2003.13786v1 [cs.DS] 20 Mar 2020

arxXiv

Generating Weakly Chordal Graphs from Arbitrary Graphs

Sudiksha Khanduja Aayushi Srivastava
School of Computer Science School of Computer Science
University of Windsor University of Windsor
Windsor, Canada Windsor, Canada
Md. Zamilur Rahman Asish Mukhopadhyay
School of Computer Science School of Computer Science
University of Windsor University of Windsor
Windsor, Canada Windsor, Canada
Abstract

We propose a scheme for generating a weakly chordal graph from a randomly generated
input graph, G = (V, E). We reduce G to a chordal graph H by adding fill-edges, using the
minimum vertex degree heuristic. Since H is necessarily a weakly chordal graph, we use an
algorithm for deleting edges from a weakly chordal graph that preserves the weak chordality
property of H. The edges that are candidates for deletion are the fill-edges that were inserted
into G. In order to delete a maximal number of fill-edges, we maintain these in a queue. A
fill-edge is removed from the front of the queue, which we then try to delete from H. If this
violates the weak chordality property of H, we reinsert this edge at the back of the queue. This
loop continues till no more fill-edges can be removed from H. Operationally, we implement
this by defining a deletion round as one in which the edge at the back of the queue is at the
front. We stop when the size of the queue does not change over two successive deletion rounds
and output H.

1 Introduction

A graph G = (V, E) is said to be weakly chordal if neither G nor its complement, G, has an induced
chordless cycle on five or more vertices (a hole). Figure |I| shows an example of a weakly chordal
graph, G, and its complement, G.

Weakly chordal graphs were introduced by Hayward in [6] as a generalization of chordal graphs,
who showed that these graphs form a subclass of the perfect graphs. An alternate definition that
does not refer to the complement graph is that G does not contain a hole or an anti-hole, which
is the complement of a hole. Berry et al. [2] gave a very different and interesting definition of a
weakly chordal graph as one in wich every edge is LB-simplicial. They also proposed the open
problem of generating a weakly chordal graph from an arbitrary graph. A solution to this problem
is the subject of this paper.

U1 () V2 U5

Vg U3

Ve U3

Vs (1 V4 (%1
(a) G (b) G

Figure 1: Weakly chordal graph [11]

Early work on graph generation foucussed on creating catalogues of graphs of small sizes. Cameron
et al. [?], for instancce, published a catalogue of all graphs on 10 vertices. The underlying mo-
tive was that such repositories were useful for providing counterexamples to old conjectures and
coming up with new ones. Subsequent focus shifted to generating graphs of arbitrary size, labeled
and unlabeled, uniformly at random. As such a generation method, involved solving a counting
problem, research was focused to classes of graphs for which the counting problem could be solved
and yielded polynomial time generation algorithms. Among these were graphs with prescribed de-
gree sequence, regular graphs, special classes of graphs such as outerplanar graphs, maximal planar
graphs. See [I3] for a survey work prior to 1990.

As stated in [II]], there are many situations where we would like to generate instances of these
to test algorithms for weakly chordal graphs. For instance, in [I0] the authors generate all linear
layouts of weakly chordal graphs. A generation mechanism can be used to obtain test instances
for this algorithm. It can do the same for optimization algorithms, like finding a maximum clique,
maximum stable set, minimum clique cover, minimum coloring, for both weighted and unweighted
versions, for weakly chordal graphs propsed in [7] and their improved versions in [8] [12].

If the input instances for a given algorithm are from a uniform distribution, a uniform random
generation provides test instances to obtain an estimate of the average run-time of the algorithm.
When the distribution is unknown, the assumption of uniform distribution might still help. Oth-
erwise, we might look upon a generation algorithm as providing test-instances for an algorithm.
With this motive, an algorithm for generating weakly chordal graphs by adding edges incrementally
was recently proposed in [I1]. An application of this generation algorithm would be to obtain test-
instances for an algorithm for enumerating linear layouts of a weakly chordal graph proposed in [10].

The next section of the paper contains some common graph terminology, used subsequently. The
following section contains details of our algorithms, beginning with a brief overview. In the con-
cluding section, we summarize the salient aspects of the paper and suggest directions for further
work.

