4 Lifted analysis of the extended free-choice property

Extended-free choice (EFC) Petri nets satisfy a weaker condition than FC Petri
nets, and every FC Petri net is also EFC. Informally, we say that a Petri net is
EFC if the result of a choice between two transitions is never influenced by the
rest of the system. The following definition formalizes this intuition.

Definition 11 (Extended free-choice, from [7]). A Petri net PN = (P, T, A)
is an extended free-choice Petri net, written PN = EFC, if for every two tran-
sitions t1 andta € T, t1 #ta: L1 N #£ T = *t; = *ts.

12 Gomez-Martinez et al.

In an EFC Petri net, if a transition has two or more input places, then all
these places must have the same set of output transitions. Formally:

YVt €T :Vpi,ps €% = p1°® = pso° (5)

Next, we lift the definition of the EFC property to the product line level. A
PNPL is a strong (weak) EFC if all (some) derivable nets are EFC.

Definition 12 (Strong and weak EFC product line). A Petri net product
line PNL is a strong extended free-choice iif VPN, € Prod(PNL) : PN, =
EFC. PNL is a weak extended free-choice #if 3PN, € Prod(PNL): PN, |=
EFC.

According to Equation [B] we check that each transition ¢ has the following
EFC condition:

— tis not in PN,, therefore @, is false; or
— tisin PN,, and therefore @; needs to be true, and moreover, for every two
places p; and ps in the pre-set ®t such that p; # po:
1. each transition ¢’ that is not in the post-set of both p; and ps is not in
PN,, and hence @(p;,t') is false (for i =1 or 2); and
2. each transition ¢’ that is in the post-set of both p; and ps is in PN, (and
hence @(p1,t’) and P(py,t’) are true), or disappears from both post-sets
(and therefore @(p1,t') and @(py,t’) are false).

In the previous condition, the first requirement demands configurations where
the transitions ¢’ that only belong to one of the post-sets (i.e., to p1°® \ p2*® or
to p2® \ p1®) disappear from this post-set. The second requirement demands the
common transitions in p;® N p2® to be maintained. Equation [f] captures these
conditions as a logical formula:

¢EFC(75) =DV (Qst Np1,pa€t|p1#ps [/\t'Epl'\Pz' _‘43(1)1-,t') A
At/ epa®\p1* _@(Pz’t') A (6)
Avepssrprs Pty © Pipyin)])

Therefore, we define ®prc = Ater Prro(r). Consequently, if there exists a
feature configuration that satisfies SAT' (W A Pgrc), then there is a derivable
Petri net that is EFC, and hence the PNPL is a weak EFC product line. A
PNPL is strong EFC if SAT (W A ~®pprc) does not hold.

Example In the PNPL of Fig. [3] there are two transitions that may have two
incoming places in some configurations: proc and pack. However, their incoming
places only have those transitions as their output, and therefore, the example is
a strong EFC. Actually, as we have seen in Section the example is a strong
FC product line, and in consequence, we can conclude that it is a strong EFC
product line as well.

Extensible Structural Analysis of Petri Net Product Lines 13

Property
Composer Analysis A =1 MARKEDGRAPH |
&] FEATUREIDE =] PETRINETS VAR | —() =] STATEMIACHINE |
=] Textuac | [E] Perriners =] FREECHOICE |
EDITOR EDITOR H
=5 | EXTENDEDFREECHOICE |

i/ €USeS»

Feature Feature Mapping 150% Petri net Analysis
model configuration model model result

Fig. 6. Architecture of our Petrinets var tool.

4 Tool Support

We have implemented an Eclipse plugin, called Petrinets var, which supports the
presented approach. Fig. [] shows its architecture.

Petrinets var provides two editors: one to specify the 150% Petri net, and
another to assign PCs to its elements in a so-called mapping model. We use the
Eclipse Modeling Framework (EMF) [31] as the underlying modelling technology,
and therefore, both the 150% Petri net and the mapping model are EMF-based
models that conform to their respective meta-models. The meta-model of the
mapping model defines classes to represent the abstract syntax of the boolean
formulae making the PCs, together with a cross-reference that points to the Petri
net meta-model elements that can be annotated.

