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Preface

The aim of this book is to communicate some results on solving linear differential
equations that have been achieved in the last two decades. The key concept is the
factorization of a differential equation or the corresponding differential operator,
and the resulting decomposition into unique objects of lower order. Although more
than 100 years old, these results had been forgotten for almost a century before they
were reawakened.

Several new developments have entailed novel interest in this subject. On the
one hand, methods of differential algebra lead to a better understanding of the basic
problems involved. Instead of dealing with individual equations, the corresponding
differential operators are considered as elements of a suitable ring where they
generate an ideal. This proceeding is absolutely necessary if partial differential
equations and operators are investigated. In particular the concept of a Janet basis for
the generators of an ideal and the Loewy decomposition of the ideal corresponding
to the given equations are of fundamental importance. In order to apply these results
for solving concrete problems, the availability of computer algebra software is
indispensable due the enormous size of the calculations usually involved.

Proceeding along these lines, for large classes of linear differential equations –
ordinary as well as partial – a fairly complete theory for obtaining its solutions
in closed form has been achieved. Whenever feasible, constructive methods for
algorithm design are given, and the possible limits of decidability are indicated.
This proceeding may serve as a model for dealing with other problems in the area
of differential equations.

I am grateful to Dima Grigoriev, Ziming Li, Michael Singer and Sergey Tsarev
for numerous discussions and suggestions. Thanks are due to Hans-Heinrich
Aumüller for carefully reading the final version of the manuscript, and to Winfried
Neun at the Zuse Institut in Berlin for keeping the ALLTYPES website running.
The ideal working environment at the Fraunhofer Institut SCAI is gratefully
acknowledged.

Sankt Augustin, Germany Fritz Schwarz
July 2012
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Introduction

Factoring algebraic polynomials into irreducible components of lowest degree has
been of basic importance for a long time. By default, a polynomial is called
irreducible if it does not factor into components of lower order without enlarging
its coefficient domain which is usually the rational number field Q. For univariate
polynomials, the relevance of this proceeding for determining the solutions of the
corresponding algebraic equation is obvious. In the multivariate case, it is the basis
for understanding the structure of the algebraic manifold associated with any such
polynomial. Good introductions into the subject may be found, e.g., in the books by
Cox et al. [13], Adams and Loustaunau [2] or Greuel and Pfister [20].

It turns out that factoring differential operators and the corresponding differential
equations is of fundamental importance as well. Originally the problem of factoring
linear ordinary differential equations (lode’s) has been considered by Beke [3],
Schlesinger [58] and Loewy [46]. Thereafter it has been forgotten for almost a cen-
tury until it was reassumed by Grigoriev [21] and Schwarz [59], where essentially
computational and complexity issues were considered; see also Bronstein [6] and
van Hoeij [72]. A good survey of these results is given in the book by van der Put
and Singer [71].

Due to the non-commutativity of differential operators, some new phenomena
appear compared to algebraic polynomials. In the first place, left and right factors
have to be distinguished. Correspondingly there are left and right least common
multiples and left and right greatest common divisors. For the topics discussed in
this monograph, the least common left multiple Lclm and the greatest common
right divisor Gcrd are of paramount importance. The term factor without further
specification means always right factor. An operator that does not have any right
factor of a certain kind is called irreducible, otherwise it is called reducible. A more
detailed specification of these terms may be found on page 26.

Furthermore, Loewy [46] realized that a new concept is needed beyond reducibil-
ity which he baptized complete reducibility of a given operator. For ordinary dif-
ferential operators it may simply be expressed by saying that an operator, or the
corresponding differential equation, is completely reducible if it may be repre-
sented as the least common left multiple of its irreducible right factors, the greatest

xi
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common right divisor of which is trivial. This amounts to saying that the solution
space of the originally given equation is the direct sum of the solution spaces
of its right factors. Applying this concept repeatedly, Loewy obtained a unique
decomposition of any ordinary differential operator into completely reducible
components of highest possible order.

