2306.09374v1 [cs.DB] 15 Jun 2023

arxXiv

From Database Repairs to Causality in Databases and
Beyond

Leopoldo Bertossi*
SKEMA Business School, Montreal, Canada

Abstract. We describe some recent approaches to score-based explanations for
query answers in databases. The focus is on work done by the author and col-
laborators. Special emphasis is placed on the use of counterfactual reasoning for
score specification and computation. Several examples that illustrate the flexibil-
ity of these methods are shown.

1 Introduction

In data management one wants explanations for certain results. For example, for query
results from databases. Explanations, that may come in different forms, have been the
subject of philosophical enquires for a long time, but, closer to our discipline, they
appear under different forms in model-based diagnosis and in causality as developed in
artificial intelligence.

In the last few years, explanations that are based on numerical scores assigned to
elements of a model that may contribute to an outcome have become popular. These
scores attempt to capture the degree of contribution of those components to an outcome,
e.g. answering questions like these: What is the contribution of this tuple to the answer
to this query?

Different scores have been proposed in the literature, and some that have a relatively
older history have been applied. Among the latter we find the general responsibility
score as found in actual causality [13| [10]]. For a particular kind of application, one has
to define the right causality setting, and then apply the responsibility measure to the
participating variables (see [14] for an updated treatment of causal responsibility).

In data management, responsibility has been used to quantify the strength of a tuple
as a cause for a query result [22} 4] (see Section @ The responsibility score, Resp,
is based on the notions of counterfactual intervention as appearing in actual causality.
More specifically, (potential) executions of counterfactual interventions on a structural
logico-probabilistic model [13|] are investigated, with the purpose of answering hypo-
thetical questions of the form: What would happen if we change ...7.

Database repairs are commonly used to define and obtain semantically correct query
answers from a database that may fail to satisfy a given set of integrity constraints (ICs)
[3]. A connection between repairs and actual causality in DBs has been used to obtain
complexity results and algorithms for the latter [4] (see Section|[3).

The Causal Effect score is also based on causality, mainly for observational studies
[28L [15L [25]]. Tt has been applied in data management in [29] (see Section @

The Shapley value, as found in coalition game theory [30], has been used for the

same purpose [[17, [18]]. Defining the right game function, the Shapley value assigned
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to a player reflects its contribution to the wealth function. The Shapley value, which
is firmly established in game theory, and is also used in several other areas [30, 27].
The main idea is that several tuples together, much like players in a coalition game,
are necessary to produce a query result. Some may contribute more than others to the
wealth distribution function (or simply, game function), which in this case becomes
the query result, namely 1 or O if the query is Boolean, or a number if we have an
aggregation query. This use of Shapley value was developed in [17,[18] (see Section [6)).

In this article we survey some of the recent advances on the use and computation of
the above mentioned score-based explanations for query answering in databases. This
is not intended to be an exhaustive survey of the area. Instead, it is heavily influenced
by our latest research. To introduce the concepts and techniques we will use mostly
examples, trying to convey the main intuitions and issues.

This paper is structured as follows. In Section [2] we provide some preliminaries
on databases. In Section [3] we introduce causality in databases and the responsibility
score, and also the causal effect score. In Section 4] we show the connection between
causality in databases and database repairs. In Section [5] we show how integrate ICs
in the causality setting. In Section[6] we show how to use the Shapley value to provide
explanation scores to database tuples in relation to a query result. In Section[7} we make
some general remarks on relevant open problems.

2 Background

A relational schema R contains a domain of constants, C, and a set of predicates of finite
arities, P. R gives rise to a language £(R) of first-order (FO) predicate logic with built-
in equality, =. Variables are usually denoted with =, y, z, ...; and finite sequences thereof
with Z, ...; and constants with a, b, ¢, ..., etc. An atom is of the form P(tq, ..., t,), with
n-ary P € P and ty,...,t, terms, i.e. constants, or variables. An atom is ground
(a.k.a. a tuple) if it contains no variables. A database (instance), D, for R is a finite set
of ground atoms; and it serves as an interpretation structure for £(R).

A conjunctive query (CQ) is a FO formula, Q(Z), of the form 3y (Py(Z1) A--- A
P, (Z,)), with P; € P, and (distinct) free variables  := (| J Z;) \ g. If Q has n (free)
variables, ¢ € C™ is an answer to Q from D if D |= QJ¢], i.e. Q[c] is true in D when
the variables in Z are componentwise replaced by the values in ¢. Q(D) denotes the set
of answers to Q from D. Q is a Boolean conjunctive query (BCQ) when T is empty;
and when frue in D, Q(D) := {true}. Otherwise, it is false, and Q(D) := (). We will
consider only conjunctive queries or disjunctions thereof.

