
Formal Analysis of Composable DeFi Protocols

Palina Tolmach1,2, Yi Li2, Shang-Wei Lin2, and Yang Liu2

1 Institute of High Performance Computing, Agency for Science, Technology and
Research, Singapore

2 Nanyang Technological University, Singapore
{palina001,yi li,shang-wei.lin,yangliu}@ntu.edu.sg

Abstract. Decentralized finance (DeFi) has become one of the most
successful applications of blockchain and smart contracts. The DeFi
ecosystem enables a wide range of crypto-financial activities, while the
underlying smart contracts often contain bugs, with many vulnerabilities
arising from the unforeseen consequences of composing DeFi protocols
together. In this paper, we propose a formal process-algebraic technique
that models DeFi protocols in a compositional manner to allow for efficient
property verification. We also conduct a case study to demonstrate the
proposed approach in analyzing the composition of two interacting DeFi
protocols, namely, Curve and Compound. Finally, we discuss how the
proposed modeling and verification approach can be used to analyze
financial and security properties of interest.

1 Introduction

With more than $12 billions currently locked inside, decentralized finance (DeFi)
becomes one of the most prominent applications of the blockchain technology [10].
DeFi protocols implement various financial applications, including analogs of
traditional-finance use cases, such as lending [21], exchange [12,4], investment [2],
etc. These protocols give users access to digital assets, e.g., tokens, and expose
them to the cryptocurrency market. As an example, stablecoins are cryptocurren-
cies providing minimum volatility by pegging their prices to fiat money, real-world
commodity, or a more “stable” cryptocurrency, such as ETH [29].

At the same time, billions of dollars stored in DeFi stimulate the invention of
new security attacks. Unlike other smart contracts applications, the security of
DeFi protocols can be compromised by not only software vulnerabilities but also
unforeseen movements in the cryptocurrency market or arbitrage and speculation
opportunities. For example, an attacker drained $2M of funds from the (twice
audited) Akropolis DeFi platform [14] through a well-studied reentrancy vulner-
ability [15,27,35]. As another example, in March 2020, the network congestion
caused by market instability led to major disruptions and losses in some of DeFi
protocols during the events of so-called “Black Thursday” [31].

A distinctive feature of DeFi applications is their similarity to the pieces of
so-called Money Legos [40]. In other words, the design of DeFi protocols often
facilitates interoperability between them including the support of tokens issued

ar
X

iv
:2

10
3.

00
54

0v
2

 [
cs

.C
R

]
 1

9
A

pr
 2

02
1

2 Tolmach et al.

by different DeFi platforms. While the composability of DeFi applications enables
the construction of a decentralized financial ecosystem, integrations between
protocols contribute to the creation of new attack vectors. For example, a recent
attack on the Harvest yield aggregation protocol [1] was made possible due
to its dependence on the prices reported by the Curve decentralized exchange
protocol [12]. By performing a $17M trade in Curve, the attacker could indirectly
manipulate the price of tokens in Harvest, obtaining $24M of protocol funds [13].
An established way to rigorously verify correctness of safety-critical systems,
including smart contracts, is to employ formal analysis [43]. In the field of DeFi,
security audits often involve formal analysis, but usually focusing only on the
verification of individual protocols. Yet, the “money-lego” structure of the DeFi
ecosystem demands compositional analysis, which allows reasoning about the
possible interplay between DeFi protocols and their impact on each other.

To model and analyze the behaviors of composable DeFi protocols, we formu-
late general formal models of components of DeFi protocols, particularly, tokens
and pools. Based on their actual implementations, we develop process-algebraic
models of two widely used DeFi protocols: a decentralized exchange—Curve
Finance [12], and a lending protocol—Compound [21]. In addition, we formally
model the behavior of the USDC stablecoin. Using the developed model, we
formally verify some of the (already stated) relevant properties of the protocols
under consideration. Finally, we formulate safety and correctness properties
that are expected to hold throughout the interactions between the considered
protocols.

2 Background

In this section, we provide necessary background for the rest of the paper.

2.1 DeFi Protocols

We consider two common types of DeFi protocols: decentralized exchanges (DEX)
and protocols for loanable funds (PLF), a.k.a. lending protocols.

Decentralized Exchanges DEX is one of the first and most popular DeFi applica-
tions. While a centralized exchange has to match a seller with a specific buyer,
a typical DEX uses smart contracts to execute trades asynchronously [11,5]. A
pool, implemented using smart contracts, stores the reserves of two or more types
of tokens and automatically determines the exchange rate between these tokens.

A common way to determine the exchange rate between assets within a DEX
pool is by maintaining a constant-product and/or constant-sum invariant between
the values of the tokens contained in the pool. Essentially, the invariant implies
that if a user trades t1 for t2, the price of t1 in the pool goes down, while the
price of t2 increases. This model, therefore, provides an arbitrage opportunity for
the users of DEXes, encouraging them to deposit or sell tokens of type t2 at a
higher price, which thereby restores the balance between tokens.

Formal Analysis of Composable DeFi Protocols 3

Lending Protocols PLFs [17,30] rely on smart contracts to mediate token lending
and borrowing. Different from DEXes, lending pools collect assets of (usually) one
token type from liquidity providers. In return, the depositors are given pool tokens
with the value constantly increasing from the interest fees paid by borrowers. The
interest rate for borrowers depends on a chosen interest rate model and is usually
decided by the utilization rate—the ratio between the supply and demand of the
pool. To protect a protocol from the cryptocurrency volatility, the borrower is
also supposed to supply a collateral (e.g., in ETH or a stablecoin) that is bigger
than the amount of borrowed funds by at least a collateralization ratio.

2.2 Formal Modeling and Verification

Communicating Sequential Process (CSP) [18] is a formal language for describing
patterns of interaction for concurrent systems [34]. A CSP model contains a set
of synchronized or interleaving processes, each of which consists of a sequence of
ordered events. For instance, a process P , with an event a followed by another
event b, can be written as “P = a → b”. Multiple processes can be composed
either sequentially or in parallel. Sequential composition of two processes P and
Q (denoted by P ; Q) acts as P first, and acts as Q upon the termination of P .
The two processes can also be composed in parallel and synchronized on an event
X (P | [X] | Q), or asynchronously (P ||| Q). Finally, a process Q can interrupt
another process P when event e happens (P 5 e → Q). The detailed syntax are
summarized as follows.