Starting from Loewy’s results, it appears self-evident trying a similar approach
for partial differential operators; the goal is to develop more systematic methods for
solving linear partial differential equations than those available in the literature [14,
17,18,28,31,33]. It turns out that for a special class of problems, i.e. those systems
of pde’s that have a finite-dimensional solution space, Loewy’s original theory for
decomposing ordinary equations may be generalized almost straightforwardly as
has been shown by Li et al. [43].

Factorization problems for general pde’s were considered first in the dissertation
of Blumberg [5]. He described a factorization of a third-order operator in two
variables which appeared to preclude a generalization of Loewy’s result beyond the
ordinary case. Twenty years after that Miller [49] discussed several factorizations
of partial operators in his dissertation. After a long period of inactivity, a lot of
interest in this field has arisen in the last two decades, starting with some articles
by Grigoriev and Schwarz [22–25]; see also [67]. At this point another analogy
with the theory of algebraic polynomials comes into play. Beyond a certain point,
further progress is only possible if the underlying scope is broadened and more
abstract algebraic concepts are applied. In commutative algebra this means that
polynomials are considered as elements of a ring generating certain ideals. Then
the results known from ring theory may be applied to the problems involving
these polynomials. Only in this way progress in this field has been possible, e.g.
generating primary decompositions of ideals and above all the theory of Gröbner
bases by Buchberger [7] and its ubiquitous applications.

In the differential case a similar development takes place. Although the solutions
of differential equations are the ultimate objects of interest, it is advantageous to
consider their left-hand sides as the result of applying a differential operator to a
differential indeterminate. Solving an equation means to assign those elements from
a suitable function space to the indeterminate such that the full expression vanishes.
The differential operators are considered as elements of a non-commutative ring, or
as modules over such a ring, so-called D-modules. The extensive theory for these
non-commutative rings or modules may then be applied to study their properties.
It turns out that only in this way satisfactory results may be obtained. Good
introductions into the underlying differential algebra are the books by Kolchin [37],
Kaplanski [35] and Coutinho [12], and the article by Buium and Cassidy [8]. Those
aspects that are relevant for this monograph may also be found in the book by van
der Put and Singer [71].

It turns out that Loewy’s original theory for factoring, and more generally
decomposing, an ordinary differential operator uniquely into lower-order compo-
nents may be extended to partial differential operators if this algebraic language is
applied. The following observations are of particular relevance. In the first place,
the left intersection of two partial differential operators is not necessarily principal;
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in general it is an ideal in the ring determined by the originally given operators that
may be generated by any number of elements. Secondly, right divisors of an operator
need not be principal either; they are overideals of the ideal generated by the given
operators that may be generated by any number of elements as well. Taking these
observations into account, the objections concerning the generalization of Loewy’s
results do not apply.

This extended concept of factoring partial differential operators comprises
Laplace’s method for solving equations of the form zxy C azx C bzy C cz D 0 as
a special case. It consists of an iterative procedure which is described in detail in
Chap. 5 of the second volume of Goursat’s books on second order differential equa-
tions [18], or in Chap. 2 of the second volume of Darboux’s series on surfaces [14];
see also [69] and Appendix C of this monograph. By proper substitutions, new
equations are generated from the given one until eventually an equation is obtained
that may be solved, from the solution of which a partial solution of the originally
given equation may be constructed. An equivalent procedure which is also described
in the books by Goursat and Darboux consists of generating an additional equation
that is in involution with the given one. The operators corresponding to the two equa-
tions may be considered as generators of an ideal that contains the principal ideal
generated by the operator corresponding to the originally given equation. In this way
the apparent ad hoc nature of the method of Goursat and Darboux disappears.

These remarks may be summarized as follows. To any given system of linear
differential equations, there corresponds the ideal or module generated by the
differential operators at their left-hand sides. Factorization means finding a divisor
of this ideal. In general there may be more than a single divisor. The complete
answer consists of the sublattice in the lattice of left ideals or modules which has
the given one as the lowest element. By analogy with Cohn’s [11] lattice of factors,
it is called the divisor lattice. The simplicity of this theory for ordinary differential
operators, or for modules of partial differential operators corresponding to systems
of pde’s with finite dimensional solution space, originates from the fact that they
form a sublattice in the respective ring or module.

