THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Efficient State Management in Distributed Ledgers

Citation for published version:

Karakostas, D, Karayannidis, N & Kiayias, A 2021, Efficient State Management in Distributed Ledgers. in N
Borisov & C Diaz (eds), Financial Cryptography and Data Security: 25th International Conference, FC 2021,
Virtual Event, March 1-5, 2021, Revised Selected Papers, Part Il. Lecture Notes in Computer Science, vol.
12675, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 319-338, Financial Cryptography and Data
Security 2021 Twenty-Fifth International Conference, 1/03/21. https://doi.org/10.1007/978-3-662-64331-
0_17

Digital Object Identifier (DOI):
10.1007/978-3-662-64331-0_17

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Financial Cryptography and Data Security: 25th International Conference, FC 2021, Virtual Event, March 1-5,
2021, Revised Selected Papers, Part Il

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN () ACCESS

Download date: 26. Apr. 2024


https://doi.org/10.1007/978-3-662-64331-0_17
https://doi.org/10.1007/978-3-662-64331-0_17
https://doi.org/10.1007/978-3-662-64331-0_17
https://www.research.ed.ac.uk/en/publications/cad5ed2c-be80-4618-a56a-d8c8aa0c32f7

Efficient State Management in Distributed
Ledgers

Dimitris Karakostas!2(®) Nikos Karayannidis?, and Aggelos Kiayias!»?

! University of Edinburgh
* IOHK
dimitris.karakostas@ed.ac.uk,nikos.karagiannidis@Qiohk.io,akiayias@inf.ed.ac.uk

Abstract. Distributed ledgers implement a storage layer, on top of
which a shared state is maintained in a decentralized manner. In UTxO-
based ledgers, like Bitcoin, the shared state is the set of all unspent
outputs (UTxOs), which serve as inputs to future transactions. The con-
tinuously increasing size of this shared state will gradually render its
maintenance unaffordable. Our work investigates techniques that mini-
mize the shared state of the distributed ledger, i.e., the in-memory UTxO
set. To this end, we follow two directions: a) we propose novel transac-
tion optimization techniques to be followed by wallets, so as to create
transactions that reduce the shared state cost and b) propose a novel fee
scheme that incentivizes the creation of “state-friendly” transactions. We
devise an abstract ledger model, expressed via a series of algebraic op-
erators, and define the transaction optimization problem of minimizing
the shared state; we also propose a multi-layered algorithm that ap-
proximates the optimal solution to this problem. Finally, we define the
necessary conditions such that a ledger’s fee scheme incentivizes proper
state management and propose a state efficient fee function for Bitcoin.

1 Introduction

The seminal work of Shostak, Pease, and Lamport, during the early ’80s, in-
troduced the consensus problem [19,27] and extended our understanding of dis-
tributed systems. 30 Years later, Bitcoin [25] introduced what is frequently re-
ferred to as “Nakamoto consensus” and the blockchain data structure, followed
by widespread research on distributed ledgers.

In ledger systems, participants maintain a shared state which consists of three
objects: i) the public ledger, i.e., the list of transactions which form the system’s
history; ii) the mempool, i.e., the set of, yet unpublished, transactions; iii) the
active state which, in systems like Bitcoin, consists of the UTxO set. To support
thousands (or millions) of participants, a decentralized system’s state manage-
ment should be well-designed, primarily focused on minimizing the shared state.
Our work focuses on the third type, as poorly designed management often leads
to performance issues and even Denial-of-Service (DoS) attacks. In Ethereum,
during a 2016 DoS attack, an attacker added 18 million accounts to the state,
increasing its size by 18 times [33]. Bitcoin saw similar spam attacks in 2013 [31]
and 2015 [2], when millions of outputs were added to the UTxO set.



2 D. Karakostas et al.

Problem Statement. Mining nodes and full nodes incur costs for maintaining the
shared state in the Bitcoin network. This cost pertains to the resources (i.e.,
CPU, disk, network bandwidth, memory) that are consumed with every trans-
action transmitted, validated, and stored. An expensive part of a transaction is
the newly created outputs, which are added to the in-memory UTxO set. As the
system’s scale increases, the cost of maintaining the UTxO set gradually leads
to a shared-state bloat, which makes the cost of running a full node prohibiting.

Moreover, the system’s incentives, which are promoted via transaction fees,
only deteriorate the problem. For example, assume two transactions 74 and 73:
T4 spends 5 inputs and creates 1 output, while 75 spends 1 input and creates 2
outputs. Assuming the size of a UTxO is equal to the size of consuming it (200
bytes) and that transaction fees are 30 satoshi per byte, 74 costs 30 x 200 x (5 +
1) = 36000 satoshi and 7 costs 30 x 200 x (1 +2) = 18000 satoshi. Although 75
burdens the UTxO set by creating a net delta of (2 — 1 = 1) new UTxO, while
T4 reduces the shared state by consuming (1 — 5 = —4) UTxOs, 75 is cheaper
in terms of fees. Clearly, the existing fee scheme penalizes the consumption of
multiple inputs, dis-incentivizing minimizing the shared state.

Our Contributions. Our goal is to devise a set of techniques that minimize
the shared state of a distributed ledger, i.e., the in-memory UTxO set. Our
approach is twofold: a) we propose transaction optimization techniques which,
when employed by wallets, help reduce the shared state’s cost; b) propose a novel
fee scheme that incentivizes “shared state-friendly” transactions.

In particular, we propose a UTxO model, which abstracts UTxO ledgers
and enables evaluating the cost of a ledger’s shared state. We then propose a
transaction optimization framework, based on three levels of optimization: a) a
declarative (rule-based) level, b) a logical/algebraic (cost-based) level, and c) a
physical/algorithmic (cost-based) level. Following, we propose three transaction
optimization techniques based on the aforementioned optimization levels: a) a
rule-driven optimal total order of transactions (the last-payer rule), b) a logical
transaction transformation (the 2-for-1 transformation), and c¢) a novel input se-
lection algorithm that minimizes the UTxO set increase, i.e., favors consumption
over creation of UTxOs. We then define the transaction optimization problem
and propose a 3-step dynamic programming algorithm to approximate the opti-
mal solution. Finally, we define the state efficiency property that a fee function
should have, in order to correctly reflect a transaction’s shared-state cost, and
propose a state efficient fee function for Bitcoin.

Related Work. The problem of unsustainable growth of the UTxO set has con-
cerned developers for years. It has been discussed in community articles [13,15],
some [1] offering estimations on the level of inefficiency in Bitcoin. Additionally,
research papers [28,8,26,12] have analyzed Bitcoin’s and other cryptocurrencies’
UTxO sets to gain further insight. Engineering efforts, e.g., in Bitcoin Core’s
newer releases [22], have also focused on improving performance by reducing
the UTxO memory requirements. Various solutions have been proposed to re-
duce the state of a UTxO ledger, e.g., consolidation of outputs [32] can help



Efficient State Management in Distributed Ledgers 3

reduce the cost of spending multiple small outputs. Alternatively, Utreexo [11],
uses cryptographic accumulators to reduce the size of the UTxO set in memory,
while BZIP [17] explores lossless compression of the UTxO set.