We consider as integrity constraints (ICs), i.e. sentences of £(R): (a) denial con-
straints (DCs), i.e. of the form x: =3Z(Py(Z1)A- - ‘AP, (Zy,)), where P; € P,and T =
\JZ;; and (b) inclusion dependencies (INDs), which are of the form VzZ3y(Py(Z) —
Py (%', y)), where P;, P, € P,and ' C Z. If an instance D does not satisfy the set >
of ICs associated to the schema, we say that D is inconsistent, denoted with D = X.

3 Causal Explanations in Databases

In data management we need to understand and compute why certain results are ob-
tained or not, e.g. query answers, violations of semantic conditions, etc.; and we expect
a database system to provide explanations.



3.1 Causal responsibility

Here, we will consider causality-based explanations 22, [23]], which we will illustrate
by means of an example.

Example 1. Consider the database D, and the Boolean conjunctive query (BCQ)

R[A[B] S[C Q: Jz3y(S(z) A R(z,y) A S(y)), for

“Talbl p which D |= Q holds, i.e. the query is true
cld c in D. We ask about the causes for Q to be
blb b true.

A tuple 7 € D is counterfactual cause for Q (being true in D) if D = Q and
D~ {7} £ Q. In this example, S(b) is a counterfactual cause for Q: If S(b) is re-
moved from D, Q is no longer true.

Removing a single tuple may not be enough to invalidate the query. Accordingly,
a tuple 7 € D is an actual cause for Q if there is a contingency set I' C D, such
that 7 is a counterfactual cause for Q in D \ I'. In this example, R(a,b) is not a
counterfactual cause for Q, but it is an actual cause with contingency set {R(b,b)}: If
R(b,b) is removed from D, Q is still true, but further removing R(a, b) makes Q false.
O

Notice that every counterfactual cause is also an actual cause, with empty contingent
set. Actual causes that are not counterfactual causes need company to invalidate a query
result. Now we ask how strong are tuples as actual causes. To answer this question, we
appeal to the responsibility of an actual cause 7 for Q [22], defined by:

oy . L
Resp(t) = 1
where |I'| is the size of a smallest contingency set, I, for 7, and 0, otherwise.
Example 2. (ex.cont.) The responsibility of R(a, b) is % = 11? (its several smallest
contingency sets have all size 1). R(b,b) and S(a) are also actual causes with respon-
sibility %; and S(b) is actual (counterfactual) cause with responsibility 1 = ﬁ (]

High responsibility tuples provide more interesting explanations. Causes in this case
are tuples that come with their responsibilities as “scores”. All tuples can be seen as
actual causes, but only those with non-zero responsibility score matter. Causality and
responsibility in databases can be extended to the attribute-value level [4}, 16]).

There are connections between database causality and consistency-based diagnosis
and abductive diagnosis, that are two forms of model-based diagnosis [31,18]]. There are
also connections with database repairs [2,|3]. These connections have led to complexity
and algorithmic results for causality and responsibility [4, 5] (see Section ).

3.2 The causal-effect score

Sometimes, as we will see right here below, responsibility does not provide intuitive or
expected results, which led to the consideration of an alternative score, the causal-effect
score. We show the issues and the score by means of an example.

Example 3. Consider the database FE that represents the graph below, and the Boolean
query Q that is true in E if there is a path from a to b. Here, E' |= Q. Tuples have global
tuple identifiers (tids) in the left-most column, which is not essential, but convenient.
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All tuples are actual causes since every tuple appears in a path from a to b. Also,
all the tuples have the same causal responsibility, % which may be counterintuitive,
considering that ¢; provides a direct path from a to b. (]

In [29], the notion causal effect was introduced. It is based on three main ideas,
namely, the transformation, for auxiliary purposes, of the database into a probabilistic
database, the expected value of a query, and interventions on the lineage of the query
[9, 32]. The lineage of a query represents, by means of a propositional formula, all
the ways in which the query can be true in terms of the potential database tuples, and
their combinations. Here, “potential” refers to tuples that can be built with the database
predicates and the database (finite) domain. These tuples may belong to the database
at hand or not. For a given database, D, some of those atoms become true, and others
false, which leads to the instantiation of the lineage (formula) o D.