P := STOP | SKIP | e → P | P 2 P
| P u P | P ||| P | P | [X] | P | P \X
| P ; P | if b then P else P | P O P

CSP# [38,28] is an extension to CSP with embedding of data operations. CSP#
combines high-level compositional operators from process algebra with program-
like codes, which makes the language much more expressive. The models and
properties specified in CSP# can be checked using Process Analysis Toolkit
(PAT) [36,37,28], which is a framework for specification, simulation, and verifica-
tion of concurrent and real-time systems. PAT supports event-based compositional
models and efficient LTL model checking with various fairness assumptions. Model
checking [9] is widely used to verify state-transition systems of one or several
interacting smart contracts against a temporal logic specification [39]. In this
work, we use the model checker of PAT to verify the properties of individual and
interacting DeFi protocols, as described in Sect. 4.

One unique feature of PAT is that it allows users to define static functions
and data types as C# libraries. These user-defined C# libraries are built as
DLL files and are loaded during execution, which compensates for the common
deficiencies of model checkers on complex data operations and data types. We
utilize this capability and implement complex mathematical computations under-
lying the token price calculation in C#. Finally, the translation from high-level
smart contract programming languages, such as Vyper and Solidity, to C# is
straightforward.

4 Tolmach et al.

3 Methodology

To reason about a system of interconnected protocols, we use a process-algebraic
approach to model various components of the DeFi ecosystem. First, we formally
define the main components of DeFi applications along with the environment
models. Then, we model two widely used Ethereum DeFi protocols and their
interactions using CSP#, by translating the major smart contract functions into
CSP, in a similar fashion to some of the previous work [33,22].

3.1 Protocol Formal Modeling

In this section, we propose formal definitions for the two key constituents of
lending and exchange DeFi protocols: token and pool.1 The behaviors of the
aforementioned objects can be formalized as state transition systems, and we focus
on their states here. We leave the discussions on their transitions in Appendix A.

We model the states of users, smart contracts and the environment variables
(e.g., block.number) as global variables in the CSP# model. Functions, on the
other hand, are translated into processes. Inspired by [6], we assume a set of
blockchain users (U) and a set of tokens (T). Tokens are programmable assets
managed by smart contracts [8]. The majority of tokens used in DeFi protocols,
except the native platform cryptocurrency ETH, are implemented in the form
of a contract conforming to the ERC20 standard [41]. ERC20 regulates the
development of fungible tokens by specifying the interface of the corresponding
smart contract, i.e., public functions and events that it should emit during
executions. In accordance with the standard, we define tokens in Definition 1.

Definition 1 (Token). A token t ∈ T is a tuple (U,TS ,B ,A,F), where U is
a set of users, TS ∈ Z>0 is the total supply, B : U 7→ Z>0 is the mapping from
users to their token balances, A : U × U 7→ Z>0 specifies the allowances, i.e.,
amounts of token that a user is allowed to spend from another user’s balance,
and F is the set of state-changing functions modifying the state of the token.

Given a token t ∈ T, we use t .TS to denote its total supply and t .A to
denote its allowances, and so on. The balance invariant of t satisfies the formula:
t .TS =

∑
u∈U t .B(u). F includes functions changing the values of A, B , and TS ,

e.g., approve(), transfer(), transferFrom(), mint(), burn(), etc. Figure 1
demonstrates a partial implementation of the state of the USDC token in a model
with N participants. Formally, the state of a user account u is the set of balances
of tokens in the user’s possession, i.e., {t .B(u) | u ∈ U and t ∈ T}.

Definition 2 specifies pools, which are smart contracts used to aggregate a
number of tokens.

Definition 2 (Pool). A pool P is a tuple (TP ,TR
P ,FP), where TP ⊂ T is a set

of pool tokens of P,2 TR
P ⊂ T is a set of liquidity tokens supported by P, and FP

is a set of functions {(TP × TR
P) 7→ (TP × TR

P)}i changing the state of P.

1 Depending on the application, pools are also referred to as markets, vaults, or pairs.
2 Most of the pools in DeFi support a single pool token.

Formal Analysis of Composable DeFi Protocols 5

var USDC balances[N]:{0..} = [b1,b2,...,bN];
var USDC allowed[N][N]:{0..};
var USDC totalSupply = ts;
. . .

Fig. 1: USDC token state implementation in CSP#.

Curve addLiquidity(uamounts, min mint amount, sender) = atomic {
. . .
USDC transferFrom(user, curveDeposit, uamounts, ...);

. . .
cUSDC mint(uamounts, curveDeposit);

. . .
cUSDC approve(curveSwap, cAmounts[USDC], curveDeposit);

Curve swap addLiquidity(cAmounts, min mint amount, sender);

cCrv transfer(user, cCrv mintAmount, curveDeposit);}

Fig. 2: CSP# process for the add liquidity() function of a Curve pool.

Depending on the protocol application, liquidity tokens TR
P ⊂ T are used to

facilitate decentralized token exchange, lending, investments, or other DeFi use
cases. Liquidity pools in DEX usually hold liquidity in two or more types of
tokens [4,12,3], while lending protocol [21] or yield aggregator [2] pools typically
accept a single type of token as input. In both cases, the users depositing tokens
(a.k.a. liquidity providers) receive a certain amount of pool tokens (TP), which
represent user’s share and can be used to redeem the deposit with the earned
interests from the pool. FP is a set of functions that can change the state of
a pool. Figure 2 illustrates the process-algebraic encoding of a state-changing
function that implements adding liquidity to a pool from the Curve protocol.
To mimic the atomic transaction execution model in Ethereum, we mark state-
changing processes as atomic, so that their executions cannot be interrupted by
an interleaving.