We rely on FeatureIDE [19] to specify the feature model and the feature
configurations. FeatureIDE provides an extension point Composer that our tool
instantiates to automate the derivation of specific Petri nets from the 150% Petri
net given a feature configuration. Our tool defines an extension point as well,
called Property Analysis, that allows extending the tool with new analysis methods.
We currently provide four instances of this extension point to analyse whether
some/all Petri nets in a PNPL are state-machines, marked graphs, free-choice
or extended free-choice. Since the analysis techniques provided so far rely on
the Sat4J solver [5], our plugin provides facilities to transform the conjunction
of the analysis formula and the formula of the feature model into conjunctive
normal form (CNF), as Sat4J requires. This can simplify the implementation of
new analysis techniques by future users.

Fig. |z| shows a screenshot of our tool. The Eclipse project explorer (label
1) contains the FeatureIDE project with the definition of the PNPL used as
a running example. This project is configured with our composer and declares
the 150% Petri net (file 150mm.petrinets), the feature model (file model.zml
that is being edited in the window labelled 2), and the mapping model (file
annotation.vrb that is being edited in the window labelled 3). As the figure shows,
there are dedicated editors for each kind of file. The textual editor for the PCs
has code completion (e.g., offering the available feature names) and validation
(e.g., it checks that the used features are defined in the feature model). A popup

14 Gomez-Martinez et al.

S pnpls-examples - running-¢ nno b - E

File Edit Navigate Search Project Run Window Help

w2 @-ieiQ s il vt v D i : QuickAceess || 1 | ()
[Project Explorer 32 = =l : =5

@ running-example Model 53
B %
~ EEE| 5@~

4% running-example

b §= configs

& src

[&) 150mm.petrinets FlexibleAssemblyLine Lot
annotation.vrb — T

¥ Mandatory

& modelxml . ——=0—— | & Optonal
InParts OutProducts | | 2
. == /A Or
/B Apstract

[7] Concrete

 Analysis results X
Feature Diagram | Feature Order | Sol

@ Some products are not Marked Graph nets.
|£ annotation.vrb &2 The task has taken 52 milliseconds

pn "15@mm.petrinets"” Z
fm "model.xml"

PC for genA, cnvA, genA_cnvA, cnvA_proc = PartA;

PC for genB, cnvB, genB_cnvB, cnvB_proc = PartB;

PC for out2, cnv2, inc2, in_out2, out2_cnv2, cnv2_inc2, inc2_ctrl = Parallel;
PC for fix, ctrl fix, fix_in = QualityControl;

PC for prodl, prod_prodl = Prodl;

PC for prod2, prod_prod2 = Prod2;

PC for pack, assmbly, prodl_pack, prod2_pack, pack_assmbly = (Prodl and Prod2);

W

[ER RN NV

=
®

Fig. 7. Screenshot of our Petrinets var tool.

menu on the mapping model allows selecting the lifted analysis to perform. The
results of the analyses, including the analysis time, are shown in a dialog box
like the one shown in the figure.

Our current implementation uses its own EMF meta-model to represent 150%
Petri nets. This meta-model supports a simple notion of net like the one we
have used in the paper. However, to improve interoperability with other Petri
net tools, we are planning to use the standard Petri Net Markup Language
(PNML) [26] instead, for which there is an EMF implementation available.

5 Evaluation

Next, we report on two experiments to assess the efficiency gains of our lifted
analyses, compared to generating all derivable nets in a PNPL and analysing
each net separately. In the latter case, we perform an explicit analysis of each
single net (i.e., without converting the analysis into a constraint satisfaction
problem, which may take longer). In our evaluation, we measure the time for
analysing the strong satisfaction of the MG, SM, FC and EFC properties (i.e.,
whether all nets in the PNPL satisfy the property).

We have carried out two experiments based on the running example. In the
first experiment, illustrated in Fig. [8, we have analysed the efficiency of our
analysis techniques when considering PNPLs with 150% Petri nets of different
size but the same number of features. For this purpose, we have created ten

Extensible Structural Analysis of Petri Net Product Lines 15

1
,proc_1; . assembly 1
18€N,x 1 cnv, 4 I

T TPartA ~ \ e v 22
ces ~ <~ QualityControl __ _ -~ Prod2
Parte. _ - ot Prodl
jB8n; | cnvg 1 out, ,cnv, ,ing, , ==e—-

1
,proc_n;

I assembly n
:genA_n CNVp I \ mmmm e ——

| == 22 0

-

Fig. 8. Experiment 1: PNPL modelling a replicated flexible assembly line.