2 Preliminaries

We will assume that G is a graph on n vertices and m edges, that is, |V| = n and |E| = m. The
neighborhood N (v) of a vertex v is the subset of vertices {u € V' | (u,v) € E} of V. The degree
deg(v) of a vertex v is equal to |[N(v)|. A vertex v of G is simplicial if the induced subgraph on
N (v) is complete (alternately, a clique). A path in a graph G is a sequence of vertices connected
by edges. We use Py(k > 3) to denote a chordless path, spanning & vertices of G. For instance, a
path on 3 vertices is termed as a P3 and, similarly, a path on 4 vertices is termed as a Py. If a path
starts and ends in the same vertex, the path is a cycle denoted by C}, where k is the length of the
cycle. A chord in a cycle is an edge between two non-consecutive vertices in the cycle.

d a
c e C (&
b f f b
[)
a d
(d) G (b) G

Figure 2: Complement of a chordal graph with a chordless 4-cycle [11]

V4 Vs V2 Vs

(a) G (b) G
Figure 3: Complement of a five cycle is also a five cycle

G is chordal if it has no induced chordless cycles of size four or more. However, as Figure [2| shows,
the complement of a chordal graph G can contain an induced chordless cycle of size four. The
complement cannot contain a five cycle though, as the complement of a five cycle is also a five cycle
(see Figure . The above example makes it clear why chordal graphs are also weakly chordal.

In this paper, we propose an algorithm that generates a weakly chordal graph from an arbitrary
input graph. It is built on top of a subroutine that maintains the weak chordality of a graph G,
under edge deletion.

3 Arbitrary Graph to Weakly Chordal Graph

3.1 Overview of the Method

We start by generating a random graph G on n vertices and m edges. In a preprocessing step we
check if G is weakly chordal, using the LB-simpliciality recognition algorithm due to [3]. If G is
weakly chordal, we stop. Otherwise, we proceed as follows. We first reduce G to a chordal graph H
by introducing additional edges, called fill-edges, using the minimum degree vertex (mduv, for short)
heuristic [5]. The mdv heuristic adds edges so that a minimum degree vertex in the current graph
is simplicial. Each fill-edge is also entered into a queue, termed a fill-edge queue, F'QQ. These fill-
edges are potential candidates for subsequent deletion from H. Since H is chordal, it is necessarily
weakly chordal. We propose an algorithm for deleting edges from this weakly chordal graph to
remove fill-edges, maintaining the weak chordality property. A fill-edge is deleted only if does not
create a hole or an anti-hole in the resulting graph and we have developed criteria for detecting this.
A fill-edge is removed from the front of the queue, which we then try to delete. If we do not succeed
we put it at the back of the queue. We keep doing this until no more fill edges can be removed.
Operationally, we implement this by defining a deletion round as one in which the fill-edge at the
back of the queue is at the front. We stop when the size of the queue does not change over two
successive deletion rounds. Figure [4]is a pictorial illustration of the flow of control.

Arbitrary Graph

Yes No

|s Weakly Chordal?

Add FiII-Edg&Sl—

Chordal Graph

Ddete Fin-Edgesl

Weakly Chordal Graph

Figure 4: Overview of process

3.2 Random Arbitrary Graph

To generate a random graph, we invoke an algorithm by Keith M. Briggs, called ‘dense_gnm_random_graph’.
This algorithm, based on Knuth’s Algorithm S (Selection sampling technique, see section 3.4.2
of [9]), takes the number of vertices, n and the number of edges, m, as input and produces a ran-
dom graph. For a given n, we set m to a random value lying in the range between n—1 and @
The output graph may be disconnected, in which case we connect the disjoint components, using

additional edges.

3.3 LB-simpliciality test
In [3] Berry et al. proved the following result:

Theorem 3.1 [3] A graph is weakly chordal if and only if every edge is LB-simplicial.

We apply this recognition algorithm to the random graph generated by the previous step and
continue with the next steps only if the recognition algorithm fails. Otherwise, we return G.