3.2 Protocol Composition

Now, we illustrate how interactions between users and DeFi protocols (user-
protocol) as well as interactions among different protocols (protocol-protocol) can
be modeled formally. In both cases, the initiator of a transaction sends a certain
amount of tokens to a receiving DeFi protocol and/or receives some tokens from
it in return.

In the case of user-protocol interaction, we model the behavior of a user by a
sequential composition (denoted by ‘;’) of one or more processes. These processes
correspond to the public state-changing functions of DeFi protocols and tokens
invoked by the user. For example, the behavior of a depositor in Curve (i.e.,
Curve Depositor) is demonstrated in Fig. 3.

6 Tolmach et al.

Curve Depositor() = USDC approve(curveDeposit, suppliedTokens, user);

Curve addLiquidity(suppliedTokens, minMintTokens, user);

. . .
cCrv approve(curveDeposit, add, user);

Curve remove liquidity one coin(add, 0, user, true);

Fig. 3: The implementation of Curve depositor behavior in CSP#.

The subject system is then modeled by an interleaving (denoted by ‘|||’) of
such user processes. For instance, Fig. 4 shows the depositor, exchanger, and
borrower processes composed asynchronously, which simulates possible state
changes in interacting protocols caused by concurrently acting users. The pro-
cesses simulating state-changing functions are atomic, i.e., executing without
interruption so that the interleaving between user processes can only happen
after a state-changing process is finished. We simulate the block mining using a
process that increases the value of the block number variable.

System() = Curve Depositor() ||| Curve Exchanger() |||
Compound Depositor() ||| Compound Borrower() ||| IncreaseBlockNum();

Fig. 4: The analyzed user composition.

The protocol-protocol interactions in DeFi smart contracts are external calls
to a function of another protocol. Following a similar approach, we model smart
contract functions with external calls to other DeFi applications and token
contracts as an atomic sequential composition of corresponding processes. The
sequential composition of two processes ensures that the former process has to
finish before the latter can start, so that the model operates similarly as the
execution of internal transactions in blockchain. The CSP# representation of a
function that implements adding liquidity to a pool of the Curve DeFi protocol is
shown in Fig. 2. The communication among users, tokens, and different protocols
is simulated via shared global variables, such as token balances shown in Fig. 1.

4 Evaluation

In this section, we evaluate our modeling approach by checking a set of relevant
properties on Compound pool of the Curve DEX3 using PAT and report on
the results of property verification. We performed the evaluation on a virtual
machine with Windows 10, 8GB RAM and 1 CPU core, using PAT version 3.5.0.
The virtual machine is running on MacOS Catalina v.10.15.7, 32GB RAM and 2
GHz quad-core Intel Core i5 processor.

The Curve Compound pool allows trading between a pair of stablecoins:
USDC and DAI. Under the hood, the Curve pool transfers its USDC and DAI to
a lending platform Compound, in exchange for the corresponding Compound’s
pool tokens—cUSDC and cDAI. cUSDC and cDAI are, therefore, used for all

3 https://www.curve.fi/compound

Formal Analysis of Composable DeFi Protocols 7

Liquidity
Provider

Liquidity Tokens

Pool Token

Curve Compound Pool
Compound cUSDC Pool

Liquidity Pool
2

3

4

5

1

6 Compound cDAI Pool

Liquidity Pool

Fig. 5: A scheme of token transfers between Curve Compound pool participants.

the operations within the Curve Compound pool. Figure 5 outlines the process
of adding liquidity to the Curve Compound pool: 1 a liquidity provider sends
USDC and/or DAI to the pool; 2 Curve supplies the received USDC to the
USDC Compound pool and 3 receives an appropriate amount of cUSDC in
return; 4 - 5 the same process is repeated for DAI/cDAI; 6 the user receives a
certain amount of cCrv—a pool token of the Curve Compound pool.

State-changing actions of interest include providing and removing liquidity in
both Curve and Compound, exchanging tokens in Curve, and taking/repaying a
loan in Compound. In this paper, we mostly concentrate on the operations that
involve USDC: in our model, a liquidity provider on Curve adds and withdraws
liquidity in USDC, while Compound depositors and borrowers also perform the
corresponding actions with the USDC Compound pool. To model slippage and
front-running that can occur in the pool of a DEX, the token exchanges between
cUSDC and cDAI in Curve can happen in both directions. We assume that
the modeled trading activity reflects the possible changes in the USDC/DAI
exchange rate, which we do not explicitly consider otherwise. In addition, since
we focus on the operations involving the USDC stablecoin, we simplify the
implementation of DAI to basic ERC20 functionality and do not consider the
underlying stabilizing mechanism implemented by MakerDAO. We modeled pools
and tokens by manually translating their source code written in Solidity or Vyper
to CSP# and C# languages supported by PAT. While the translation between
high-level languages (e.g., Solidity/C#) is straightforward, data operations and
programming constructs supported by CSP# also facilitate translation to a
modeling language. The source code of the model can be found in a repository:
https://github.com/polinatolmach/DeFi-csp-models/.

Based on the defined model, we formulated and verified properties for tokens,
individual DEX and lending DeFi applications as well as their composition. LTL
formulae and verification results for the properties are demonstrated in Table 1.
The first property in Table 1 is the Balance Invariant [39]—an important property
related to tokens, which we verify for all the tokens involved in the modeled
composition: stablecoins (USDC and DAI) and pool tokens (cCrv, cUSDC, etc.).
Property (2) in Table 1 is a token-related requirement for a composition of
protocols stating that the positively-valued tokens should never produce zero

https://github.com/polinatolmach/DeFi-csp-models/

8 Tolmach et al.

Table 1: A summary of verified properties.
Properties LTL Formulae Protocols Results Stats

(1) Balance Invariants
2((sum(cCrv balances) == cCrv totalSupply) &&

sum(cDAI accountTokens) == cDAI totalSupply)...)
All Tokens Valid

Time (s): 275.5 s
#State: 127337

#Transition: 133763

(2)
Proportional Token
Exchange

2((suppliedTokens > 0) →
3((mintedCTokens > 0) && (mintedCCrvTokens > 0)))