PNPLs having the same feature model as in Fig. [2| and whose 150% Petri net
contains n replicas of the assembly line in Fig. [3] with n from 1 to 10 (i.e.,
the first PNPL contains 1 replica, the second one contains two replicas, and so
on). All created PNPLs have 36 valid feature configurations. As in the running
example, the PNPLs are neither strong MG nor strong SM product lines, but
they are strong FC and EFC product lines.

Fig. [9] shows the analysis time in milliseconds with logarithmic scale of run-
ning 10 times the first execution. We consider just the first execution to discard
cache effects. As it can be observed, all lifted analysis techniques were up to
three orders of magnitude faster than the time to generate and analyse each net
in isolation. In addition, the analysis time did not depend on the size of the
150% Petri net.

The goal of our second experiment is assessing whether an increase in the
number of features of the PNPL has an impact in the analysis time. For this
purpose, we have created seven PNPLs whose 150% Petri net contains a single
assembly line, but they define an increasing number of features to model addi-
tional input parts (PartA, PartB, PartC, and so on) and output products (Prodl,
Prod2, Prod3, and so on). Fig. illustrates the construction of the different
feature models. The simplest PNPL contains one input part and one output
product, and the most complex one has five input parts and five output prod-
ucts. These PNPLs are constructed by adding replicas of the PartA and Prodl
regions in the PNPL of Fig. 3| The PNPL with one input part and one output
product is both a strong MG and a strong SM, but the remaining PNPLs are
not. All PNPLs in the experiment are strong FC and EFC product lines.

The graphics in Fig. |11 show the analysis time in milliseconds with logarith-
mic scale (vertical axis to the left of the graphics), and the number of configura-
tions of each PNPL (vertical axis to the right). Like in the first experiment, we
consider just the first execution to discard cache effects. It can be observed that

16 Gomez-Martinez et al.

Marked Graph State Machine
1000000 50 1000000 50
45 a5
100000 © 100000 "
= v T P
g 35 8 s 35 8
% 10000 2 2 10000 2
8 03 : 0
£ £ B £
g 25§ g 1w 25§
£ 0 £ 0}
2 3 N 3
2 100 .- 2 100 .
2 2 2 2
< 0" < 0"
10 10
5 5
1 0 1 0
1 2 3 a4 5 6 7 8 9 10 1 2 3 a4 5 6 7 8 9 10
Number of assembly lines Number of assembly lines
mmmm Number of configurations PN PL Al nets mmmm Number of configurations w— PNPL w Al nets
Free Choice Extended Free Choice
1000000 50 1000000 50
45 45
100000 40 100000 20
= a T P
| 35 S k] 35 S
2 10000 g 2 10000 -
g 30 3 2 30 8
£ £ H -
e » 8 g 1 25§
= 20 ¢ = 20 ¢
€ 10 2 g 100 2
= 15 £ = 15 E
5 3 5
5 10 = 2 10 =
10 10
5 5
1 0 1 0
1 2 3 a4 5 6 7 8 9 10 1 2 3 a4 5 6 7 8 9 10
Number of assembly lines Number of assembly lines
s Number of configurations w——PNPL ====A|| nets . Number of configurations w——PNPL ~ ====Al| nets

Fig.9. Analysis time (ms in logarithmic scale) for PNPLs with 150% Petri nets of
different size.

the number of configurations is exponential on the number of features. While
the analysis time of all nets in the PNPL one by one is exponential as well, the
analysis time of the lifted property is roughly constant. Therefore, the larger
the number of features in a PNPL, the bigger the efficiency gains of our lifted
analysis compared to an enumerative approach.

Threats to walidity While our experiments show gains of at least two orders
of magnitude with respect to an enumeration-based approach, the experiments
were based on a synthetic net and variations of it generated by replicating either
a part of the net or a part of the feature model. Therefore, to further validate
these results, we plan to consider models arising in realistic scenarios.

In addition, these results are for checking strong satisfaction of the properties.
We plan to extend the experiments to consider weak satisfaction, for which we
would require PNPLs with different percentages of product Petri nets satisfying
the properties. We expect that our method will provide larger efficiency gains
when the percentage of product Petri nets satisfying the property is low, as more
nets within the PNPL need to be inspected to find one satisfying the property.