3.4 Arbitrary Graph to Chordal Graph

The arbitrary graph G is embedded into a chordal graph H by the addition of edges and the
process is known as triangulation or fill-in. Desirable triangulations are those in which a minimal
or a minimum number of edges is added. A triangulation H = (V, EUF) of G = (V, E) is minimal
if (V,E U F") is non-chordal for every proper subset F” of F. In a minimum triangulation the
number of edges added is the fewest possible. Berry at al. [I] proposed an algorithm, known as
LB-Triangulation, for the minimal fill-in problem. LB-Triangulation works on any ordering a of
the vertices, and produces a fill that is provably exclusion-minimal. In our algorithm, we have used
the mdv heuristic [5], as our experiments have shown that this adds fewer fill-edges as compared to
LB-Triangulation. We explain this heuristic in the next section.

3.4.1 The Minimum Degree Vertex Heuristic

Let H = (V, E U F) be the graph obtained from G = (V| E), where F is set of fill-edges, folllowing
these steps. We first assign G to H and then prune from G all vertices of degree 1. From the
remaining vertices of G we choose a vertex v of minimum degree (breaking ties arbitrarily) and
turn the neighborhood N (v) of v into a clique by adding edges. These are fill-edges that we add
to the edge set of H, as well as to the fill-queue, F'Q. Finally, we remove from G, the vertex v and
all the edges incident on it. We repeat this until G is empty. The graph H is now chordal and is
identical with the initial graph G, sans degree 1 vertices, and with fill edges added. We illustrate
this with an example.

U1 V1

N U3 N U3
Vs Us
Vo Vo A
(%) U2
(a) Arbitrary graph (b) Chordal Graph

Figure 5: Arbitrary graph to chordal graph

The initial graph G is shown in Fig. and the graph H with all fill-edges added is shown in
Fig. In the initial graph G both v; and vs have minimum degree. We break tie in favour of
vs. Since the induced subgraph on N(vs) is already a clique no fill-edges are added and G is set

to G — {vs}. In the reduced graph G, vy is of minimum degree and the induced graph on N(vq) is
turned into a clique by adding {vs,v4} as a fill- edge, which is also added to H. Since the reduced
graph G — {v1} is a clique, we can pick the vertices vg, v, v3,v4 in an arbitrary order to reduce
G to an empty graph, without introducing any further fill edges into H. The formal algorithm is
described below:

Algorithm 1 ArbitraryToChordal

Input: An arbitrary graph G = (V, E)

Output: Returns a chordal graph H = (V, EU F) and fill-edge queue FQ

: H+— G

Delete all vertices of degree 1 from G

Sort V' in ascending order of degrees

Choose a vertex v of minimum degree

Turn N (v) of v into a clique by adding edges, which are added to the edge set of H and to the
fill-queue, FQ

Remove the vertex v from G and all the edges incident on it

7: Repeat steps [3] to [0 until G is empty

@

3.5 Chordal Graph to Weakly Chordal Graph

Since the chordal graph H obtained from the previous stage is also weakly chordal, we apply an edge
deletion algorithm to H that preserves weak chordality. The edges that are candidates for deletion
are the ones that have been added by the mdv heuristic. Each candidate edge is temporarily deleted
from H, and we check if its deletion creates a hole or an anti-hole in H. If not, we delete this edge.
The process is explained in details in the subsequent sections.

3.5.1 Fill-Edge Queue

As mentioned earlier, each edge added to convert an arbitrary input graph into chordal graph is
called a fill-edge. In order to delete as many fill-edges as possible, we maintain a queue of fill-edges,
FQ. A fill-edge is removed from the front of this queue, which we then try to delete from H. If we
do not succeed because a hole or anti-hole is created, we put it at the back of the queue. We keep
doing this until no more fill-edges can be removed from F'Q.

3.5.2 Detecting Holes

To reiterate, a hole in a graph G is an induced chordless cycle on five or more vertices. Since, a
graph is weakly chordal if it is (hole, anti-hole)-free [4], it is crucial to detect if any hole is formed
by the deletion of an edge. For the class of weakly chordal graphs, since the biggest cycle allowed
is of size four, the holes can be formed either by a combination of two P;’s or a by a combination
of a P3 and a Py, as illustrated in Fig. @

To detect the formation of a hole in H, we pick an edge e = {u,v} of H and temporarily delete
it. Now, we check if this deletion creates a hole in H. To detect a hole, we perform a breadth-first

V1 V1
Vg Vg Vg

U3

Uy Uy

(a) One Py and one (b) Two Py
Ps

Figure 6: Detecting Holes

search in H with u as the source vertex and find all chordless P; and P, paths between u and v.
A hole can be created in two distinct ways: (i) by a disjoint pair of Py, with six distinct vertices
between them such that there exist no chord joining an internal vertex on one P, to an internal
vertex on the other; this we call a hole on two Pys; (ii) by a disjoint pair of P35 and P between u
and v, with five distinct vertices between them, such that there exist no chord joining an internal
vertex on the Py to the internal vertex of the Ps; this we call a hole on a P3 and a Pjy.