Curve
Compound

Valid
Time (s): 277.7 s

#State: 127367
#Transition: 133821

(3)
Non-decreasing
Exchange Rate

2(prevExchangeRate ≤ newExchangeRate) Compound Valid
Time (s): 277.9s
#State: 127337

#Transition: 133763

(4) Non-negative Profit 2 (Mint.cUSDC → 2(depositorProfit ≥ 0)) Compound Invalid
Time (s): 1.0 s

#State: 430
#Transition: 453

(5) Bounded Loss
2 (AddLiquidity →
2(depositorLoss ≤ ADMISSIBLE LOSS)

Curve Invalid
Time (s): 0.5s

#State: 177
#Transition: 196

tokens (Proportional Token Exchange) [7]. We verified that this requirement
holds for all pairs of tokens involved in the process of adding liquidity to the
Curve Compound pool (Fig. 5).

Among the properties of individual protocols, our model allows verification of
the exchange rate of the pool token in Compound being non-decreasing, meaning
that a liquidity provider always receives a guaranteed interest on her deposit
(Property (3) in Table 1). For a liquidity provider on Compound, we additionally
checked whether her profit from providing and then redeeming liquidity can only
be non-negative (Property (4) in Table 1). While this requirement holds under
normal conditions, it does fail in the event of overutilization, i.e., if the pool does
not have enough liquidity to repay the depositor. To model overutilization, we
defined a user who borrows all the available liquidity from the Compound pool.
For simplicity, we omited the collateralization requirements in our model—each
loan is assumed to be collateralized using the token that is not considered in the
current model (e.g., ETH). Although the simplifications assumed in our model
allow reaching overutilization easier than it is in reality, it remains one of the
main risks associated with lending protocols [6].

Overutilization in a Compound pool causes a violation of an analogous
property defined for a Curve liquidity provider, showing the potentially harmful
effects of composability. In other words, the users of both Compound and Curve
are not always able to redeem their original deposit back. Considering that a
liquidity provider in a DEX can legitimately suffer losses from the impermanent
loss, the property (5) in Table 1 requires the loss to be bounded by a certain value,
which we set to 20% of the original deposit. This requirement can also be violated
in an anticipated way due to front-running and slippage caused by massive trades
made by other users. The violations of both properties are identified by PAT
in sub-second time. Being an on-the-fly model checker, PAT stops constructing
and exploring the state space after detecting the violation, which explains the
time discrepancy between the verification of properties (1)–(3) and (4), (5). For
both violated properties, the reachability analysis in PAT also helps identify the
maximum possible losses and profits for both Curve and Compound depositors.

Formal Analysis of Composable DeFi Protocols 9

Finally, we confirmed the violation of properties on a locally deployed Ethereum
network, assuming the same set of simplifications to smart contracts as in the
model.

The performed evaluation demonstrates the suitability of applying process
algebra CSP for modeling concurrently acting users and DeFi protocols on
blockchain. The results also confirm that model checking can automatically
reveal undesirable conditions in the operation of a single DeFi protocol or a
composition of those. However, with expanding the composition of modeled users
and protocols, the number of states grows exponentially. To combat the state
explosion problem, we consider utilizing techniques from the area of compositional
verification, such as assume-guarantee reasoning [23,24,25], which we leave for
future work.

5 Related Work

The analysis of DeFi protocols is a relatively new field. The existing works
often focus on specific types of DeFi protocols or investigate abnormal behaviors
observed in the wild. For example, Liu and Szalachowski explored the usage
of oracles in four major DeFi platforms [26], revealing the operational issues
inherent in oracles and common deviations between the real and reported prices.

A number of articles analyze the attack vectors that involve a flash loan [32,16],
while Wang et al. [42] proposed a framework that allows the identification
and classification of flash loan transactions. Their technique is able to detect
speculative usage of flash loans and other potentially harmful behaviors.

Several studies explore the operation and properties of DeFi lending proto-
cols [17,19,30,6]. Kao et al. [19] utilized agent-based simulations to analyze the
market risks faced by the Compound lending protocol users. Stress-tests were
performed to demonstrate the scalability of the protocol on a larger borrow size
under reasonably volatile conditions. Formal models of lending protocols and
their pools were formulated in two recent publications [30,6]. Bartoletti et al. [6]
also formulated the fundamental properties of lending pools and typical ways of
their interaction with other DeFi protocols. Meanwhile, Perez et al. [30] utilized
the abstract formal model of Compound to explore the possibility of liquidations
of undercollateralized positions. Different from the discussed publications, this
paper formulates a more general formal model of a pool, which can be used to
formalize both lending and DEX protocols.

In addition, Klages-Mundt et al. [20] proposed a framework for modeling
and classifying stablecoins. The authors also formulated and examined the risks
associated with stablecoins and their use in the DeFi ecosystem. The formal
model of a token considered in this paper is of a higher level and does not cover
its underlying economical mechanism.

Finally, a recent publication by Bernardi et al. [7] proposed a set of invariants
that are relevant for individual DeFi protocols, including DEXes and lending
platforms. While our study involves verification of some of the invariants proposed
in this article, we further extend them to the system of interacting DeFi protocols.

10 Tolmach et al.

6 Conclusion and Future Work

In this paper, we proposed formal definitions for the main components of DeFi
protocols and an approach to model their implementations and interactions in a
process-algebraic modeling language. We demonstrated how model checking can
automatically verify correctness properties for a composition of DeFi protocols
and tokens. The proposed technique successfully identifies the DeFi-specific
conditions that cause the violations of these properties.

As future work, we plan to enrich the models to account for functionality
related to liquidity-mining and governance mechanisms in the considered DeFi
protocols. We would also like to extend the set of properties to cover both security
vulnerabilities and the cryptoeconomical aspects of DeFi executions. Finally, to
address the state explosion problem, we plan to integrate techniques from the
area of compositional verification.