Example 4. Consider the database D below, and a BCQ.

R|A|B S|C Q: JxIy(R(x,y) A S(y)), which is true
alb b inD.
alc c
clb

For the database D in our example, the lineage of the query instantiated on D is
given by the propositional formula:

®o(D) = (Xgrap N Xsw) V (Xr@e A Xse) V Xpep) AXswpy), (D

where X is a propositional variable that is true iff 7 € D. Here, ®o(D) takes value
lin D.

Now, for illustration, we want to quantify the contribution of tuple S(b) to the query
answer. For this purpose, we assign, uniformly and independently, probabilities to the
tuples in D, obtaining a probabilistic database DP [32]. Potential tuples outside D get
probability 0.

RP prob SP|C'|prob

b
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The X’s become independent, identically distributed Boolean random variables;
and Q becomes a Boolean random variable. Accordingly, we can ask about the proba-
bility that Q takes the truth value 1 (or 0) when an intervention is performed on D.



Interventions are of the form do(X = x), meaning making X take value x, with
x € {0,1}, in the structural model, in this case, the lineage. That is, we ask, for
{y,z} C {0, 1}, about the conditional probability P(Q =y | do(X; = z)), i.e. con-
ditioned to making X, false or true.

For example, with do(Xg(;) = 0) and do(Xg(;) = 1), the lineage in (EI) becomes,
resp., and abusing the notation a bit:

Qo (D]do(Xs@py = 0) := (XR(a,e) N Xs(c))-
Qo (D]do(Xs@py = 1) = Xp(ap) V (XRr(a,e) A Xs(e) V XRr(ep)-

On the basis of these lineages and DP, when X S(b) is made false, the probability
that the instantiated lineage becomes true in DP is:

P(Q=1]do(Xsp) =0)) = P(Xpa,e) = 1) X P(Xg(¢) = 1) = §.
When Xg(;) is made true, the probability of the lineage being true in D? is:
P(Q=1]do(Xsp) = 1)) = P(XR(ap) V (XR(a,0) A X5(0)) V XRe) = )= g
The causal effect of a tuple 7 is defined by:
CEPC(r) = E(Q]| do(X, =1)) —E(Q] do(X, = 0)).

In particular, using the probabilities computed so far:

1
E(Q | do(Xswp) =0)) = P(Q=1]|do(Xs@p) =0)) = T

13
E(Q | do(Xsp)y =1)) = P(Q=1|do(Xsp) =1)) = 6

Then, the causal effect for the tuple S(b) is: CEP*2(S (b)) = B_1=2>0,

showing that the tuple is relevant for the query result, with a relevance score provided
by the causal effect, of 1%. O

Let us now retake the initial example of this section.
Example 5. (ex.[3]cont.) The query has the lineage:
Do(D) =X, V ( Xy AN Xty) V(X A X A X))
It holds:
CEPC(ty) = 0.65625,
CEPC(ty) = CEP 2 (t3) = 0.21875,
CEPC(ty) = CEPC(t5) = CEP 2 (ts) = 0.09375.

The causal effects are different for different tuples, and the scores are much more
intuitive than the responsibility scores. (]

4 The Database Repair Connection

In this section we will first establish a useful connection between database repairs and
causes as tuples in a database [2} 13]. The notion of repair of a relational database was
introduced in order to formalize the notion of consistent query answering (CQA), as
shown in Figure (1} If a database D is inconsistent in the sense that is does not satisfy



a given set of integrity constraints, ICs, and a query Q is posed to D (left-hand side
of Figure|I)), what are the meaningful, or consistent, answers to Q from D? They are
sanctioned as those that hold (are returned as answers) from all the repairs of D. The
repairs of D are consistent instances D’ (over the same schema of D), i.e. D’ = ICs,
and minimally depart from D (right-hand side of Figure I).

Notice that: (a) We have now a possible-world semantics for (consistent) query an-
swering; and (b) we may use in principle any reasonable notion of distance between
database instances, with each choice defining a particular repair semantics. In the rest
of this section we will illustrate two classes of repairs, which have been used and in-
vestigated the most in the literature. Actually, repairs in general have got a life of their
own, beyond consistent query answering.

= ICs
Fig. 1. Database repairs and consistent query answers

Example 6. Letus consider the following set of denial constraints (DCs) and a database
D, whose relations (tables) are shown right here below. D is inconsistent, because it
violates the DCs: it satisfies the joins that are prohibited by the DCs.