An important notion in this line of research is the “stateless blockchain” [30].
Such blockchain enables a node to participate in transaction validation without
storing the entire state of the blockchain, but only a short commitment to it.
Chepurnoy et al. [7] employ accumulators and vector commitments to build
such blockchain. Concurrently, Boneh et al. [5] introduce batching techniques
for accumulators in order to build a stateless blockchain with a trustless setup
which requires constant amount of storage. We consider an orthogonal problem,
i.e., constructing transactions in an incentive-compatible manner that minimizes
the state, so these tools can act as building blocks in our proposed techniques.

The role of fees in blockchain systems has also been a topic of interest in
recent years. Luu et al. [20] explored incentives in Ethereum, focusing on in-
centivizing miners to correctly verify the validity of scripts run on this “global
consensus computer”. Moser and Bohme [24] investigate Bitcoin fees empirically
and observe that users’ behavior depends primarily on the client software, rather
than a rational cost estimation. Finally, in an interesting work, Chepurnoy et
al. [6] propose a fee structure that considers the storage, computation, and net-
work requirements; their core idea is to classify each transaction on one of the
three resource types and set its fees accordingly.

2 A UTxO Model

We abstract a distributed ledger as a state machine on which parties act. Specif-
ically, we consider only payments, i.e., value transfers between parties; a more
elaborate model could take into account arbitrary computations on the ledger’s
data. We note that our model considers only fungible assets.

Initially, we assume a ledger state S;n;:, on which a transaction is applied
to move the ledger to a new state. Transactions that may be applied on a state
are valid, following a validation predicate. Each transaction is unique and moves
the system to a unique state; with hindsight, we assume that the ledger never
transitions to the same state (cf. Definition 5), i.e., valid transactions do not
form cycles.

Our formalism is similar to chimeric ledgers [34], though focused on UTxO-
based ledgers. Following, we provide some basic definitions in a “top-down”
approach, starting with the ledger £, which is an ordered list of transactions;
our notation of functions is the one typically used in functional programming
languages, for example a function f: A — B — C takes two input parameters
of type A and B respectively and returns a value of type C.

Definition 1. A ledger L is a list of valid transactions: £ 1 List[ Transaction].

A transaction 7 transitions the system from one state to another. UTxO-
based transactions are thus a product of inputs, which define the ownership of
assets, and outputs, which define the rules of re-transferring the acquired value.



4 D. Karakostas et al.

Definition 2. A UTxO-based transaction 7 is defined as: Transaction o (inputs :
Set[Input], outputs : List{UTzO|, forge : Value, fee : Value)

An unspent transaction output (UTxO) represents the ownership of some
value from a party, which is represented via an address a. Intuitively, in the real
world, an output is akin to owning a physical coin of an arbitrary denomination.

Definition 3. A UTzO is defined as follows: UTzO & (o : Address, value :
Value, created : Timestamp).

A transaction’s input is a reference to a UTxQO, i.e., an output that is owned
by the party that creates the transaction. An input consists of two objects: i) the
id of the transaction that created it (typically its hash) and ii) an index, which
identifies the specific output among all UTxOs of the referenced transaction.

Definition 4. An input is defined as: Input d:ef(z'd : Hash, index : Int).

Given an input and a ledger, three functions retrieve: i) the corresponding
output, ii) the corresponding transaction, and iii) the input value. All returned
values are wrapped in Option, denoting that a value may not be returned.

e UTXO : Input — £ — Option[UTxO]
e 7 :Input — £ — Option|[Transaction]
e value : Input — £ — Option[Value]

A transaction defines some value that is given as a fee to the miner, i.e.,
the party who publishes the transaction into the ledger £. We require that all
transactions must preserve value as follows: 7.forged + >, ;... value(i, £) =
T.fee + ZoeT_outputs o.value. We note that this applies only on standard transac-
tions, not “coinbase” transactions which create new coins.

Finally, we define the ledger’s state S. S comprises the UTzO set, i.e., the
set of all outputs of transactions whose value has not been re-transferred and
can be used as inputs to new transactions.

Definition 5. The ledger’s state is defined as: State o Set[Input].

We now return to the state machine model. A transaction is applied on a
ledger state S; and results in a ledger state So via the function:

txRun : Transaction — LedgerState — LedgerState

An ordered list of transactions T = [y, T2, ..., 7n] can be applied sequentially on
state S; to transit to state Sy: Sy = (txRun(7w). ... .txRun(72).txRun(7))(S1),
assuming the function composition operator “”.

Finally, every ledger state S corresponds to some cost C. We assume a cost
function, which assigns a signed integer of cost units to a ledger state.

cost : LedgerState — Cost

This function is employed in Definition 6, which defines a transaction’s cost;
minimizing this cost will be the target of our optimization. Observe that the
transaction’s cost might be negative, e.g., if the transaction reduces the state.



Efficient State Management in Distributed Ledgers 5

Definition 6. The cost of a transaction T applied to a state S is the difference
between the cost of the final state minus the cost of the initial state:

costTx : Transaction — LedgerState — Cost
costTx(7,S) = cost(txRun(7, S)) — cost(S)

The cost of an ordered list of transactions [T| applied to a state S is the
difference between the cost of the final state minus the cost of the initial state:

costTotTx : [Transaction] — LedgerState — Cost
costTotTx([T],S) = cost((txRun(rn). ... .txRun(mz).txRun(m))(S1)) — cost(S)

We note that, in the rest of the paper, cost represents the size of the ledger’s
state. However, our model is generic enough to accommodate alternative cost
designs as well. For instance, cost could represent the computational effort of
producing or verifying the state, such that a cost unit would be a computational
cycle. Therefore, our analysis would also be directly applicable in that case, by
accordingly adapting some parts of the subsequent optimization framework like
the heuristics.

3 Transaction Optimization

The purpose of a distributed ledger is to execute payments, i.e., transfer value
from one party to another via transactions. Multiple transactions can perform
the same transfer of value between two parties. Such transactions are equivalent
in terms of their final result, i.e., transferring some value between parties A and
B, but may vary in their cost to the ledger state. Transaction optimization is
the problem of finding the equivalent transaction with minimum cost; our work
is heavily inspired by the seminal research on database query optimization [16].

The cost difference between equivalent transactions may be significant. For
example, assume that Alice wants to give Bob 100 coins and owns a UTxO of 100
coins and 100 UTxOs of 1 coin each. Consider the two equivalent plans: 1) Alice
spends the single UTxO of value 100 and creates 100 outputs of value 1 for Bob;
2) Alice spends the 100 UTxOs of 1 coin value and defines a single UTxO of value
100 to transfer to Bob. The cost of the two approaches exemplifies the ledger
state impact that equivalent transactions may have. The first plan increases the
ledger’s state by 99 UTxOs, while the second decreases it by the same amount.

Following, we use the terms plan and transaction interchangeably, i.e., an al-
ternative plan that achieves the same goal is expressed as an alternative, equiv-
alent transaction. Definition 7 describes transaction equivalency, while Defini-
tion 8 defines equivalency between two ordered lists of transactions.