Extensible Structural Analysis of Petri Net Product Lines 17

| FlexibleAssemblyLine |

OutProducts
1
O | alternative or

PartA || PartB | | PartN | [QualityControl | Parallel || Prodd | | Prod2 | [ProdN | i (exactly one) (at least one)!

1
: mandatory optional
1

Fig. 10. Experiment 2: PNPL modelling an assembly line with N input parts and
output products.

6 Related Work

The main analysis techniques for Petri nets can be classified into three groups [9]:
i) enumeration, ii) transformation (mainly reduction), and iii) structural. Enu-
meration methods are based on the construction of a reachability /coverability
graph, but they suffer the state explosion problem. Transformation methods ob-
tain a slice of a Petri net that is easier to analyse but preserves the properties
under study [6]. Structural analysis techniques are based on the net structure
and its initial marking, and can be divided into two subgroups: linear program-
ming techniques based on the state equation, and graph-based techniques based
on “ad hoc” reasoning frequently derived from the firing rule. A survey on Petri
nets models and their analysis techniques can be found at [30].

There are several mechanisms to model variability for SPLs. Most of them
can be classified into annotation-based and composition-based techniques [3]. In
annotation-based approaches, parts of a model are annotated with information
about their mapping to products of the product line. They are widely used since
they are easy to implement but they work under the closed world assumption,
i.e., the set of features is fixed. In composition-based modelling, the product
line is decomposed into separate modules representing features that can be com-
posed to derive products. They support positive variability, that is, composition
units are added on demand. Surveys on SPL modelling techniques can be found
in [HIR33).

Just like us, some works have added variability to Petri nets using SPL tech-
niques. Feature Petri nets (FN) [22] extend Petri nets to allow modelling the
behaviour of an entire SPL. A FN transition is activated if its input places are
marked and its application condition (a logical constraint over features) is true
under the current configuration state. Dynamic feature Petri nets (DFPN) [23]
extend FN to control feature bindings at runtime, and allow the evaluation of
some dynamic properties using model checking. These works lift analysis tech-
niques based on the reachability graph to the product line level, by adding PCs
to this graph. They follow an annotative approach to model variability. Similarly,
some works have used variability in Petri nets to express variants of higher-level
languages — like activity diagrams — and use a variable reachability graph for
analysis [I4]. This work also uses an annotative approach for SPLs. With re-
spect to these works, our mapping model is more general: [I4] only supports
variability in edges and [23] only supports variability in arcs and transitions,

18 Gomez-Martinez et al.

Marked Graph State Machine
1000 70.000 1000 70.000
° o
8 8
8 8
] 100 60.000 S 100 60.000
< <
T 10 P T 10 P
g 50.000 § § 50.000 §
g 1 g ® 1 g
] 40.000 @ 2 40.000 @
£ £ £ £
s 01 § < 01 S
E 30.000 S £ 30.000 &
2 0,01 K] @ 0,01 ;]
2 £ 2 H
s 20.000 3 s 20,000 3
< 0,001 z z 0,001 z
0,0001 10.000 0,0001 I 10.000
0,00001 — B 0 0,00001 - 0
1 2 3 4 5 6 7 1 2 3 a4 5 6 7
Number of InPart and OutProduct places Number of InPart and OutProduct places
. Number of configurations e PNPL Al nets . Number of configurations e PNPL Al nets
Free Choice Extended Free Choice
1000 70.000 1000 70.000
° o
8 8
8 8
] 100 60.000 S 100 60.000
< <

50.000 50.000

40.000 40.000

30.000 30.000

0,01

20.000 20.000
0,001 0,001 —

0,0001 I 10.000 0,0001 I 10.000
0,00001 — = 0 0,00001 — | 0

Analysis time (ms log scale)
3 o
2
Number of configurations
Analysis time (ms log scale)
3 ©
Number of configurations

1 2 3 4 5 6 7 12 3 4 5 6 7
Number of InPart and OutProduct places Number of InPart and OutProduct places
W Number of configurations ~ ====PNPL ==All nets mmmm Number of configurations ~ ===PNPL ==All nets

Fig.11. Analysis time (ms in logarithmic scale) for PNPLs with feature models of
different size.

while our approach permits PCs in arcs, places and transitions. With respect to
analysis techniques, the mentioned works focus on the reachability graph, while
we lift structural analysis techniques.