~3e3y(P(2) A Qe,)) A Qam]  mAC

a
~3o3y(P(a) A R(x,y)) e B e

We want to repair the original instance by deleting tuples from relations. Notice
that, for DCs, insertions of new tuple will not restore consistency. We could change
(update) attribute values though, a possibility that has been investigated in [6].

Here we have two subset repairs, a.k.a. S-repairs. They are subset-maximal consis-
tent subinstances of D: Dy = {P(e),Q(a,b), R(a,c)} and Dy = {P(e), P(a)}.
They are consistent, subinstances of D, and any proper superset of them (still contained
in D) is inconsistent. (In general, we will represent database relations as set of tuples.)

We also have cardinality repairs, a.k.a. C-repairs. They are consistent subinstances
of D that minimize the number of tuples by which they differ from D. That is, they
are maximum-cardinality consistent subinstances. In this case, only D; is a C-repair.
Every C-repair is an S-repair, but not necessarily the other way around. (]

Let us now consider a BCQ
Q: (P (ZT1) A+ A Pp(Tm))s 2)

which we assume is true in a database D. It turns out that we can obtain the causes for
Q to be true D, and their contingency sets from database repairs. In order to do this,
notice that =@ becomes a DC

K(Q): _'Eljj(Pl(i‘l)/\"'/\Pm(i‘m)); (3)



and that Q holds in D iff D is inconsistent w.r.t. K(Q).

It holds that S-repairs are associated to causes with minimal contingency sets, while
C-repairs are associated to causes for Q with minimum contingency sets, and maximum
responsibilities [4]. In fact, for a database tuple 7 € D:

(a) 7 is actual cause for Q with subset-minimal contingency set I" iff D~ (I"U{7})
is an S-repair (w.r.t. (Q)), in which case, its responsibility is %IFI

(b) 7 is actual cause with minimum-cardinality contingency set I" iff D~ (I"U{7})
is C-repair, in which case, 7 is a maximum-responsibility actual cause.

Conversely, repairs can be obtained from causes and their contingency sets [4]. These
results can be extended to unions of BCQs (UBCQs), or equivalently, to sets of denial
constraints.

One can exploit the connection between causes and repairs to understand the com-
putational complexity of the former by leveraging existing results for the latter. Beyond
the fact that computing or deciding actual causes can be done in polynomial time in data
for CQs and UCQs [22 4]}, one can show that most computational problems related to
responsibility are hard, because they are also hard for repairs, in particular, for C-repairs
(all this in data complexity) [19]. In particular, one can prove [4]]: (a) The responsibility
problem, about deciding if a tuple has responsibility above a certain threshold, is NP-
complete for UCQs. (b) Computing Respg(T) is FPNPUos(M)_complete for BCQs.
This the functional, non-decision, version of the responsibility problem. The complex-
ity class involved is that of computational problems that use polynomial time with a
logarithmic number of calls to an oracle in NP. (c) Deciding if a tuple 7 is a most
responsible cause is PNP(09())_complete for BCQs. The complexity class is as the
previous one, but for decision problems [[].

5 Causes under Integrity Constraints

In this section we consider tuples as causes for query answering in the more general
setting where databases are subject to integrity constraints (ICs). In this scenario, and
in comparison with Section [3.1] not every intervention on the database is admissible,
because the ICs have to be satisfied. As a consequence, the definitions of cause and
responsibility have to be modified accordingly. We illustrate the issues by means of an
example. More details can be found in [3} 6].

We start assuming that a database D satisfies a set of ICs, X, i.e. D = Y. If we
concentrate on BCQs, or more, generally on monotone queries, and consider causes at
the tuple level, only instances obtained from D by interventions that are tuple deletions
have to be considered; and they should satisfy the ICs. More precisely, for 7 to be
actual cause for Q, with a contingency set I, it must hold [5]]:

(@ DNI' = X, and DT E Q.
(b) DN (I'u{r}) E X, and D~ (I"U{r}) ¥ Q.

The responsibility of T, denoted Respg (7)., is defined as in Section through
minimum-size contingency sets.

Example 7. Consider the database instance D below, initially without additional ICs.