Definition 7. Transactions 11,72 are equivalent (denoted 71 = 12) if, when ap-
plied to the same state Sa of a ledger L, they result in states S1 and So respec-



6 D. Karakostas et al.

tively, with the same total accumulated value per unique address :

Vae A E 0;.value = E o0j.value
i€S JES
0;,=UTx0(s,L) 0;=UTx0(j,£)
0;.address=« 0j.address=a

where A is the set of all addresses of the parties participating in the ledger system.

Definition 8. Two different totally ordered sets of the same N transactions
(T3] and [T};] are equivalent (denoted as [T;] = [1}]) if, when applied to the same
ledger state Sa of a ledger L, they result in states S1 and S respectively, where
the total accumulated value per unique address « is the same in both states:

Va € A E 0;.value = E o0j.value
i€Sy JES,
0;=UTx0(%,L) 0;=UTx0(4,L)
0;.address=«a 0j.address=a

where A is the set of addresses of all participants in the distributed ledger system.

Following, we define the basic logical operators for expressing a transaction
and explore optimization techniques for compiling the optimal transaction plan.

3.1 Transaction Logical Operators - Ledger State Algebra

First, we introduce some basic logical operators, i.e., functions used to form a
transaction. The operators are regarded as basic logical steps for executing a
transaction, i.e., irrespective of their particular implementation. However, de-
pending on their implementation, each step may correspond to different cost.
The operators operate on and produce a state, forming transactions which may
be equivalent (cf Definition 7). The operators and operands form a ledger state
algebra and, as the state is a set of UTxOs (cf. Definition 5), all common set
operators are applicable. In case of failure, they return the empty state &.

1. Input Selection o(p,, vy : LedgerState — LedgerState
0(p,,,v) is a unary operator, which is given as input parameter a pair (Party
id, Value). Party id is an abstraction of a set of UTxOs, e.g., it could abstract
a wallet that controls a set of addresses, each owning multiple UTxOs. When
applied on a state S;, o(p,, v) produces a new state Sy C S;, where Vo €
Sy o€ Py and ZoePM o.walue > V. Essentially, o is a filter over a state,
selecting the UTxOs with aggregate value larger than, or equal to the input
V.

2. Output Creation (4, v,),....(an,00)) * LedgerState — LedgerState
T[(a1,01),...,(an,v,)] 15 @ Unary operator, which is given a set of (Address,
Value) pairs and is applied on a state S;. It produces a new UTxO set
Sy with S NS, = @, ie., Sy includes only new UTxOs. Also Vo € Sy :
(0.address, ", . adress 0-value) € [(a1,v1),...an,vy)], i.e., the aggregate out-
put value per address is equal to the input parameter. We require that value
is preserved, i.e., the total value in S; is greater than (or equal to) the total
value in Sy; the value difference is is the miners’ fee.



Efficient State Management in Distributed Ledgers 7

3. Transaction Validation 7y, s, : LedgerState — LedgerState — LedgerState
Tvg,S; is a binary operator that validates input and output states S, So,
against a set of rules Vi, over an initial state Sg. If validation succeeds, it
returns an updated state Sy = (S¢ — Sr) U So.

Figure 1 depicts the simplest transaction under our algebra, i.e., a tree with
a root and two branches. The root is the transaction validation operator (7) that
receives two inputs: a) the set of selected inputs (o on the left branch) and b) the
set of outputs to be created (7 on the right branch). Algebraically we express this
transaction as: T = (0 atice,v)' 7' (TBob,v ), 7' being the infix validation operator.

%
Alice — , Bob

T
G(Alice, vy (Bob, V)

Fig. 1. The simplest expression of a transaction.

Moving one step further, we assume three transactions 7y, 7o and 73. The exe-
cution of these transactions is totally ordered, i.e., 71 — 7o — 73. Figure 2 depicts
this expression. Here, 71 is nested within 75 and both are nested within 75. Such
tree is executed from bottom to top, therefore 75 is given the ledger state gen-
erated after 7, is executed; similarly, 73 is given the ledger state generated after
both 71 and 75 are executed. Given the above, we next define subtransactions; in-
terestingly, transactions may spend outputs created from their subtransactions,
thus we also define the notion of correlated transactions.

Definition 9. A subtransaction is a transaction nested within a “parent” trans-
action; it is executed first, so its impact on the ledger state is visible to the parent.

Definition 10. Two transactions 11,7 are correlated, if 71 is a subtransaction
of 7o and 1o spends at least one output created by 1.

3.2 A Transaction Optimization Framework

We now identify different phases in the transaction optimization process; in a
hypothetical transaction optimizer each phase would be a distinct module. These
phases are different approaches to producing equivalent transactions. The phases
operate on three levels of optimization: a) a declarative (rule-based) level, b) a
logical/algebraic (cost-based) level, and ¢) a physical/algorithmic (cost-based)
level, as depicted in Figure 3. The input of the process is a transaction set [7,],
that we want to optimize, and the output is the optimal transaction 7,_optimai-



8 D. Karakostas et al.

Ul U2 us ua

Fig. 2. The expression tree entails a transaction execution total order.

Rules: This phase is declarative, as it does not depend on the cost; instead,
when applied, it necessarily produces a better transaction. Essentially it
consists of heuristic rules that are applied by default to produce an equivalent
transaction; example of such rules are “create a single output per address”
or “consume as many inputs and create as few outputs as possible”.

Algebraic Transformations: These are transformations at the level of logical
operators that define a transaction’s execution. Generally the efficiency of
such transformation is evaluated based on the entailed cost. Examples of
such transformations are the 2-for-1 transformation (cf. Definition 11) and
different transaction orderings (cf. Definition 9).

Methods and Structures: This phase optimizes the algorithm that imple-
ments a logical operator. For instance, given two algorithms A, B result in
transaction costs C'y, Cp, if C4 < Cp we would choose A; one such example
is the different implementations of the input selection operator o, as shown
in Figure 4. Optimizations in this phase may also change the data structure
used to access the underlying data, which in our case is the ledger state.

Planning and Searching: This phase employs a searching strategy to explore
the available space of candidate solutions, i.e., equivalent transaction plans.
This space consists of the transactions produced from the above phases, each
evaluated based on their cost, under the available cost model.

3.3 Transaction Optimization Techniques

In this section, we propose three transaction optimization techniques based on
the aforementioned optimization levels: a) heuristic rule-based, b) logical /algebraic
transformation cost-based, and ¢) physical/algorithmic cost-based.



Efficient State Management in Distributed Ledgers 9

ml

Rules
Rule-based decisions

Cost-based decisions

~

Algebraic

Transformations Plar:?:ung Cost
. Model
Searching
Methods
& ne

Structures
X - Optimal

Fig. 3. The transaction optimization process.

Input Selection Optimization We demonstrate this technique with an exam-
ple. Assume Alice wants to give Bob 5 coins. Figure 4 depicts three equivalent
transactions for implementing this payment. Observe that each plan is repre-
sented as a tree, where the intermediate nodes are the previously defined logical
operators (that act on a ledger state) and the leaf nodes are ledger states. We
also assume that the state cost is the number of elements (UTxOs) in the state.
The three transactions have the same structure, i.e., they are the same logical
expression, but result to different ledger states with different costs. The trans-
actions differ only in the output of the input selection operator (o(aice,s)), a
difference which may be attributed to different implementations of the operator;
in the paper’s full version [18], we provide a novel input selection algorithm that
minimizes the net delta of created UTxOs; it favors UTxO consumption over
creation.