3.5.3 Antiholes

An anti-hole in a graph is, by definition, the complement of a hole [4]. An anti-hole configuration in
a weakly chordal graphs has the structure shown in Fig. [/l This is an induced graph on six distinct
vertices each of which is of degree three.

U1

Vo Vg

V4

Figure 7: Antihole

3.5.4 Detecting Antiholes

To detect an anti-hole configuration, we pick an edge {u,v} and temporarily delete it from the
graph. Next, we check if deleting the edge {u,v} creates an anti-hole configuration in the graph.
To detect this, we do breadth-first search with u as the source vertex to find all chordless P; and P,
paths between v and v. An anti-hole configuration is formed by a combination of two P3; and one
P, such that the induced graph on the six vertices that define these paths, are uniformly of degree

three and there exists a chord from the internal vertex of each Ps to one of the internal vertices in
the Py. For example, in Fig. (7} {v1, va, v5,v4} is a Py, {v1,v3,v4} and {v1,ve,v4} are two Ps paths.
There exists exactly one chord from vy to vs and exactly one from vy to vg and, in the induced
graph on these six vertices, every vertex has degree three, making it an anti-hole configuration.

3.5.5 Proposed Algorithm

We use an algorithm for deleting edges from a weakly chord graph to remove fill edges, maintaining
its weak chordality property. In order to delete as many fill-edges as possible, a fill-edge {u,v} is
removed from the front of the fill-queue, which we then try to delete from H. If we do not succeed,
we put it at the back of the queue. We keep doing this until no more fill-edges can be removed.
Operationally, we implement this by defining a deletion round as one in which the edge at the back
of the queue is at the front. One deletion round comprises of picking an edge from the start of the
queue and deleting it from H. Now we check if the deletion of {u,v} creates a hole or an antihole
in H. If so, we do not delete the edge {u,v} and add it back to the fill-queue. Otherwise, we delete
the edge from H and also remove it from te fill-queue F'(Q. We stop when the size of F'@Q does not
change over two successive deletion rounds.

Algorithm 2 ChordalToWeaklyChordal

Input: A chordal graph H = (V, E U F) with fill edge queue F’
Output: A weakly chordal graph G,
: T+ H > Make a copy of H
. FQ + fill-edges of H
: prevSize < 0
: newSize + |FQ)|
: while (prevSize # newSize && newSize # 0) do > Check size of F'Q) over two deletion
rounds

prevSize + newSize

for (each edge{u,v} infill-queue, FQ) do

Delete edge {u,v} from T
if (Hole or Antihole Detected) then

10: Do not delete edge from graph H, add edge back to temporary graph 7', and to the

back of the queue FQ
11: else
12: Delete edge {u, v} from graph H
13: end if
14: end for
15: newSize « |FQ)|
16: end while
17: Gy — H
18: return G,

Tt s W N

For example in Fig. |8 a random arbitrary graph on 6 vertices and 8 edges is obtained. It is converted
into a chordal graph by inserting two additional edges. These two additional edges added are put
in the fill-edge queue [{v2,v4}, {v1,v4}]. Maintain a temporary copy of chordal graph G in T. The

deletion algorithm begins by picking first edge {v2,v4} in the fill-edge queue and temporarily deletes
it from graph T to check for hole and antihole configurations. Since deleting {vs,v4} does not give
rise to any hole or anti-hole configurations, {vq,v4} is permanently deleted from starting graph H
which is now a weakly chordal graph. Now the updated fill-edge queue is [{v1,v4}]. The deletion
algorithm now picks the first edge in {v1,v4} in the fill edge queue and temporarily deletes it from
graph T to check for hole and antihole configurations. Since deleting {v1,v4} gives rise to a hole
configuration on one Py {vy,vs,v3,v4} and one P3 {v1,vs,v4}, {v1,v4} is not permanently deleted
from H. Since the queue is now empty, the graph G, returned by the algorithm is weakly chordal
with a small subset of fill-edges added to the original graph G.