Course| CName | TStaff | DName

Dep| DName | TStaff ty |COMO08| John |[Computing
t1 |Computing| John ts |MathO1| Kevin Math
t2 |Philosophy|Patrick te |HISTO2|Patrick|Philosophy
t3 Math Kevin tz |Math08| Eli Math

ts |COMO1| John |[Computing

Let us first consider the following open queryf_-]
Q(x): JyIz(Dep(y,x) A Course(z,x,y)). 4)
In this case, we get answers other that yes or no. Actually, (John) € Q(D), the
set of answers to Q, and we look for causes for this particular answer. It holds: (a) ¢;
is a counterfactual cause; (b) t4 is actual cause with single minimal contingency set
It = {ts}; (c) ts is actual cause with single minimal contingency set Iy = {t4}.
Let us now impose on D the inclusion dependency (IND):

¥ VaVy (Dep(x,y) — Ju Course(u,y,x)), (5)
which is satisfied by D. Now, t4 tg are not actual causes anymore; and ¢; is still a
counterfactual cause.

Let us now consider the query: Qq(z): Jy Dep(y,x). Now, (John) € Qq(D),
and under the IND @, we obtain the same causes as for (), which is not surprising
considering that Q =,, Q;, i.e. the two queries are logically equivalent under (5).

And now, consider the query: Qo(z): JyIzCourse(z,x,y), for which (John) €
Q»(D). For this query we consider the two scenarios, with and without imposing the
IND. Without imposing (3)), ¢4 and tg are the only actual causes, with contingency sets
I = {ts} and I'x = {{4}, resp.

However, imposing @, t4 and tg are still actual causes, but we lose their smallest
contingency sets I and I'; we had before: D~ (IMU{t4}) & ¥, DN(I2 U {ts}) }~ .
Actually, the smallest contingency set for ¢4 is I = {¢s,t1}; and for tg, Iy =
{t4,t1}. We can see that under the IND, the responsibilities of ¢4 and tg decrease:

Resp22oM) (1) = 1 " and Resp<2(oM(¢,) = 3.

D 2 D,
Tuple ¢; is not an actual cause, but it affects the responsibility of actual causes. [

Some results about causality under ICs can be obtained [S]: (a) Causes are pre-
served under logical equivalence of queries under ICs, (b) Without ICs, deciding
causality for BCQs is tractable, but their presence may make complexity grow. More
precisely, there are a BCQ and an inclusion dependency for which deciding if a tuple is
an actual cause is NP-complete in data.

6 The Shapley Value in Databases

The Shapley value was proposed in game theory by Lloyd Shapley in 1953 [30], to
quantify the contribution of a player to a coalition game where players share a wealth
functionIt has been applied in many disciplines. In particular, it has been investigated

! The fact that it is open is not particularly relevant, because we can instantiate the query with
the answer, obtaining a Boolean query.

% The original paper and related ones on the Shapley value can be found in the book edited by
Alvin Roth [27]. Shapley and Roth shared the Nobel Prize in Economic Sciences 2012.



in computer science under algorithmic game theory (24, and it has been applied to
many and different computational problems. The computation of the Shapley value is,
in general, intractable. In many scenarios where it is applied its computation turns out
to be # P-hard [12, [11]]. Here, the class # P contains the problems of counting the
solutions for problems in NP. A typical problem in the class, actually, hard for the class,
is #SAT, about counting the number of satisfying assignments for a propositional
formula. Clearly, this problem cannot be easier than SAT, because a solution for #SAT
immediately gives a solution for SAT [1].

Consider a set of players D, and a game function, G : P(D) — R, where P(D) the
power set of D. The Shapley value of player p in D es defined by:

SHIPIZ =G50 (o)) - 6. ®)

Shapley(D,G,p) == >
SCD\{p}

Notice that here, |S|!(|D| — |S| — 1)! is the number of permutations of D with all play-
ers in S coming first, then p, and then all the others. That is, this quantity is the expected
contribution of player p under all possible additions of p to a partial random sequence
of players followed by a random sequence of the rests of the players. Notice the coun-
terfactual flavor, in that there is a comparison between what happens having p vs. not
having it. The Shapley value is the only function that satisfies certain natural properties
in relation to games. So, it is a result of a categorical set of axioms or conditions [27].

The Shapley value has been used in knowledge representation, to measure the de-
gree of inconsistency of a propositional knowledge base [16]]; in machine learning to
provide explanations for the outcomes of classification models on the basis of numeri-
cal scores assigned to the participating feature values [21, 20]]. It has also been applied
in data management to measure the contribution of a tuple to a query answer [17, [18]],
which we briefly review in this section.