The 2-for-1 Transformation We again consider the example where Alice
wants to give Bob 5 coins. Figure 5 depicts a fourth, more complex, equivalent
transaction. This transaction consists of two subtransactions (cf. Definition 9),
where Alice first gives Bob 17 coins and then receives 12. When the first trans-
action is completed, an intermediate state (S}) is created, which is then given as
input to the second transaction, that produces the final ledger state Sy of cost
3. Observe that, although more complex, this transaction minimizes the final
ledger state (72% cost reduction). Intuitively, this transaction spends all of Al-
ice’s outputs with the first sub-transaction and then does the same for Bob with
the second sub-transaction. Therefore, the optimal cost does not depend on in-
put selection (like the 3rd plan of Figure 4), but requires the combination of two
transactions that implement a single payment, under a specific amount (12).
Definition 11 provides a formal specification of the 2-for-1 logical (algebraic)
transformation.



10 D. Karakostas et al.

S = Alice {50,15,5,2,2 1} 75(6)
Bob {4,3,3,1,1} 12(5)
TotVal =87, Cost =11

1. Alice -5-> Bob 2. Alice -50-> Bob 3. Alice -2,2,1-> Bob
Tus Tus TV,S_i
5 — 507~ 2217~
Cb—U\liﬂ!v 5) n(ﬂuh. 5) O-[Alice, 5) T[(Bub, 5), (Alice, 45) GlAlice. 5) T[(Bon. 5)
5 50 22,1
S S
! G(Alil:e, 5) si U(A“te, 5) ! (Alice, 5)
S S 3
i i i
S,= Alice {50,15,2,2,1} 70(5) S,= Alice {45,15,5,2,2,1} 70(6) S,= Alice {50,155} 70(3)
Bob {5,4,3,3,1,1} 17(6) Bob {5,4,3,3,1,1} 17(6) Bob {5,4,3,3,1,1} 17(6)
TotVal =87, Cost =11 TotVal = 87, Cost = 12 TotVal = 87, Cost=9

Fig. 4. An example of three equivalent transactions that transfer 5 tokens from Alice
to Bob but incur different state costs.

S = Alice {50,15,5,2,2,1} 75(6)
Bob {4,3,3,1,1} 12(5)
TotVal = 87, Cost = 11

4. Alice -17-> Bob -12-> Alice

Lt o T\r,s_u ..
. 43311~ ~ Bab gives Alice 12
Svi /G(Bub 12) T[(Alir:e, 12)
Alice gives Bob 17 - tvs_: » 43311 ;,_,/
g .50.1.?._5.2.2,1/ ~_ oy

cj-(I'v\Iir:e,IT) T[(Bub‘ 17), (Alice, 58’]

S/ 50.15,5,2,2,4
. S
Si a(AIice,lT) D "
s
. ., ! o
s\= Aice(sg}5el) T s = Alice {58,12) 70(2)
Bob {17.4,3,3,1,1} 27(6) Bob {17} 17(1)
TotVal = 87, Cost =7 TotVal = 87, Cost = 3

Fig. 5. A 2-for-1 transaction that transfers 5 tokens from Alice to Bob.

Definition 11. Given a transaction Ty, which transfers an amount V' from party
A to B, the algebraic 2-for-1 transformation creates an equivalent transaction 7o,
which consists of (a) a subtransaction, which transfers V + V. from party A to
B and (b) an outer transaction, which transfers V. from party B to A.

Figure 6 depicts the 2-for-1 algebraic transformation based on an amount
V.. To implement such a scheme we require an atomic operation, where the
grouped transactions are executed simultaneously. One method to implement the



Efficient State Management in Distributed Ledgers 11

atomic transfers is CoinJoin [21], which was proposed for increasing the privacy
in Bitcoin; in CoinJoin, the transaction is constructed and signed gradually by
each party that contributes its inputs. A similar concept is Algorand’s atomic
transfers [14], that groups transactions under a common id.

T

/\\\
/ O(Bnb V) T[[Allce, Vc)
T

S

o n 11
Alice, (Bob, V) g
(Alice, V) (Alice, V+Vc) (Bob, V+Vc)

Alice L.. Bob
Fig. 6. The 2-for-1 algebraic transformation.

Intuitively, 2-for-1 reduces the transaction’s cost by also consuming UTxOs
of the receiving party, instead of only consuming outputs of the sending party.
Specifically, assume the initial state S; = {|A|, |B|}, where |A| denotes the num-
ber of outputs owned by party A. When issuing a payment to B, party A can
consume all outputs and consolidate its remaining value to a single UTxO, the
“change” output. Such transaction results in state Sy = {1,|B| + 1} with cost
cost(Sy) = |B| + 2. If we apply the 2-for-1 transformation, the final state is
St ={1+1,1} with a cost of cost(S}) = 3; if | B| > 1, then cost(S}) < cost(Sy).
Therefore, if the receiving party has multiple outputs, this transformation creates
a transaction with a smaller cost. Consequently, by giving the opportunity to the
receiving party of a transaction to spend also its outputs, the 2-for-1 transforma-
tion always results in a greater shared state cost reduction than the individual
un-transformed transaction in the case where there are no fee constraints and
thus outputs can be spent freely; otherwise it is a cost-based decision.

Transaction Total Ordering and the Last-Payer Heuristic Rule Assume
the following four transactions: (1) T;: Alice Y, Charlie, (2) T»: Bob AEN Charlie,
(3) T5: Eve s, Alice, and (4) Ty: Eve 24, Bob. which are applied on an initial
ledger state S; = {|Alice] = 5,|Bob| = b5, |Charlie| = 2,|Eve| = 3} with cost
cost(S;) = 15; as before, |A| denotes the number of outputs owned by party A
and the state cost is the number of all UTxOs.

A first execution order is as follows: 77 — 15 — T3 — Ty. For simplicity and
without loss of the generality, we assume that when a party pays, it always con-
sumes all available outputs, thus having a single output afterwards (the leftover



12 D. Karakostas et al.

balance). Similarly, when a party gets paid, the number of UTxOs that it owns
increases by one. The state changes with each executed transaction:

i) S; = {|Alice| = 5,|Bob| = 5, | Charlie| = 2,|Fve| = 3}, cost = 15
ii) T : {|Alice| = 1,|Bob| = 5, |Charlie| = 3, |Eve| = 3}, cost = 12
iit) T5 : {|Alice| = 1,|Bob| = 1,|Charlie| = 4, |Eve| = 3}, cost = 8
iv) T3 : {|Alice| = 2,|Bob| = 1, |Charlie| = 4,|Eve| = 1}, cost = 8
v) Ty : {|Alice| = 2,|Bob| = 2,|Charlie| = 4,|Eve| = 1}, cost =9

Under a different order, T3 — T, — 17 — T5, the cost of the final state would be
7. Evidently, the different execution order results in different resulting state cost.
Therefore, by changing the nesting order of the transactions in an expression tree,
different plans may conduct the same payment with different cost.