Acknowledgements. This research is partially supported by the Ministry of
Education, Singapore, under its Academic Research Fund Tier 1 (Award No. 2018-
T1-002-069) and Tier 2 (Award No. MOE2018-T2-1-068), and by the National
Research Foundation, Singapore, and the Energy Market Authority, under its
Energy Programme (EP Award No. NRF2017EWT-EP003-023). Any opinions,
findings and conclusions or recommendations expressed in this material are those
of the authors and do not reflect the views of National Research Foundation,
Singapore and the Energy Market Authority.

References

1. Harvest Finance. Retrieved October 12, 2020 from https://harvest.finance/

(2020)
2. Introduction to Yearn - yearn.finance. Retrieved November 12, 2020 from https:

//docs.yearn.finance/ (2020)
3. Whitepaper - Balancer. Retrieved October 12, 2020 from https://balancer.

finance/whitepaper/ (2020)
4. Adams, H., Zinsmeister, N., Robinson, D.: Uniswap v2 Core Whitepaper. Retrieved

October 12, 2020 from https://uniswap.org/whitepaper.pdf (2020)
5. Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T.: An analysis of uniswap

markets (2020), https://arxiv.org/abs/1911.03380
6. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: Sok: Lending pools in decentralized

finance (2020), https://arxiv.org/abs/2012.13230
7. Bernardi, T., Dor, N., Fedotov, A., Grossman, S., Immerman, N., Jackson, D.,

Nutz, A., Oppenheim, L., Pistiner, O., Rinetzky, N., Sagiv, M., Taube, M., Toman,
J.A., Wilcox, J.R.: WIP: Finding bugs automatically in smart contracts with
parameterized invariants. Retrieved July 14, 2020 from https://www.certora.

com/pubs/sbc2020.pdf (2020)
8. Chen, W., Zhang, T., Chen, Z., Zheng, Z., Lu, Y.: Traveling the token

world: A graph analysis of Ethereum ERC20 token ecosystem. In: Proceed-
ings of The Web Conference 2020. p. 1411–1421. WWW ’20, ACM (2020).
https://doi.org/10.1145/3366423.3380215

https://harvest.finance/
https://docs.yearn.finance/
https://docs.yearn.finance/
https://balancer.finance/whitepaper/
https://balancer.finance/whitepaper/
https://uniswap.org/whitepaper.pdf
https://arxiv.org/abs/1911.03380
https://arxiv.org/abs/2012.13230
https://www.certora.com/pubs/sbc2020.pdf
https://www.certora.com/pubs/sbc2020.pdf
https://doi.org/10.1145/3366423.3380215

Formal Analysis of Composable DeFi Protocols 11

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge,
MA, USA (2000)

10. Coingape: DeFi success story continues as TVL peaks
yet again; hits $12 billion. Retrieved November 18,
2020 from https://coinmarketcap.com/ru/headlines/news/

defi-success-story-continues-as-tvl-peaks-yet-again-hits-12-billion

(2020)
11. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L., Juels,

A.: Flash boys 2.0: Frontrunning, transaction reordering, and consensus instability
in decentralized exchanges (2019), https://arxiv.org/abs/1904.05234

12. Egorov, M.: StableSwap - efficient mechanism for Stablecoin liquidity — Curve.
fi Whitepaper. Retrieved November 18, 2020 from https://www.curve.fi/

stableswap-paper.pdf (2020)
13. Finance, H.: Harvest Flashloan Economic Attack Post-Mortem. Re-

trieved November 18, 2020 from https://medium.com/harvest-finance/

harvest-flashloan-economic-attack-post-mortem-3cf900d65217 (2020)
14. Foxley, W.: DeFi project Akropolis drained of $2m in DAI. Re-

trieved November 14, 2020 from https://www.coindesk.com/

defi-project-akropolis-token-pool-drained (2020)
15. Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sa-

giv, M., Zohar, Y.: Online detection of effectively callback free objects with ap-
plications to smart contracts. Proc. ACM Program. Lang. pp. 1–28 (dec 2017).
https://doi.org/10.1145/3158136

16. Gudgeon, L., Perez, D., Harz, D., Livshits, B., Gervais, A.: The decentralized
financial crisis (2020), https://arxiv.org/abs/2002.08099

17. Gudgeon, L., Werner, S.M., Perez, D., Knottenbelt, W.J.: DeFi protocols for
loanable funds: Interest rates, liquidity and market efficiency (2020), https://

arxiv.org/abs/2006.13922

18. Hoare, C.A.R.: Communicating Sequential Processes. International Series on Com-
puter Science, Prentice-Hall (1985)

19. Kao, H.T., Chitra, T., Chiang, R., Morrow, J.: An Analysis of the Market Risk
to Participants in the Compound Protocol. Retrieved November 18, 2020 from
https://scfab.github.io/2020/FAB2020_p5.pdf (2020)

20. Klages-Mundt, A., Harz, D., Gudgeon, L., Liu, J.Y., Minca, A.: Stablecoins 2.0.
Proceedings of the 2nd ACM Conference on Advances in Financial Technologies
(Oct 2020). https://doi.org/10.1145/3419614.3423261

21. Leshner, R., Hayes, G.: Compound: The Money Market Protocol — Whitepa-
per. Retrieved November 18, 2020 from https://compound.finance/documents/

Compound.Whitepaper.pdf (2020)
22. Li, X., Su, C., Xiong, Y., Huang, W., Wang, W.: Formal verification of

BNB smart contract. In: Proceedings of the BIGCOM. pp. 74–78 (Aug 2019).
https://doi.org/10.1109/BIGCOM.2019.00021

23. Lin, S., Andre, E., Liu, Y., Sun, J., Dong, J.: Learning assumptions for compositional
verification of timed systems. IEEE Transactions on Software Engineering (02),
137–153 (feb 2014). https://doi.org/10.1109/TSE.2013.57

24. Lin, S.W., Liu, Y., Sun, J., Dong, J.S., André, É.: Automatic compositional verifi-
cation of timed systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012: Formal
Methods. pp. 272–276. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