This monograph deals with linear ordinary differential equations and linear
partial differential equations in two independent variables of order not higher than
three. Their decompositions are described along the lines described above.

It turns out that many calculations that occur when concrete problems are consid-
ered cannot be performed by pencil and paper due to their size, i.e. the complexity of
the respective procedure is too large. Therefore computer algebra software has been
developed for this purpose. It is available gratis on the website www.alltypes.de
after registration. There is a special demo showing the functionality of this software
for the applications relevant for this monograph. To start this demo, go to the
ALLTYPES website and click on the button StartALLTYPES, the interactive
alltypes window opens, then submit
Demo LoewyDecompopsitions;

The demo starts. If an example has been completed and the result has been displayed
in a separate window, the system asks cont?; in order to continue with the next
problem submit y.

www.alltypes.de
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However, it should be emphasized that it is by no means assured that any
factorization problem may be solved algorithmically. On the contrary, there are
severe indications that this may not be the case. If it could be proved that these
problems are in general undecidable, it would be interesting to identify special
classes of problems for which this is not true as it is the case, e.g. for diophantine
equations.

The contents of the individual chapters may be summarized as follows:

Chapter 1. Loewy’s Results for Ordinary Differential Equations. The original
results of Loewy for decomposing ordinary differential operators are presented.
Its application to operators of order 2 and 3 is worked out in detail. It is shown
how a nontrivial decomposition may be applied for solving the corresponding
equation.

Chapter 2. Rings of Partial Differential Operators. Basic properties of the ring
Q.x; y/Œ@x ; @y� and its left ideals are described, with particular emphasis on the
sum and intersection of ideals and how they determine a lattice structure in this
ring. This is the foundation for the decompositions described later on.

Chapter 3. Equations with Finite-Dimensional Solution Space. Loewy’s theory
for linear ode’s may be extended in a rather straightforward manner to systems of
linear pde’s with the property that their general solution involves only constants,
i.e. if it is a finite-dimensional vector space. Systems of such equations of order
2 and 3 in two independent variables are discussed.

Chapter 4. Decomposing Second-Order Operators. Principal ideals correspond
to individual linear pde’s. There is an extensive literature on such equations
in the nineteenth and early twentieth century. These results may be obtained
systematically, avoiding any ad hoc procedure, by applying the algebraic theory
described in Chap. 2.

Chapter 5. Solving Second-Order Equations. The results of the preceding chapter
are applied for solving second-order homogeneous equations; at the end inho-
mogeneous equations are discussed because they are needed later on for solving
certain third-order homogeneous equations.

Chapter 6. Decomposing Third-Order Operators. Similar results as in Chap. 4 are
obtained for third-order operators.

Chapter 7. Solving Third-Order Equations. The results of the preceding chapter
are applied for solving third-order homogeneous equations.

Chapter 8. Conclusions and Summary. The results of this monograph are summa-
rized and several possible extensions are outlined.

Appendix A. Solutions to the exercises are given.
Appendix B. Many algorithms in the main part of the book rely on the solution

of Riccati equations and certain generalizations, e.g. Riccati equations of higher
order and partial Riccati equations in two independent variables. Their solutions
are described in detail. Furthermore, first integrals of first-order ode’s are
discussed.

Appendix C. Laplace’s solution procedure for certain second-order linear pde’s
in two variables is described.
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Appendix D. Lie developed a solution theory for certain second-order linear pde’s
in two variables based on its symmetries. These results are reviewed; its relation
to decomposition properties is briefly discussed,

Appendix E. On the website www.alltypes.de [62] userfunctions are provided
that may be applied interactively for performing the voluminous calculations
required for many problems in differential algebra. This appendix gives a short
introduction to this website.

www.alltypes.de
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