Intuitively, parties should have the ability to consume outputs that are pro-
duced by the other transactions. For instance, regarding 77 and T3, the order
T3 — T is more cost effective (cost = 10) than 71 — T5 (cost = 11), since Alice
can consume the output created by Eve. Specifically, if in the last transaction
where P participates, either as a sender or a receiver, P is the sender, then it
can minimize its state cost; we call this the last-payer heuristic rule.

Ensuring that each party participates in their last transaction as a sender is
not always feasible. Specifically, conflicts may arise in cyclic situations, where
Py pays P2 (T12) and also P pays P1 (Te1). Here, it is impossible for both Py
and Py to be the sender in their last transaction. Algorithm 1 below, achieves
a transaction ordering based on the last-payer heuristic that bypasses conflicts.
This algorithm has a time complexity of O(M log M) in the number M of par-
ticipants.

We provide a short example to demonstrate the inner-workings of Algo-
rithm 1. Assume the four transactions: Tis : Py — Po, To1 : Py — Py, Ti3 :
P1 — Ps, and Tas : Po — Ps. First (line 2), the algorithm sorts the list of
participants in ascending order of receiving payments, i.e., the more payments a
party receives, the more last-payers will conflict, so it should not be considered
early-on as a last-payer. In our example, where P3 receives the most (2) pay-
ments, this results in order: Py, Pa, P3. Next (lines 4 - 11), for each party P in
the ordered list, the algorithm tries to find a transaction where P pays a party
who has not been already considered as a last-payer (thus avoiding conflicts); if
such transaction exists, it is placed last in the final transaction ordering. Finally,
the list of remaining transactions is inserted to the head of the list (line 12). In
our example, the transaction ordering through each iteration is: 1st iteration :
[T12}, 2nd iteration : [T12, ng], 3rd iteration : [T127 ng], final : [T21; T13, T12, ng].
As per the Last-Payer heuristic rule, each party is the sender in their last trans-
action, except for party Ps which only receives payments.

Assuming k transactions among M parties, Algorithm 1 is executed locally by
each party P; after the M participants have coordinated off-chain the k transac-
tions. Specifically, the wallet of each participant exchanges information, in order
to gather all k& transactions, and then executes the algorithm. The produced
total order of transactions will be expressed as a tree of the form depicted in
figure 2 and will be implemented as an atomic operation in a similar manner



Efficient State Management in Distributed Ledgers 13

Algorithm 1: Transaction ordering algorithm based on the Last-Payer

heuristic rule.

Input: A set of M participants Set[P1, P2, ..., Pum]
Input: A set of k transactions Set[T};],4,j = 1,2,..., M among these participants to be

Vi
ordered. Assume that in transaction T;; party P; pays party P; (P; =% P;). Also
assume that the transactions are not correlated (see definition 10) and thus all
orders are equivalent (see definition 8).

Output: A totally ordered set of transactions [T;;].
1 output +— 0 [FinalOrderOfTransactions] +— 0
[OrderedParticipants] «— Order the input set of participants in an ascending order of the
number of received payments.

8 [ParticipantsLastPaymentAdded] <— 0

4 while [OrderedParticipants] # 0 do

5 Peurrent <— get and remove first item from [OrderedParticipants]

6 Tx <— Find and then remove from Set[T;;], a transaction that Peyrrent pays some

participant P where P ¢ [ParticipantsLastPaymentAdded)

7 if T, == 0 then

8 L continue; /* continue to the next participant */
9 else

10 [FinalOrderofTransactions] <— T, ; /* Put it last in the final ordered list

*/

11 [ParticipantsLastPaymentAdded] <— Peurrent
12 [FinalOrderOfTransactions] <— Set[Ti;] ; /* Add the remaining transactions of the

initial set at the beginning (head) of the ordered list */
13 ouput <— [FinalOrderOfTransactions]

to the 2-for-1 transformation discussed above. Such off-chain coordination for
transaction posting is not unique to our work, e.g., this is also how CoinJoin [21]
works.

Interestingly, the grouping of many transactions into an atomic operation in
general, is a method that can be also aimed at increasing privacy. Therefore, it
is an interesting direction for future research to see if it is possible to combine
both privacy and space efficiency considerations.

3.4 The Transaction Optimization Problem

Using the above ideas, we now formally define the transaction optimization prob-
lem as a typical optimization problem, assuming a set of available input selection
algorithms {Sel;, Sels, ..., Sel;}.

Definition 12. Given N payments between M parties P1,Pa, ..., Py and a
search space S of equivalent (cf. Definition 8), ordered lists of transaction plans
that execute the N payments, called candidate solutions, find the candidate T €
S, such that eval(T) < eval(p), for all p € S. Specifically:

1. A candidate p € S is an ordered list of transaction plans® ||Ty|| — ||Ta|| —
— ||Tx||, where the transaction plan of a transaction T, is the pair:
[| T2 o/ (Logical Expression, Input Selection Algorithm,).

3 We assume that transactions are non-correlated (cf. Definition 10) and all orderings
are equivalent (cf. Definition 8).



14

2.

D. Karakostas et al.

The search space S is defined by all candidates ||Th|| — ||T2|]| — -+ —
[|Tk||, where, for each transaction T;, an input selection algorithm is chosen
from {Sely, Sela, ..., Sel;} and, possibly, the 2-for-1 logical transformation
(cf. Definition 11) is applied.

3. eval evaluates the cost of every candidate p € S (c¢f. Definition 6) as follows:

eval : [Transaction] — LedgerState — Cost,
6’1}(11([T1, TQ, e ,Tk], S””t) =
cost((terRun(Ty). ... .tzRun(T3).txRun(T1))(Simit)) — cost(Sinit)

where cost(S) = |S| is the size of a ledger state (cf. Definition 5) and
(tzRun(Ty). ... .tzRun(Ty).txRun(T1))(Sinit) outputs the final state after
the list of transactions is executed on state Sini: for each plan ||T;||.

Solving the Transaction Optimization Problem We now present a 3-
step, dynamic programming algorithm, which solves the transaction optimization
problem via an exhaustive search and dynamically pruning candidate solutions:

Step 1: Create N transactions T;;, 4,j € [1, M], corresponding to the N pay-

ments (P; &> Pj), as follows: Ti; = (op, v, (Sinit)) 7' (7P, vij(Sinit)) where
Vi; is the amount to be paid from P; to P;. For each transaction 7;;,
find the input selection algorithm in {Sel;, Sels, ..., Sel;} that minimizes
eval(T;j, Sinit). Then, enforce the heuristic rule to create a single output
per recipient address for each transaction. At the end of this step, the algo-
rithm outputs IV transaction plans, i.e., IV pairs of transaction’s Tj; logical
expression and the chosen input selection algorithm:

Tl = ((op; vi; (Sinit)) 7' (7p; vij (Sinit)), Sels)

Step 2: On each transaction plan output of Step 1, perform a 2-for-1 transfor-

mation (cf. Definition 11). This step produces a transformed transaction as
depicted in Figure 7, based on an amount p x V;;, where p is a configuration
parameter of the algorithm, typically in the range 0 < p < 1. Then, for each
of the two transactions that comprise the 2-for-1 transformation, choose the
input selection algorithm that minimizes the eval function and enforce the
heuristic rule of a single output per recipient address. Finally, accept the 2-
for-1 transformed transaction only if its cost (given by ewval) is smaller than
the non-transformed transaction.