25. Lin, S.W., Sun, J., Nguyen, T.K., Liu, Y., Dong, J.S.: Interpolation guided compo-
sitional verification. In: Proceedings of the 30th IEEE/ACM International Confer-

https://coinmarketcap.com/ru/headlines/news/defi-success-story-continues-as-tvl-peaks-yet-again-hits-12-billion
https://coinmarketcap.com/ru/headlines/news/defi-success-story-continues-as-tvl-peaks-yet-again-hits-12-billion
https://arxiv.org/abs/1904.05234
 https://www.curve.fi/stableswap-paper.pdf
 https://www.curve.fi/stableswap-paper.pdf
 https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
 https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3cf900d65217
https://www.coindesk.com/defi-project-akropolis-token-pool-drained
https://www.coindesk.com/defi-project-akropolis-token-pool-drained
https://doi.org/10.1145/3158136
https://arxiv.org/abs/2002.08099
https://arxiv.org/abs/2006.13922
https://arxiv.org/abs/2006.13922
https://scfab.github.io/2020/FAB2020_p5.pdf
https://doi.org/10.1145/3419614.3423261
 https://compound.finance/documents/Compound.Whitepaper.pdf
 https://compound.finance/documents/Compound.Whitepaper.pdf
https://doi.org/10.1109/BIGCOM.2019.00021
https://doi.org/10.1109/TSE.2013.57

12 Tolmach et al.

ence on Automated Software Engineering. p. 65–74. ASE ’15, IEEE Press (2015).
https://doi.org/10.1109/ASE.2015.33

26. Liu, B., Szalachowski, P.: A first look into DeFi oracles (2020), https://arxiv.
org/abs/2005.04377

27. Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., Roscoe, B.: ReGuard: Finding
reentrancy bugs in smart contracts. In: Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings. pp. 65–68. ACM
(2018). https://doi.org/10.1145/3183440.3183495

28. Liu, Y., Sun, J., Dong, J.S.: Pat 3: An extensible architecture for building multi-
domain model checkers. In: 2011 IEEE 22nd International Symposium on Software
Reliability Engineering. pp. 190–199 (2011). https://doi.org/10.1109/ISSRE.2011.19

29. Moin, A., Sirer, E.G., Sekniqi, K.: A classification framework for stablecoin designs
(2019), https://arxiv.org/abs/1910.10098

30. Perez, D., Werner, S.M., Xu, J., Livshits, B.: Liquidations: DeFi on a knife-edge
(2020), https://arxiv.org/abs/2009.13235

31. Pulse, D.: DeFi status report post-black thursday. Retrieved November 18, 2020 from
https://defipulse.com/blog/defi-status-report-black-thursday (2020)

32. Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the DeFi ecosystem with
flash loans for fun and profit (2020), https://arxiv.org/abs/2003.03810

33. Qu, M., Huang, X., Chen, X., Wang, Y., Ma, X., Liu, D.: Formal verification of
smart contracts from the perspective of concurrency. In: Proc. of the SmartBlock.
vol. 11373 LNCS, pp. 32–43. Springer Verlag (2018)

34. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1997), iSBN
0-13-674409-5

35. Samreen, N., Alalfi, M.H.: Reentrancy vulnerability identification in
Ethereum smart contracts. In: 2020 IEEE International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). pp. 22–29 (2020).
https://doi.org/10.1109/IWBOSE50093.2020.9050260

36. Sun, J., Liu, Y., Dong, J.S., Pang, J.: Pat: Towards flexible verification under
fairness. In: Proc. of the CAV. vol. 5643, pp. 709–714. Springer (2009)

37. Sun, J., Liu, Y., Dong, J.S.: Model checking csp revisited: Introducing a process
analysis toolkit. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of For-
mal Methods, Verification and Validation. pp. 307–322. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008)

38. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs
for system modeling and verification. In: Proceedings of the 2009 Third IEEE
International Symposium on Theoretical Aspects of Software Engineering. pp.
127–135 (2009). https://doi.org/10.1109/TASE.2009.32

39. Tolmach, P., Li, Y., Lin, S.W., Liu, Y., Li, Z.: A survey of smart contract formal
specification and verification (2020), https://arxiv.org/abs/2008.02712

40. Totle: Building with Money Legos. Retrieved November 17, 2020 from
https://medium.com/totle/building-with-money-legos-ab63a58ae764, ac-
cessed: November 17, 2020

41. Vogelsteller, F., Buterin, V.: ERC-20 token standard. Retrieved July 14, 2020 from
https://eips.ethereum.org/EIPS/eip-20 (2015)

42. Wang, D., Wu, S., Lin, Z., Wu, L., Yuan, X., Zhou, Y., Wang, H., Ren, K.:
Towards understanding flash loan and its applications in DeFi ecosystem (2020),
https://arxiv.org/abs/2010.12252

43. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal meth-
ods: Practice and experience. ACM computing surveys 41(4), 1–36 (2009).
https://doi.org/10.1145/1592434.1592436

https://doi.org/10.1109/ASE.2015.33
https://arxiv.org/abs/2005.04377
https://arxiv.org/abs/2005.04377
https://doi.org/10.1145/3183440.3183495
https://doi.org/10.1109/ISSRE.2011.19
https://arxiv.org/abs/1910.10098
https://arxiv.org/abs/2009.13235
https://defipulse.com/blog/defi-status-report-black-thursday
https://arxiv.org/abs/2003.03810
https://doi.org/10.1109/IWBOSE50093.2020.9050260
https://doi.org/10.1109/TASE.2009.32
https://arxiv.org/abs/2008.02712
https://medium.com/totle/building-with-money-legos-ab63a58ae764
https://eips.ethereum.org/EIPS/eip-20
https://arxiv.org/abs/2010.12252
https://doi.org/10.1145/1592434.1592436

Formal Analysis of Composable DeFi Protocols 13

A Model Transition Implementation

In this section, we discuss some of the processes that correspond to state-changing
functions of the protocols and tokens under consideration. As described in
Section 3.1, we model key components of DeFi protocols, such as token and pool
smart contracts, as state transition systems. States of the protocols are mostly
defined by the values of smart contract variables, while transitions correspond to
the state-changing functions of the smart contracts.