In addition to SPL methods, other techniques to handle variability in Petri
nets have been proposed. Conditional Petri nets [34] associate to each transition
a condition defined with the family of £ languages, and transitions are con-
ditioned by the transition sequence previously applied. Likewise, logical Petri
nets [17] limit transition firing by means of constraints on first-order logic. There
are also reconfigurable nets [I8], which can change the net topology at runtime
by means of rewriting rules. Instead, PNPLs are static: the user needs to provide
a configuration to derive a Petri net.

Regarding analysis of model-based product lines, Czarnecki and Pietroszek [10]
propose an approach to check whether all possible derivable models satisfy the
OCL constraints of their meta-model. We may have encoded the different struc-
tural properties in OCL and used that technique. However, our solution permits
generating specific constraints for the analysed PNPL (instead of relying on

Extensible Structural Analysis of Petri Net Product Lines 19

one generic OCL constraint), which therefore can be solved using simpler and
potentially more efficient standard SAT-solving techniques. Instead, Czarneck’s
approach requires extending an existing OCL-based checker to consider PCs,
while in practice we just use the Sat4J SAT solver.

Concerning SPL analysis of temporal properties, Legay et al. [16] represent
the behaviour of variability-intensive systems by means of an extension of tran-
sition systems, called Feature Transition System. These authors also propose
model checking algorithms to verify all products of a SPL [8]. Unlike this ap-
proach, we only focus on static properties, but we plan to explore behavioural
properties in future works.

Altogether, to the best of our knowledge, there are no previous works on lift-
ing the analysis of structural properties of PNPLs. This is relevant to enable an
efficient analysis of structural properties for all variants within a PNPL. Struc-
tural analysis helps in discovering possible design errors in some product Petri
net, e.g., related to the existence of conflicts, or interference of synchronization
with conflicts. Our work is a first step in this direction, which we have realized
in practice through extensible tooling.

7 Conclusions and Future Work

In this paper, we have proposed the notion of Petri net product line, and showed
how to analyse structural properties (the marked graph, state-machine, free
choice and extended free choice properties) at the product line level. We have
validated the approach in practice by presenting an extensible prototype on top
of FeatureIDE, and an experiment that shows the benefits of our approach with
respect to an enumerative one.

In the future, we plan to support more types of static analysis techniques,
exploit compositionality of Petri nets in these analysis techniques, and perform
more thorough experiments. We also plan to consider further types of proper-
ties (not only strong and weak), in the line of [I3]. Our idea is to develop a
domain-specific language to express such analyses, which then can be compiled
into standard SAT solving procedures. At the tool level, we will use the PNML
meta-model to ease the connection of our approach with Petri net tools like
CPN Tools [35]. We are also planning to explore the lifting of dynamic analysis
techniques, e.g., based on the incidence matrix and on the reachability graph
(similar to [23]). For the former, our idea is to include the PCs on the elements
of the matrix, and use constraint solving to find place/transition invariants for
some/all Petri net products. For the latter, a first idea — if we restrict to Petri
nets with PCs only in transitions — is to calculate the reachability graph of the
150% Petri net, and then annotate the reachability graph with PCs, in the style
of [23]. Finally, we would like to combine product lines with other types of Petri
nets (e.g., with inhibitor or read arcs, or with timed transitions), and consider
variability of the Petri net language itself.

Acknowledgments: Work funded by the Spanish Ministry of Science (RTT2018-
095255-B-100) and the R&D programme of Madrid (P2018/TCS-4314).

20 Gémez-Martinez et al.
Appendix

This appendix lifts the analysis of the state-machine property. A state-machine
(SM) is a subclass of Petri net where each transition ¢ has exactly one input
and one output place, while each place may have multiple input and output
transitions. SMs allow representing decisions, but not the synchronization of
concurrent activities.

Definition 13 (State-machine, from [21]). A Petri net PN = (P, T, A) is
a state-machine, written PN |= SM, if vt € T : |*t| = [t*| = 1.

Next, we lift the definition of the SM property to the product line level. A
PNPL is a strong (weak) SM if all (some) derivable nets are SMs.

Definition 14 (Strong and weak SM product line). A Petri net product
line PNL is a strong state-machine #if VPN, € Prod(PNL) : PN, = SM.
PNL is a weak state-machine iif 3PN, € Prod(PNL): PN, = SM.

