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Preface 

The development of polynomial-elimination techniques from classical theory to 
modern algorithms has undergone a tortuous and rugged path. This can be observed 
from B. L. van der Waerden's elimination of the "elimination theory" chapter from 
his classic Modern Algebra in later editions, A. Weil's hope to eliminate "from 
algebraic geometry the last traces of elimination theory," and S. Abhyankar's sug
gestion to "eliminate the eliminators of elimination theory." The renaissance and 
recognition of polynomial elimination owe much to the advent and advance of mod
ern computing technology, based on which effective algorithms are implemented 
and applied to diverse problems in science and engineering. In the last decade, 
both theorists and practitioners have more and more realized the significance and 
power of elimination methods and their underlying theories. Active and extensive 
research has contributed a great deal of new developments on algorithms and soft
ware tools to the subject, that have been widely acknowledged. Their applications 
have taken place from pure and applied mathematics to geometric modeling and 
robotics, and to artificial neural networks. 

This book provides a systematic and uniform treatment of elimination algo
rithms that compute various zero decompositions for systems of multivariate poly
nomials. The central concepts are triangular sets and systems of different kinds, 
in terms of which the decompositions are represented. The prerequisites for the 
concepts and algorithms are results from basic algebra and some knowledge of 
algorithmic mathematics. Some of the operations and results on multivariate poly
nomials which are used throughout the book are collected in the first chapter. 
Chapters 2 to 5 are devoted to the description of the algorithms of zero decom
position. We start by presenting algorithms that decompose arbitrary polynomial 
systems into triangular systems; the latter are not guaranteed to have zeros. These 
algorithms are modified in Chap. 3 by incorporating the projection process and GCD 
computation so that the computed triangular systems always have zeros. Then, we 
elaborate how to make use of polynomial factorization in order to compute trian
gular systems that are irreducible. The proposed algorithms and their underlying 
theories are based on the previous work of J. F. Ritt, W.-t. Wu, A. Seidenberg, 
and J. M. Thomas and its further development by the author. A brief review of 
some relevant algorithms including those based on resultants and Grabner bases is 
given in Chap. 5. Elimination methods playa special role in constructive algebraic 
geometry and polynomial-ideal theory. Chapter 6 contains investigations on a few 
problems from these two areas. The book ends with an introduction to several 
selected applications of symbolic elimination methods. 

Most of the algorithms presented in the book have been implemented by 
the author in the Maple system, and they are among the most efficient elimi-
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nation algorithms available by this time. The algorithms are described formally 
so that the reader can easily work out his own implementation. Nevertheless, both 
theoretical complexity and practical implementation issues are not addressed in 
the book. 

This book can be used as a textbook for a graduate course in elimination 
theory and methods. Some of the material was taught by the author at RISC-Linz, 
Johannes Kepler University a few times from 1989 to 1998. 

I am very grateful to Professor Wen-tsiin Wu who introduced me to the fascinating 
subject of polynomial elimination, taught me his method of characteristic sets, and 
has kept advising me for more than a decade. His work and thoughts have been 
so influential in my research that I have referred to them in most of my relevant 
publications. 

I am greatly indebted to Professor Bruno Buchberger from whom I have learned 
so much beyond Grabner bases. His generous support and help of numerous forms 
have made me easy at work and life for years. 

Many colleagues and students have kindly helped me in different ways, like 
inviting me for a talk, a visit, or simply a dinner, being available to help when 
my languages run short, and giving me a hand when my computer gets stuck. It is 
impossible to mention all the names; I wish to thank all of them sincerely. 

The members of the ATINF group led by Professor Ricardo Caferra at 
Laboratoire Leibniz, Institut d'Informatique et Mathematiques Appliquees de 
Grenoble deserve special thanks. They have created an ideal working environ
ment, where I could enjoy thiPking, writing, and programmiryg. It is my pleastlre 
to thank Mrs. Silvia Schilgerius and Mr. Thomas Redl at Springer-Verlag Wien, 
with whom I have worked for publishing this and two previous books. 

Dongming Wang 
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