In databases, the players are tuples in a database D. We also have a Boolean query
Q, which becomes a game function, as follows: For S C D, i.e. a subinstance,

1if Sk Q,
gﬁ:{o&s#g

With these elements we can define the Shapley value of a tuple 7 € D:

Shapley(D, Q,T) := Z
SCD\{r}
If the query is monotone, i.e. its set of answers never shrinks when new tuples are
added to the database, which is the case of conjunctive queries (CQs), among others, the
difference Q(SU{7}) — Q(S9) is always 1 or 0, and the average in the definition of the
Shapley value returns a value between 0 and 1. This value quantifies the contribution
of tuple 7 to the query result. It was introduced and investigated in [[17, 18], for BCQs
and some aggregate queries defined over CQs. We report on some of the findings in the
rest of this section. The analysis has been extended to queries with negated atoms in
CQs [26].
A main result obtained in [[17,[18]] is about the complexity of computing this Shapley
score. The following Dichotomy Theorem holds: For Q a BCQ without self-joins, if Q



is hierarchical, then Shapley(D, Q, T) can be computed in polynomial-time (in the size
of D); otherwise, the problem is # P-complete.

Here, O is hierarchical if for every two existential variables x and y, it holds: (a)
Atoms(xz) C Atoms(y), or Atoms(y) C Atoms(x), or Atoms(z) N Atoms(y) =
(. For example, Q : JxIy3z(R(z,y) A S(z, 2)), for which Atoms(z) = {R(z,y),
S(x,z)}, Atoms(y) = {R(z,y)}, Atoms(z) = {S(z,z)}, is hierarchical. How-
ever, Q™ : JxIy(R(x) A S(z,y) A T(y)), for which Atoms(x) = {R(x), S(x,y)},
Atoms(y) = {S(x,y),T(y)}, is not hierarchical.

These are the same criteria for (in)tractability that apply to evaluation of BCQs
over probabilistic databases [32]. However, the same proofs do not apply, at least not
straightforwardly. The intractability result uses query Q™ above, and a reduction from
counting independent sets in a bipartite graph.

The dichotomy results can be extended to summation over CQs, with the same
conditions and cases. This is because the Shapley value, as an expectation, is linear.
Hardness extends to aggregates max, min, and avg over non-hierarchical queries.

For the hard cases, there is, as established in [[17, 18], an approximation result: For
every fixed BCQ Q (or summation over a CQ), there is a multiplicative fully-polynomial
randomized approximation scheme (FPRAS) [1]], A, with, for given ¢ and J:

Shapley(D, Q, T)
1+e
A related and popular score, in coalition games and other areas, is the Bahnzhaf
Power Index, which is similar to the Shapley value, but the order of players is ignored,
by considering subsets of players rather than permutations thereof. It is defined by:

Banzhaf(D, Q7)== cor - 30 (Q(SU{r}) — Q(S).

SC(D\{})

The Bahnzhaf-index is also difficult to compute; provably #P-hard in general. The
results in [[17} [18] carry over to this index when applied to query answering. In [17] it
was proved that the causal-effect score of Section@]coincides with the Banzhaf-index,
which gives to the former an additional justification.

P(reD| < A(t,€,0) < (1 +€)Shapley(D, Q,7)}) > 1—4.

7 Final Remarks

Explainable data management and explainable Al (XAI) are effervescent areas of re-
search. The relevance of explanations can only grow, as observed from- and due to the
legislation and regulations that are being produced and enforced in relation to explain-
ability, transparency and fairness of data management and AI/ML systems.

There are different approaches and methodologies in relation to explanations, with
causality, counterfactuals and scores being prominent approaches that have a relevant
role to play. Much research is still needed on the use of contextual, semantic and domain
knowledge. Some approaches may be more appropriate in this direction, and we argue
that declarative, logic-based specifications can be successfully exploited [7]].

Still fundamental research is needed in relation to the notions of explanation and
interpretation. An always present question is: What is a good explanation?. This is not
a new question, and in Al (and other areas and disciplines) it has been investigated. In
particular in Al, areas such as diagnosis and causality have much to contribute.

10



Now, in relation to explanations scores, there is still a question to be answered:
What are the desired properties of an explanation score?. The question makes a lot of
sense, and may not be beyond an answer. After all, the general Shapley value emerged
from a list of desiderata in relation to coalition games, as the only measure that satisfies
certain explicit properties [30} 27]. Although the Shapley value is being used in XAl in
particular in its Shap incarnation, there could be a different and specific set of desired
properties of explanation scores that could lead to a still undiscovered explanation score.
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