Similar to the case of MGs, to ensure that all derivable nets are SMs, we
check that the size of the lifted pre-set °t = {(po, P(po,t)), > (Pns P(p,,.1))} and
the lifted post-set t° = {(po, P(t,py))s -+ (P> P(¢,p,))} Of a transition ¢ is one in
every configuration. The size of the lifted pre-set °t of a transition ¢ is one if the
following formula is true. The disjunction starts with false to consider the case
when °t is empty. The formula @;. to check that the size of the lifted post-set of
a transition ¢ is one is defined similarly.

Doy £ false V
(qs(po,t) A _‘@(pl,t) NN _‘é(pn,t))
(P (po,t) NPy t) N ooe A =D 1))
(P (po,t) NPty A os AP 1))

V
Vo ™

Hence, a PNPL includes some Petri net that is a SM if there is a feature
configuration p such that for every transition ¢ in the PNPL:

— tis not in PN,, therefore @, is false; or
— tisin PN,, and therefore ®-;, and ®;o need to be true.

Equation [§] shows the formula that captures the two previous conditions.
@SM - /\tET[_‘@t V (qf)t A\ @Ot A @to)] (8)

If there is a feature configuration such that SAT (¥ A®gyr) holds, then there
is a derivable Petri net that is a SM, and the PNPL is a weak SM. On the
contrary, the feature configurations that produce nets which are not SMs are
those making the formula —®g); true. Hence, the PNPL is a strong SM if
SAT(W A —Dgpr) does not hold.

Extensible Structural Analysis of Petri Net Product Lines 21

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. van der Aalst, W.: Structural characterizations of sound workflow nets. Computing

Science Reports 9263, Technische Universiteit Eindhoven (1996)

. van der Aalst, W., Kindler, E., Desel, J.: Beyond asymmetric choice: A note on

some extensions. Petri net newsletter 55, 3-13 (1998)

Apel, S., Batory, D., Késtner, C., Saake, G.: Feature-Oriented Software Product
Lines - Concepts and Implementation. Springer (2013)

Benduhn, F., Thiim, T., Lochau, M., Leich, T., Saake, G.: A survey on modeling
techniques for formal behavioral verification of software product lines. In: VaMoS.
pp. 80:80-80:87. ACM (2015). https://doi.org/10.1145/2701319.2701332, |http://
doi.acm.org/10.1145/2701319.2701332

Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2-3), 596 (2010)
Berthelot, G.: Transformations and decompositions of nets. In: Advances in Petri
nets. LNCS, vol. 254, pp. 359-376. Springer (1987)

Best, E.: Structure theory of Petri nets: The free choice hiatus. In: Petri Nets:
Central Models and Their Properties. pp. 168-205. Springer Berlin Heidelberg
(1987)

Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
transition systems: Foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Trans. Software Eng. 39(8), 1069-1089
(2013)

Colom, J., Teruel, E., Silva, M.: Performance Models for Discrete Event Systems
with Synchronisations: Formalisms and Analysis Techniques. Ed. KRONOS (1998)
Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness OCL constraints. In: GPCE. pp. 211-220. ACM (2006)

Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press (1995)
Gémez-Martinez, E., de Lara, J., Guerra, E.: Towards extensible structural analysis
of Petri net product lines. In: PNSE. CEUR, vol. 2424, pp. 37-46 (2019)

Guerra, E., de Lara, J., Chechik, M., Salay, R.: Property satisfiability analysis for
product lines of modelling languages. IEEE Trans. Software Eng. In press (2020).
https://doi.org/http://dx.doi.org/10.1109/TSE.2020.2989506

Heuer, A., Stricker, V., Budnik, C.J., Konrad, S., Lauenroth, K., Pohl, K.: Defining
variability in activity diagrams and Petri nets. Sci. Comput. Program. 78(12),
2414-2432 (2013)

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-021, Software En-
gineering Institute, Carnegie Mellon University (1990)

Legay, A., Perrouin, G., Devroey, X., Cordy, M., Schobbens, P., Heymans, P.:
On featured transition systems. In: SOFSEM. LNCS; vol. 10139, pp. 453-463.
Springer (2017). https://doi.org/10.1007/978-3-319-51963-0_35, https://doi.org/
10.1007/978-3-319-51963-0_35