At the end of this step, the algorithm outputs & transaction plans, k& > N,
comprising of the 2-for-1 transformed and the non-transformed transactions,
along with their input selection algorithms. Importantly, at this point, the

‘/i'
algorithm has an optimal plan for each individual payment (P; —> P;),
based on an exhaustive search of solutions and cost-driven choices.



Efficient State Management in Distributed Ledgers 15

T

/\\\
n
P Ceei vy {PL. PV
T

/ T |::p il > /T\
Pi, Vij (Pj, Vi) o
(F% Vi) (Pi, Vij+p*Vij) T[[P]‘Vi]-*p"\li]]

vij

Pi —_— Pj

Fig. 7. Applying the 2-for-1 transformation to each separate transaction.

Step 3: In this step, the algorithm finds the optimal execution order for the k
transactions produced in Step 2. Given the k! permutations, the search space
is pruned using the Last-Payer heuristic rule (cf. Section 3.3). Finally, the
algorithm outputs an ordered list of transaction plans that execute the N
payments with a minimum state ledger cost.

As shown, step 2 produces optimal transaction plans, w.r.t. executing the
individual transactions, since it performs an exhaustive search for the minimum-
cost solution. Step 3 though is based on a heuristic (Last-Payer) to prune the
search space, thus only approximating the optimal solution. Future work will
evaluate this rule’s efficiency and explore techniques to achieve optimality.

4 State Efficiency in Bitcoin

We now define the state efficiency property. Our goal is to incentivize users
to minimize the global state, without impacting the system’s functionality. In
that case, if all users are rational, i.e., operate following the incentives, then the
state will be minimized as much as possible. Future work will explore the actual
impact of deploying such incentives in real-world systems.

To achieve state efficiency, a transaction’s fee should be proportional to the
incurred state cost. In other words, the more a transaction increases the ledger’s
state, the higher its fees should be. Specifically, a transaction’s fee should reflect:
i) the transaction’s size, i.e., the cost of storing a transaction permanently on the
ledger and ii) the transaction’s state cost. A distributed ledger’s fee model should
aim at incentivizing users to minimizing both storage types, i.e., the distributed
ledger and the global state.

First, we define the fee function F, i.e., the function that assigns an (integer)
fee on a transaction, given a ledger state: F': Transaction — LedgerState — Int.
Following, Definition 13 describes state efficiency. This property instructs the fee
function to (monotonically) increase fees, if a transaction increases the state. In-
tuitively, between two equivalent transactions, the transaction that incurs greater
state cost should also incur a larger fee.



16 D. Karakostas et al.

Definition 13. A fee function F is state efficient if
VS € SV, 12 € T | 11 =72 A costTa(11,S) > costTa(re,S) : F(11,8) > F(12,S)
for transaction cost function (cf. Definition 6) and equivalence (cf. Definition 7).

Evidently, if the utility of users is to minimize transaction fees, a state efficient
fee function ensures that they are also incentivized to minimize the global state.
Finally, Definition 14 sets narrow state efficiency, a special case of state efficiency
which compares equivalent transactions that differ only in their inputs.

Definition 14. A fee function F is narrow state efficient if

VS € SVTl,TQ ceT |
T1 = 7o A T1.0utputs = To.outputs A costTz(my,S) > costTr(ra,S) :
F(r,S8) > F(2,S)

for transaction cost function (cf. Definition 6) and equivalence (cf. Definition 7).

Bitcoin’s State Management. Bitcoin’s consensus model does not consider fees.
Specifically, the user decides a transaction’s fees and the miners choose whether
to include a transaction in a block. Therefore, it has been stipulated that the
level of fees is the balance between the rational choices of miners, who supply
the market with block space, and users, who demand part of said space [3].

In practice, most users follow the client software’s choice even when not
needed [24], e.g., when blocks are not full. Similarly, miners usually follow the
hard-coded software rules and may accept even zero-fee transactions. The refer-
ence rules of the Bitcoin Wiki [3] define the fee rate x, which is the fraction of
fees per transaction size, Miners sort transactions based on this metric and solve
the Knapsack problem to fill a new block with transactions that maximize it.
Some notable alternatives also focus on fee rate [10,29], while reference rules [3]
used to also take into account the UTxO age.

As before, a transaction consists of inputs and outputs, i.e., old UTxOs which
are spent and newly-created UTxOs. Inputs and UTxOs have a fixed size ¢ and
w respectively.* The size of a transaction is the sum of its inputs and outputs,
i.e., is a linear combination of ¢ and w, while a transaction’s cost is the difference
between the number of its UTxOs minus its inputs. Bitcoin’s fee function is
F = j3 - size(7), where size(7) is 7’s size in bytes and 3 is a fixed fee per byte.?

We break the fee efficiency of F' via a counterexample. Assume two transac-
tions which are applied on the same ledger state S; for ease of notation, in the
rest of the section F(7) denotes F(7,S). First, 71 has 1 input and 1 output, so
its state cost is costTx(7y,S) = 0 and its fee is F(11) = 8- (t+w). Second, 75 has
2 inputs and 1 output, i.e., its state cost is costTx(72, S) = —1, since it decreases

4 This assumption slightly diverges from the real-world, where UTxOs are typically of
varying size depending on the operations in the ScriptPubKey.
5 B =0.0067$/byte [September 2020] (https://bitinfocharts.com)


https://bitinfocharts.com

Efficient State Management in Distributed Ledgers 17

the state; however, its fee is F/(12) = 8- (2-t+w) = F(71) + 8- ¢. Thus, although
costTx(71) > costTx(mz), 72’s fee is higher, since it is larger.

A better alternative fee function is the following: F' = f - size(7) + ¢ -
costTx(7, S). Note that this is state-efficient in our model for a sufficiently small
value of § (cf. Section 4.1). Observe with this function, when increasing the
UTxO set, a user needs to pay an extra fee ¥ per UTxO. Given this change,
the reference rules are updated so that, instead of only the fee rate, miners
use the scoring function: score(r) = fees(T)_;ii:((f‘)th(T’S)7 where fees(7) are 7’s
total fees. In market prices, 1 byte of RAM costs $3.35 - 1072 [23]. The av-
erage size of a Bitcoin UTxO is 61 Bytes [9], so a single Bitcoin UTxO costs
W =61-3.35-107% = $2 - 10~7. Given 10000 full nodes®, which maintain the
ledger and keep the UTxO in memory, the cost becomes ) = $0.002; equivalently,
denominated in Bitcoin”, the cost of creating a UTxO is ¢ = 22 satoshi.