Token Functions

In a token implementation, state-changing functions are usually concerned with
updating the values of variables that track the token amounts and allowances. Fig-
ure 6a contains the original implementation of transfer() and transferFrom()

functions in the USDC stablecoin smart contract.4 Figure 6b illustrates the
definition of a corresponding process in CSP# used in our model of USDC. The
process changes the state of some of the involved shared variables shown in Fig. 1,
such as USDC balances.

Compound Pool Functions

The modeled functionality of a pool in the Compound protocol includes depositing
and redeeming liquidity (e.g, USDC) and taking or repaying a loan. Figures 7
and 8 demonstrate the simplified Solidity code and CSP# definitions for functions
that realize minting and redeeming of cUSDC tokens5 (mint() and redeem(),
respectively). In Compound, the same smart contract implements both token
and pool functionality, therefore, these functions also correspond to providing
and redeeming liquidity from the Compound USDC pool, where cUSDC serves
as a pool token. Following the definition of the pool state given in Sect. 3.1,
the processes and functions shown in Figures 7 and 8 change the state of a
liquidity token (USDC) and a pool token (cUSDC). The state of a liquidity token
is changed through its transfers (USDC transfer()) and of a pool token—via
updating cUSDC totalSupply and cUSDC accountTokens variables.

Curve Pool Functions

Figure 9 demonstrates the simplified Vyper code of the function that implements
adding liquidity (add liquidity()) to the Curve Compound pool6 and its
definition in CSP#. The function (Fig. 9a) and the corresponding process (Fig. 9b)
perform transfers of liquidity (USDC) and pool (cCrv)7 tokens as described
in Fig. 5. The mathematical computation of the number of pool tokens to mint is
partially implemented in C#. Vyper and C# code that implement the calculation
are shown in Fig. 10.
4 https://etherscan.io/address/0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
5 https://etherscan.io/address/0x39aa39c021dfbae8fac545936693ac917d5e7563
6 https://etherscan.io/address/0xeb21209ae4c2c9ff2a86aca31e123764a3b6bc06
7 https://etherscan.io/address/0x845838DF265Dcd2c412A1Dc9e959c7d08537f8a2

14 Tolmach et al.

1 function _transfer(

2 address from, address to, uint256 value)

3 {

4 ...

5 require(value <= balances[from]);

6 balances[from] = balances[from].sub(value);

7 balances[to] = balances[to].add(value);

8 emit Transfer(from, to, value);

9 }

10

11 function transferFrom(

12 address from, address to, uint256 value)

13 ...

14 {

15 require(value <= allowed[from][msg.sender]);

16 _transfer(from, to, value);

17 allowed[from][msg.sender] = allowed[from][msg.sender].sub(value);

18 return true;

19 }

(a) Solidity implementation of transfer() and transferFrom() functions.

USDC transfer(to, value, from) = atomic {
if (value <= USDC balances[from]) {
transfer.from.to.value{
USDC balances[from] -= value;

USDC balances[to] += value;} -> Skip}
else {REVERT -> Reverting()}};

USDC transferFrom(from, to, value, sender) = atomic {
if (value <= USDC allowed[from][sender]) {
USDC transfer(to, value, from);

tau{USDC allowed[from][sender] -= value;} -> Skip}
else {REVERT -> Reverting()}};

(b) CSP# definition of transfer() and transferFrom() functions.

Fig. 6: Solidity and CSP# implementations of functions in USDC token.

Formal Analysis of Composable DeFi Protocols 15

1 function mintInternal(uint mintAmount)...{

2 uint error = accrueInterest();

3 ...

4 return mintFresh(msg.sender, mintAmount);

5 }

6

7 function mintFresh(address minter, uint mintAmount) ... {

8 ...

9 if (accrualBlockNumber != getBlockNumber()) {

10 return fail(...); }

11

12 MintLocalVars memory vars;

13 ...

14 vars.exchangeRate = exchangeRateStoredInternal();

15 vars.mintTokens = divScalar...(mintAmount, Exp(vars.exchangeRate));

16 vars.totalSupplyNew = addUInt(totalSupply, vars.mintTokens);

17 vars.accountTokensNew = addUInt(accountTokens[minter],

vars.mintTokens);↪→

18

19 doTransferIn(minter, mintAmount);

20 totalSupply = vars.totalSupplyNew;

21 accountTokens[minter] = vars.accountTokensNew;

22

23 emit Mint(minter, mintAmount, vars.mintTokens);

24 emit Transfer(address(this), minter, vars.mintTokens);

25 ...

26 }

(a) Simplified Solidity code of cUSDC mint() function.

cUSDC mint(mintAmount, sender) = atomic {
cUSDC accrueInterest();

cUSDC mintFresh(sender, mintAmount)};

cUSDC mintFresh(minter, mintAmount) = {
(if (accrualBlockNumber != currentBlockNumber) {

REVERT -> Reverting()}
else {cUSDC exchangeRateStored();

tau{mintTokens = call(calcMintCUSDC, mintAmount, exchangeRates);

cUSDC totalSupply += mintTokens;

cUSDC accountTokens[minter] += mintTokens;...} ->

USDC transferFrom(minter, compCUSDC, mintAmount, compCUSDC);

Mint.cUSDC -> mint.minter.mintAmount.mintTokens ->

transfer.compCUSDC.minter.mintTokens -> Skip})};

(b) CSP# definition of cUSDC mint() function.

Fig. 7: Implementations of mint() function in Compound cUSDC pool.

16 Tolmach et al.

1 function redeemInternal(uint redeemTokens) ... {

2 uint error = accrueInterest();

3 ...

4 return redeemFresh(msg.sender, redeemTokens, 0);

5 }

6

7 function redeemFresh(address redeemer, uint redeemTokensIn,...) ... {

8 ...

9 RedeemLocalVars memory vars;

10 vars.exchangeRateMantissa = exchangeRateStoredInternal();

11 ...