(%4 U1 Al
U2 Vs U2 U5 U2 Us
U3 Ve U3 ; Ve U3 ; Ve
V4 V4 V4
(a) Arbitrary graph (b) Chordal graph (c) Weakly chordal
@) (H) graph (H = H —
{v2, 14} = Gw)

Figure 8: Arbitrary graph to weakly chordal graph

For another example, consider Figure a random arbitrary graph on 6 vertices and 9 edges
is obtained. It is converted into a chordal graph H (see Figure by adding three additional
edges. These three additional edges added are put in the fill-edge queue [{v1,v5}, {ve, v}, {v1, va}].
Maintain a temporary copy of the chordal graph H in T'. The deletion algorithm begins by picking
first edge {v1,v5} in the fill edge queue and temporarily deletes it from graph T to check for
hole and antihole configurations. Since deleting {v1, vs} does not give rise to any hole or anti-hole
configurations, {vy,vs} is permanently deleted from starting graph H which is now a weakly chordal
graph shown in Figure Now the updated fill-edge queue is [{va,v4}, {v1,v4}]. The deletion
algorithm now picks the first edge in {vy, v4} in the fill-edge queue and temporarily deletes it from
graph T to check for hole and anti-hole configurations. Since deleting {vs,v4} does not give rise to
any hole or anti-hole configuration, {vs,v4} is permanently deleted from starting graph H, which is
now a weakly chordal graph. Now the updated fill-edge queue is [{v1,v4}]. The deletion algorithm
now picks the first and only edge {v1,v4} in the fill-edge queue and temporarily deletes it from
graph T to check for a hole or an anti-hole configuration. Since deleting {v1,v4} gives rise to an
anti-hole configuration on two Ps paths {vy, vs, v4},{v1, ve,v4} and one Py {v1, va, v5,v4}, the edge
{v1,v4} is not permanently deleted from starting graph H. Since the queue is now empty, the
graph G,, returned by the algorithm is weakly chordal with a small subset of fill-edges added to
the original graph G as shown in Figure

V4
(a) Arbitrary graph (G)

U1
Us

Uy
(¢c) Chordal graph (H =
H — {v1,vs5})

(b) Chordal graph (H)
U1
() 4‘ Vg
Us I

Uy

(d) Weakly chordal graph
(H=H —{v2,v4} = Guy)

Figure 9: Arbitrary graph to weakly chordal graph

3.6 Complexity

The mdv heuristic can be implemented in O(n?m) time, while the time-complexity of the recogni-
tion algorithm based on LB-simpliciality is in O(nm).

To bound the query complexity of deleting an edge {u,v} from the weakly chordal graph, we note
that this is dominated by the task of finding multiple P; and P, paths between u and v and we
have to consider these in pairs and run the breadth-first search. An upper bound on the number
of pairs of Py and Pj paths between u and v is O(d2d2), where d,, and d, are the degrees of u and
v respectively. For consider such a path from u to v (see Figure : x is one of the at most d,
vertices adjacent to u and y is one of the at most d,, vertices adjacent to v, so that we have at most
O(d,d,) P4 paths from u to v and thus O(d2d?) disjoint pairs of P, paths from u to v.

u T Yy (%

Figure 10: A Py-path from u to v

If |E| be the number of edges currently, in the weakly chordal graph, the complexity of running a
breadth-first search is O(n+|E|). Since m is the number of edges in the final weakly chordal graph,
an upper bound on the query complexity is O(d2d?(n + m)).

The deletion of an edge take constant time since we maintain an adjacency matrix data structure

10

to represent G.

4

Conclusion

We have proposed a simple method for generating a weakly chordal graph from an arbitrary graph.
The proposed algorithm can also be used to generate weakly chordal graphs by deleting edges from
input graphs that are known to be weakly chordal, such as complete graphs. Starting with complete
graphs also helps in generating dense weakly chordal graphs. An interesting open problem is to
establish if the proposed method to generate a weakly chordal graph from an arbitrary graph adds
a minimal number of edges.

We have implemented our algorithm in Python. Some sample outputs are shown below in an ap-
pendix. In each of the figures, the purples edges in the chordal graph are edges that are candidates
for deletion.