This solution incorporates the operational costs of miners, thus it is the
rational choice for miners who aim at maximizing their profit. Observe that, after
subtracting the fees that relate to UTxO costs, the scoring mechanism behaves
the same as the one currently used by Bitcoin miners. Therefore, if users wish to
prioritize their transactions, they would again simply increase their transaction’s
fees; in that case, the UTxO portion of the fees (i.e., 1) - costTx(7, S)) remains the
same, hence higher fees result in a higher score, similar to the existing mechanism.
Also we note that this mechanism is directly enforceable on Bitcoin without the
need of a fork.

4.1 A State efficient Bitcoin.

Intuitively, to make F state efficient we force the creator of a UTxO to subsidize
its consumption, i.e., to pay the user who later consumes it. Our fee function
is again: F' = 8 - size(7) + v - costTx(7, S). Assume two transactions 71, 7o with
i1, 19 inputs and o1, 0o outputs respectively:

COStTX(Tl) > COStTX(TQ) S 01— 11 > 03 — 1y 09 — 01 < lg— i1 (1)
F' is state efficient (cf. Definition 13) if:

F’(Tl) >F/(T2) =
size(m1) - B+ costTx(7y) - b > size(r2) - 5 + costTx(72) - ¢ =
(i1-t+o01-w)-B4+(01—101) > (ig-t+o02 -w) B+ (02 —ia2) =
(01 —id1) p—(02—i2) ¥ >(iz-t+orw)-B—(i1-t+01 w) B=
(iz—i1+01—02)'1/)>((Z'Q—il)'L—F(OQ—Ol)'w)'ﬂg
(ig—il)'b+(02—01)'w.
v> (iz —i1) — (02 — 01)

(2)

5 https://bitnodes.io [July 2020)
" 1BTC = $9000 [July 2020] (https://coinmarketcap.com)


https://bitnodes.io
https://coinmarketcap.com

18 D. Karakostas et al.

If F’ is narrow state efficient, then 0; = 0o and the inequality is simplified:

V> p (3)

We turn again to the previous example. For transaction 71, with 1 input
and 1 output, F'(11) = (¢t + w) - § and for transaction 7, with 2 inputs and 1
output, F'(m3) = (2-t+w)- B —1% = F'(11) + B - ¢+ — ¥. Since Inequalities 2
and 3 ensure that 1 > ¢ - 3, the size fee of the extra input in 75 is offset by the
extra fee 1, which is paid by the user who creates it. Again to evaluate these
variables we consider market prices. The size of a typical, pay-to-script-hash or
pay-to-public-key-hash, UTxO is 34 Bytes [4], while the size of consuming it
is 146 bytes. Therefore, to make and make present-day Bitcoin (narrow) state
efficient, we can set w = 34, + = 146, 8 = 0.0067%, and thus ¢ > 0.09788$.

However, this approach presents a number of challenges. To enforce F”, the
fee policy should be incorporated in the consensus protocol and a transaction’s
validity will depend on its amount of fees. As long as F'(7) > 0, i.e., a transac-
tion cannot have negative fees, the fee function can be enforced via a soft fork.
Specifically, this change is backwards compatible, as miners that do not adopt
this change will still accept transactions that follow the new fee scheme. However,
if costTx(7) <« 0 and possibly F'(7) < 0, to implement F’ we need to establish
a “pot” of fees. When a user creates 7 with fee F’ = 3 - size(7) + 1 - costTx(7, S),
the first part (8 - size(7)) is awarded to the miners as before. The second part
(¢ - costTx(T,S)) is deposited to (or, in case of negative cost, withdrawn from)
the pot. In case of negative cost, the transaction defines a special UTxO for
receiving the reimbursement. At any point in time, the size of the pot is directly
proportional to the UTxO set. Observe that the miners receive the same rewards
as before, so their business model is not affected by this change. Finally, the cost
of flooding the system with UTxOs increases by ¥ per UTxO which, depending
on 1, can render attacks ineffective.

5 Conclusion

Our paper explores optimizations that minimize the state which is shared among
the participants of a distributed ledger system. We compose a framework for
optimizing transactions on multiple levels, including heuristic rules, algebraic
transformations, and alternative sub-routines. Next, we formally define the op-
timization problem of constructing state efficient transactions and present an
algorithm that approximates the optimal solution. Finally, we explore how fees
can incentivize proper state management and propose an amended, state efficient
fee function for Bitcoin. Our work also proposes various questions. For instance,
complex cost models could also consider a UTxO’s in-memory lifespan. Further-
more, future work could explore the implications of using a memory hierarchy,
instead of storing the entire state in memory.

Acknowledgements. This research was partially supported by H2020 project
PRIVILEDGE #780477.



Efficient State Management in Distributed Ledgers 19

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Andresen, G.: Utxo uh-oh... (2015), http://gavinandresen.ninja/utxo-uhoh
Bitcoin: July 2015 flood attack (2015), https://en.bitcoin.it/wiki/July_2015_
flood_attack

Bitcoin: Miner fees (2020), https://en.bitcoin.it/wiki/Miner_fees

Bitcoin:  Protocol documentation (2020), https://en.bitcoin.it/wiki/
Protocol_documentation

Boneh, D., Biinz, B., Fisch, B.: Batching techniques for accumulators with ap-
plications to IOPs and stateless blockchains. Cryptology ePrint Archive, Report
2018/1188 (2018), https://eprint.iacr.org/2018/1188

Chepurnoy, A., Kharin, V., Meshkov, D.: A systematic approach to cryptocurrency
fees. In: Zohar, A., Eyal, 1., Teague, V., Clark, J., Bracciali, A., Pintore, F., Sala,
M. (eds.) FC 2018 Workshops. Lecture Notes in Computer Science, vol. 10958,
pp- 19-30. Springer, Heidelberg, Germany, Nieuwpoort, Curacao (Mar 2, 2019).
https://doi.org/10.1007/978-3-662-58820-8_2

Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: A cryptocurrency with state-
less transaction validation. Cryptology ePrint Archive, Report 2018/968 (2018),
https://eprint.iacr.org/2018/968

Delgado-Segura, S., Pérez-Sola, C., Navarro-Arribas, G., Herrera-Joancomarti, J.:
Analysis of the bitcoin UTXO set. Cryptology ePrint Archive, Report 2017/1095
(2017), https://eprint.iacr.org/2017/1095

Delgado-Segura, S., Pérez-Sola, C., Navarro-Arribas, G., Herrera-Joancomarti, J.:
Analysis of the bitcoin UTXO set. In: Zohar, A., Eyal, 1., Teague, V., Clark, J.,
Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018 Workshops. Lecture Notes in
Computer Science, vol. 10958, pp. 78-91. Springer, Heidelberg, Germany, Nieuw-
poort, Curacao (Mar 2, 2019). https://doi.org/10.1007/978-3-662-58820-8_6
Dos Santos, S., Chukwuocha, C., Kamali, S., Thulasiram, R.K.: An efficient miner
strategy for selecting cryptocurrency transactions. In: 2019 IEEE International
Conference on Blockchain (Blockchain). pp. 116-123 (2019)