12 vars.redeemTokens = redeemTokensIn;

13 vars.redeemAmount = mulScalar...(Exp({vars.exchangeRateMantissa),

redeemTokensIn);↪→

14 ...

15 vars.totalSupplyNew = subUInt(totalSupply, vars.redeemTokens);

16 vars.accountTokensNew = subUInt(accountTokens[redeemer],

vars.redeemTokens);↪→

17 if (getCashPrior() < vars.redeemAmount) {

18 return fail(...);

19 }

20

21 doTransferOut(redeemer, vars.redeemAmount);

22 totalSupply = vars.totalSupplyNew;

23 accountTokens[redeemer] = vars.accountTokensNew;

24

25 emit Transfer(redeemer, address(this), vars.redeemTokens);

26 emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens);

27 ...

28 }

(a) Simplified Solidity code of cUSDC redeem() function.

cUSDC redeem(redeemTokensIn, sender) = atomic {
cUSDC accrueInterest();

cUSDC redeemFresh(sender, redeemTokensIn, 0)};

cUSDC redeemFresh(redeemer, redeemTokensIn, redeemAmountIn) = {
cUSDC exchangeRateStored();

tau{redeemTokens = redeemTokensIn;

redeemAmount = call(calcRedeemCUSDC, redeemTokensIn, exchangeRates);} ->

(if (USDC balances[compCUSDC] <= redeemAmount) {
REVERT -> Reverting()}

else {USDC transfer(redeemer, redeemAmount, compCUSDC);

tau{cUSDC totalSupply += redeemTokens;

cUSDC accountTokens[redeemer] -= redeemTokens;...} ->

transfer.redeemer.redeemTokens ->

redeem.redeemer.compCUSDC.redeemAmount -> Skip})};

(b) CSP# definition of cUSDC redeem() function.

Fig. 8: Implementations of redeem() function in Compound cUSDC pool.

Formal Analysis of Composable DeFi Protocols 17

1 def add_liquidity(uamounts: uint256[N_COINS], min_mint_amount: uint256):

2 ...

3 for i in range(N_COINS):

4 uamount: uint256 = uamounts[i]

5 if uamount > 0:

6 ...

7 assert_modifiable(ERC20(underlying_coins[i]).\

8 transferFrom(msg.sender, self, uamount))

9 ERC20(underlying_coins[i]).approve(coins[i], uamount)

10 cERC20(coins[i]).mint(uamount)

11 amounts[i] = cERC20(self.coins[i]).balanceOf(self)

12 ERC20(coins[i]).approve(curve, amounts[i])

13

14 Curve(curve).add_liquidity(amounts, min_mint_amount)

15 tokens = ERC20(token).balanceOf(self)

16 assert_modifiable(ERC20(token).transfer(msg.sender, tokens))

17 ...

18 }

(a) Simplified Vyper implementation of add liquidity() function.

Curve addLiquidity(uamounts, min mint amount, sender) =

atomic {[uamounts > 0]

. . .

USDC transferFrom(user, curveDeposit, uamounts,...);

USDC approve(compCUSDC, uamounts, curveDeposit);

cUSDC mint(uamounts,curveDeposit);

tau{cAmounts[USDC] = cUSDC accountTokens[curveDeposit];}
cUSDC approve(curveSwap, cAmounts[USDC], curveDeposit);

Curve swap addLiquidity(cAmounts, min mint amount, sender);

cCrv transfer(user, cCrv mintAmounts, curveDeposit)};

(b) CSP# definition of add liquidity() function accepting USDC.

Fig. 9: Implementations of add liquidity() function in Curve Compound pool.

18 Tolmach et al.

1 ...

2 D0: uint256 = 0

3 old_balances: uint256[N_COINS] = self.balances

4 D0 = self.get_D_mem(rates, old_balances)

5 new_balances: uint256[N_COINS] = old_balances

6

7 for i in range(N_COINS):

8 new_balances[i] = old_balances[i] + amounts[i]

9

10 D1: uint256 = self.get_D_mem(rates, new_balances)

11 ...

12 D2: uint256 = D1

13 for i in range(N_COINS):

14 ideal_balance: uint256 = D1 * old_balances[i] / D0

15 difference: uint256 = 0

16 if ideal_balance > new_balances[i]:

17 difference = ideal_balance - new_balances[i]

18 else:

19 difference = new_balances[i] - ideal_balance

20 fees[i] = _fee * difference / FEE_DENOMINATOR

21 self.balances[i] = new_balances[i] - (fees[i] * _admin_fee /

FEE_DENOMINATOR)↪→

22 new_balances[i] -= fees[i]

23 D2 = self.get_D_mem(rates, new_balances)

24

25 mint_amount: uint256 = 0

26 mint_amount = token_supply * (D2 - D0) / D0

27 ...

(a) Vyper implementation of calculations in Curve pool.

1 ...

2 long D0 = 0;

3 long[] old_balances = balances;

4 D0 = get_D(rates, old_balances);

5 long[] new_balances = old_balances;

6

7 for (var i = 0; i < N_COINS; i++) {

8 new_balances[i] = old_balances[i] + amounts[i];

9 }

10

11 long D1 = get_D(rates, new_balances);

12 ...

13 long D2 = D1;

14 for (var i = 0; i < N_COINS; i++) {

15 long ideal_balance = D1 * old_balances[i] / D0;

16 long difference = 0;

17 if (ideal_balance > new_balances[i]) {

18 difference = ideal_balance - new_balances[i];

19 } else {

20 difference = new_balances[i] - ideal_balance;

21 }

22 fees[i] = fee * difference;

23 balances[i] = (long)(new_balances[i] - (fees[i] * _admin_fee));

24 new_balances[i] = (long)(new_balances[i] - fees[i]);

25 }

26

27 D2 = get_D(rates, new_balances);

28 long mint_amount = token_supply * (D2 - D0) / D0;

29 ...

(b) C# implementation of calculations in Curve pool.

Fig. 10: Implementations of mathematical computations in Curve.

	Formal Analysis of Composable DeFi Protocols