References

1]

Anne Berry. A wide-range efficient algorithm for minimal triangulation. In Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January 1999, Bal-
timore, Maryland, USA., pages 860-861, 1999.

Anne Berry, Jean Paul Bordat, and Pinar Heggernes. Recognizing weakly triangulated graphs
by edge separability. Nord. J. Comput., 7(3):164-177, 2000.

Anne Berry, Jean Paul Bordat, and Pinar Heggernes. Recognizing weakly triangulated graphs
by edge separability. In Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop on
Algorithm Theory, Bergen, Norway, July 5-7, 2000, Proceedings, pages 139-149, 2000.

Carl Feghali and Jir{ Fiala. Reconfiguration graph for vertex colourings of weakly chordal
graphs. CoRR, abs/1902.08071, 2019.

Alan George and Joseph W. H. Liu. The evolution of the minimum degree ordering algorithm.
SIAM Review, 31(1):1-19, 1989.

Ryan B. Hayward. Weakly triangulated graphs. J. Comb. Theory, Ser. B, 39(3):200-208, 1985.

Ryan B. Hayward, Chinh T. Hoang, and Frédéric Maffray. Optimizing weakly triangulated
graphs. Graphs and Combinatorics, 5(1):339-349, 1989.

Ryan B. Hayward, Jeremy P. Spinrad, and R. Sritharan. Improved algorithms for weakly
chordal graphs. ACM Trans. Algorithms, 3(2):14, 2007.

Donald E. Knuth. The Art of Computer Programming, Volume 2/Seminumerical algorithms,
Third Edition. Addison-Wesley, 1997.

Asish Mukhopadhyay, S. V. Rao, Sidharth Pardeshi, and Srinivas Gundlapalli. Linear layouts
of weakly triangulated graphs. Discrete Math., Alg. and Appl., 8(3):1-21, 2016.

11

[11] Md. Zamilur Rahman, Asish Mukhopadhyay, and Yash P. Aneja. A separator-based method
for generating weakly chordal graphs. CoRR, abs/1906.01056, 2019.

[12] Jeremy P. Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs. Discrete
Applied Mathematics, 59(2):181-191, 1995.

[13] G. Tinhofer. Generating Graphs Uniformly at Random, pages 235-255. Springer Vienna,
Vienna, 1990.

12

5 Appendix

0.6 0.75
0.4 0.50
0.2
0.25
0.0
0.00
-0.2
-0.25
—0.4
-0.6 -0.50
-0.8 -0.75
-0 -1.00
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.0 -08 -06 -04 -02 0.0 0.2 0.4 0.6
(a) Arbitrary Graph (b) Chordal Graph
1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75

-06 -04 -02 0.0 0.2 0.4 0.6 0.8 1.0

(c) Weakly Chordal Graph

Figure 11: Arbitary graph to a weakly chordal one

13

-0.25

-0.50

-0.75

-1.00

-0.75 -0.50 =025 0.00 0.25

0.50 0.75 1.00 -0.4 -0.2 0.0 0.2 0.4

(a) Arbitrary Graph (b) Chordal Graph

0.6

0.4

0.2

0.01

-1.00 -0.75 -0.50 -0.25 0.0 025 050 0.75

(c) Weakly Chordal Graph

Figure 12: Arbitary graph to a weakly chordal one

14

-0.25

-0.50

-0.75

-1.00

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

(a) Arbitrary Graph (b) Chordal Graph

-0.25 4

-0.501

-0.754

-1.001

(c) Weakly Chordal Graph

Figure 13: Arbitary graph to a weakly chordal one

15

	1 Introduction
	2 Preliminaries
	3 Arbitrary Graph to Weakly Chordal Graph
	3.1 Overview of the Method
	3.2 Random Arbitrary Graph
	3.3 LB-simpliciality test
	3.4 Arbitrary Graph to Chordal Graph
	3.4.1 The Minimum Degree Vertex Heuristic

	3.5 Chordal Graph to Weakly Chordal Graph
	3.5.1 Fill-Edge Queue
	3.5.2 Detecting Holes
	3.5.3 Antiholes
	3.5.4 Detecting Antiholes
	3.5.5 Proposed Algorithm

	3.6 Complexity

	4 Conclusion
	5 Appendix