Dryja, T.: Utreexo: A dynamic hash-based accumulator optimized for the bitcoin
UTXO set. Cryptology ePrint Archive, Report 2019/611 (2019), https://eprint.
iacr.org/2019/611

Easley, D., O’Hara, M., Basu, S.: From mining to markets: The evolution of bitcoin
transaction fees. Journal of Financial Economics 134(1), 91-109 (2019)

Frost, E., van Wirdum, A.: Bitcoin’s growing utxo problem and how
utreexo can help solve it (2019), https://bitcoinmagazine.com/articles/
bitcoins-growing-utxo-problem-and-how-utreexo-can-help-solve-it
Fustino, R.: Algorand atomic transfers (2019), https://medium.com/algorand/
algorand-atomic-transfers-a405376aad44

Ichiba Hotchkiss, G.: The 1.x files: The state of stateless ethereum (2019), https://
blog.ethereum.org/2019/12/30/ethlx-files-state-of-stateless-ethereum
Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1), 121-123 (1996).
https://doi.org/10.1145/234313.234367, https://doi.org/10.1145/234313.
234367

Jiang, S., Li, J., Gong, S., Yan, J., Yan, G., Sun, Y., Li, X.: Bzip: A compact data
memory system for utxo-based blockchains. In: 2019 IEEE International Confer-
ence on Embedded Software and Systems (ICESS). pp. 1-8. IEEE (2019)
Karakostas, D., Karayannidis, N., Kiayias, A.: Efficient state management in
distributed ledgers. Cryptology ePrint Archive, Report 2021/183 (2021), https:
//eprint.iacr.org/2021/183


http://gavinandresen.ninja/utxo-uhoh
https://en.bitcoin.it/wiki/July_2015_flood_attack
https://en.bitcoin.it/wiki/July_2015_flood_attack
https://en.bitcoin.it/wiki/Miner_fees
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://eprint.iacr.org/2018/1188
https://doi.org/10.1007/978-3-662-58820-8_2
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2017/1095
https://doi.org/10.1007/978-3-662-58820-8_6
https://eprint.iacr.org/2019/611
https://eprint.iacr.org/2019/611
https://bitcoinmagazine.com/articles/bitcoins-growing-utxo-problem-and-how-utreexo-can-help-solve-it
https://bitcoinmagazine.com/articles/bitcoins-growing-utxo-problem-and-how-utreexo-can-help-solve-it
https://medium.com/algorand/algorand-atomic-transfers-a405376aad44
https://medium.com/algorand/algorand-atomic-transfers-a405376aad44
https://blog.ethereum.org/2019/12/30/eth1x-files-state-of-stateless-ethereum
https://blog.ethereum.org/2019/12/30/eth1x-files-state-of-stateless-ethereum
https://doi.org/10.1145/234313.234367
https://doi.org/10.1145/234313.234367
https://doi.org/10.1145/234313.234367
https://eprint.iacr.org/2021/183
https://eprint.iacr.org/2021/183

20

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.
30.

31.

32.

33.

34.

D. Karakostas et al.

Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 4(3), 382-401 (1982)
Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Ray, L., Li, N., Kruegel, C. (eds.) ACM CCS 2015: 22nd Con-
ference on Computer and Communications Security. pp. 706-719. ACM Press, Den-
ver, CO, USA (Oct 12-16, 2015). https://doi.org/10.1145/2810103.2813659
Maxwell, G.: Coinjoin: Bitcoin privacy for the real world (2013), https://
bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902

Maxwell, G.: A deep dive into bitcoin core v0.15 (2017), http://diyhpl.us/wiki/
transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
McCallum, J.C.: Historical memory prices 1957+ (2020), https://en.bitcoin.
it/wiki/Miner_fee://jcmit.net/memoryprice.htm

Moser, M., Bohme, R.: Trends, tips, tolls: A longitudinal study of bitcoin trans-
action fees. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015
Workshops. Lecture Notes in Computer Science, vol. 8976, pp. 19-33. Springer,
Heidelberg, Germany, San Juan, Puerto Rico (Jan 30, 2015). https://doi.org/
10.1007/978-3-662-48051-9_2

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

Nicolas, H.: The economics of bitcoin transaction fees. SSRN Electronic Journal
(02 2014). https://doi.org/10.2139/ssrn.2400519

Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM (JACM) 27(2), 228-234 (1980)

Pérez-Sola, C., Delgado-Segura, S., Navarro-Arribas, G., Herrera-Joancomart, J.:
Another coin bites the dust: An analysis of dust in UTXO based cryptocurrencies.
Cryptology ePrint Archive, Report 2018/513 (2018), https://eprint.iacr.org/
2018/513

Rizun, P.R.: A transaction fee market exists without a block size limit (2015)
Todd, P.: Making utxo set growth irrelevant with low-latency delayed txo commit-
ments (2016), https://petertodd.org/2016/delayed-txo-commitments

Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the bitcoin ecosystem. In: Bohme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014 Workshops. Lecture Notes in Computer Science, vol. 8438, pp. 57-71.
Springer, Heidelberg, Germany, Christ Church, Barbados (Mar 7, 2014). https:
//doi.org/10.1007/978-3-662-44774-1_5

Wiki, B.: How to cheaply consolidate coins to reduce miner fees (2020),
https://en.bitcoin.it/wiki/How_to_cheaply_consolidate_coins_to_
reduce_miner_fees

Wilcke, J.: The ethereum network is currently undergoing
a dos attack (2016), https://blog.ethereum.org/2016/09/22/
ethereum-network-currently-undergoing-dos-attack/

Zahnentferner, J.: Chimeric ledgers: Translating and unifying utxo-based and
account-based cryptocurrencies. Cryptology ePrint Archive, Report 2018/262
(2018), https://eprint.iacr.org/2018/262


https://doi.org/10.1145/2810103.2813659
https://bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902
https://bitcointalk.org/index.php?topic=279249.msg2983902#msg2983902
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
http://diyhpl.us/wiki/transcripts/gmaxwell-2017-08-28-deep-dive-bitcoin-core-v0.15/
https://en.bitcoin.it/wiki/Miner_fee://jcmit.net/memoryprice.htm
https://en.bitcoin.it/wiki/Miner_fee://jcmit.net/memoryprice.htm
https://doi.org/10.1007/978-3-662-48051-9_2
https://doi.org/10.1007/978-3-662-48051-9_2
https://doi.org/10.2139/ssrn.2400519
https://eprint.iacr.org/2018/513
https://eprint.iacr.org/2018/513
https://petertodd.org/2016/delayed-txo-commitments
https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-662-44774-1_5
https://en.bitcoin.it/wiki/How_to_cheaply_consolidate_coins_to_reduce_miner_fees
https://en.bitcoin.it/wiki/How_to_cheaply_consolidate_coins_to_reduce_miner_fees
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://eprint.iacr.org/2018/262

	 Efficient State Management in Distributed Ledgers 
	Introduction
	A UTxO Model
	Transaction Optimization
	Transaction Logical Operators - Ledger State Algebra
	A Transaction Optimization Framework
	Transaction Optimization Techniques
	The Transaction Optimization Problem

	State Efficiency in Bitcoin
	A State efficient Bitcoin.

	Conclusion