Liu, W., Wang, P., Du, Y., Zhou, M., Yan, C.: Extended logical Petri nets-based
modeling and analysis of business processes. IEEE Access 5, 16829-16839 (2017)
Llorens, M., Oliver, J.: Structural and dynamic changes in concurrent systems:
Reconfigurable Petri nets. IEEE Trans. Computers 53(9), 1147-1158 (2004).
https://doi.org/10.1109/TC.2004.66, [https: //doi.org/10.1109/TC.2004.66
Meinicke, J., Thiim, T., Schroter, R., Benduhn, F., Leich, T., Saake, G.: Mastering
software variability with FeatureIDE. Springer (2017)

https://doi.org/10.1145/2701319.2701332
http://doi.acm.org/10.1145/2701319.2701332
http://doi.acm.org/10.1145/2701319.2701332
https://doi.org/http://dx.doi.org/10.1109/TSE.2020.2989506
https://doi.org/10.1007/978-3-319-51963-0_35
https://doi.org/10.1007/978-3-319-51963-0_35
https://doi.org/10.1007/978-3-319-51963-0_35
https://doi.org/10.1109/TC.2004.66
https://doi.org/10.1109/TC.2004.66

22

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

Gomez-Martinez et al.

Meyers, B., Mierlo, S.V., Maes, D., Vangheluwe, H.: Efficient software controller
variant development and validation (ECoVaDeVa) overview of a flemish ICON
project. In: STAF Co-Located Events. CEUR, vol. 2405, pp. 49-54 (2019)
Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4),
541-580 (1989)

Muschevici, R., Clarke, D., Proenga, J.: Feature Petri nets. In: SPLC Workshops.
pp- 99-106. Lancaster University (2010)

Muschevici, R., Proenca, J., Clarke, D.: Feature nets: Behavioural mod-
elling of software product lines. Software & Systems Modeling 15(4), 1181-
1206 (2016). |https://doi.org/10.1007/s10270-015-0475-z, |https: //doi.org/10.1007/
s10270-015-0475-z

Nabi, H., Aized, T.: Modeling and analysis of carousel-based mixed-model flexible
manufacturing system using colored Petri net. Adv. in Mech. Eng. 11(12), 1-14
(2019)

Northrop, L., Clements, P.: Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc. (2002)

Petri Net Markup Language: www.pnml.org

Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering. Foun-
dations, Principles and Techniques. Springer (2005)

Rosa, M.L., van der Aalst, W., Dumas, M., Milani, F.: Business process variability
modeling: A survey. ACM Comput. Surv. 50(1), 2:1-2:45 (2017)

Seidl, C., Schaefer, I., Afmann, U.: DeltaFEcore — a model-based delta language
generation framework. In: Modellierung. LNI, vol. 225, pp. 81-96. GI (2014)
Silva, M.: Half a century after Carl Adam Petri’s Ph.D. thesis: A per-
spective on the field. Annual Reviews in Control 37(2), 191 - 219 (2013).
https://doi.org/https://doi.org/10.1016/j.arcontrol.2013.09.001

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edn. (2009)

Teruel, E., Silva, M.: Structure theory of equal conflict systems. Theor. Comput.
Sci. 153(1&2), 271-300 (1996)

Thiim, T., Apel, S., Késtner, C., Schaefer, 1., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comp. Surv. 47(1), 6:1-6:45
(2014). |https://doi.org/10.1145/2580950, http://doi.acm.org/10.1145/2580950
Tiplea, F., Jucan, T., Masalagiu, C.: Conditional Petri net languages. Elektronische
Informationsverarbeitung und Kybernetik 27(1), 55-66 (1991)

Westergaard, M., Kristensen, L.: The Access/CPN framework: A tool for interact-
ing with the CPN tools simulator. In: Petri Nets. LNCS, vol. 5606, pp. 313-322.
Springer (2009)

https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1007/s10270-015-0475-z
https://doi.org/10.1007/s10270-015-0475-z
www.pnml.org
https://doi.org/https://doi.org/10.1016/j.arcontrol.2013.09.001
https://doi.org/10.1145/2580950
http://doi.acm.org/10.1145/2580950

	plantilla_actualizada_ps_CONGRESO1.pdf
	extensible_gomez_petri_nets_2019
	Extensible Structural Analysis of Petri Net Product Lines

