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Abstract 
Auctions are probably the most important mechanism for dynamic pricing in 
electronic commerce. Although they constitute a very old mechanism as well, the new 
popularity has raisen a lot of questions on the appropriate design of an auction 
mechanism for a particular situation. This chapter describes reasons for auction 
popularity by setting them into the context of trends in electronic commerce. We then 
illustrate the main issues in auction design. Our analysis starts with simple single-item 
auctions, as we can see them in many B2C markets. We then look at the more 
complex auction designs, which are necessary for B2B markets. For the latter design 
has to take into account that buyers want to purchase collections of items and 
services, and that the valuation for winning collections is not simply equal to the sum 
of valuations of single items. We show how multi-item auction mechanisms can 
benefit from a synthesis of microeconomic and mathematical optimization models.  
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Introduction  

An auction is a mechanism to re-allocate a set of goods to a set of market participants on the 
basis of bids and asks. In its classical form one seller, the auctioneer, wants to find a buyer for 
a single, indivisible item among a group of bidders. The best known auction design for this 
case is the increasing bid auction, or English auction. In this auction the auctioneer receives 
bids until she decides to terminate the auction, at which point the bidder with the highest bid 
receives the item, unless this bid is below the auctioneer’s reservation price. The price that the 
bidder has to pay is equal to her last bid. An auction design is specified through three 
elements:  

1. the bidding rules define what bidders may bid for and when. 
2. the market clearing rules define when and how the allocation of items to bidders is 

decided and what bidders have to pay. 
3. the information disclosure rules define when and which information is disclosed to 

whom.  
The English auction has the simple bidding rule that every bidder can make a bid at every 
time, the market clearing rule that the highest bid wins and has to pay this bid, and the 
information disclosure rule that the highest bid is known. If the auction takes place in a room 
where all bidders are present, then bids are known to all bidders. In English auctions done on 
the Internet, only the price of the current high bid may be announced.  
 
Auctions may not only be used to sell items or services but also to purchase them. We call 
them in this case a reverse auction. For purchasing first price, sealed bid auctions are the 
common format. Here bidders submit sealed bids. The bidding rules define who is allowed to 
participate. The market clearing rule assigns the bid to the bidder with the lowest price for the 
item. The price that is paid by the auctioneer is equal to this bid price. This format is typical 
for contracting complex services in the construction industry. The advantage of a reverse 
auction is that the buyer can specify in detail the service, and due to sealed bids is not 
required to take the cheapest offer, but to apply other criteria than price in the market clearing 
phase.    
 
As another example for a classical auction we mention the Dutch auction. It uses a price clock 
that starts at a high price, which steadily decreases until a bidder decides to buy at the current 
price. By shouting or other means she stops the bidding process and receives the item at the 
current price. The Dutch auction is typically used for selling agricultural products. It is fast 
since it ends with the first bid from a bidder, and thus in particular appropriate for markets 
that have to negotiate a high volume of transactions in a short period of time.  
 
Finally, there are so-called double auctions in which buyers make bids and sellers make asks, 
where a participant may be buyer and seller at the same time. Bids and asks are displayed in 
an order book. As soon as a bid for an item is higher than the current ask, the item is traded 
for a price in between of the two values. Double auctions are used at stock exchanges, and 
now frequently at spot markets for commodities in B2B marketplaces. 
 
The Internet has become an important platform for trading, which is illustrated through all 
chapters of this book. Auctions got within Internet trading a much more prominent role than 
they had in offline trading. Reasons for that are discussed in section 2. Section 3 is dedicated 
to the fundamental choices one has in auction design. We illustrate them along single item 
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auctions. In Section 4 we introduce the more complex setting, where several indivisible items 
are auctioned at the same time. Such auctions are of particular relevance in B2B e-commerce. 
Section 5 illustrates possible designs for such multi-item auctions, as well as the challenges in 
implementing such design. We summarize in Section 6.    
 
The goal of this article about auctions and the Internet is to provide an introduction to the 
topic. We summarize those features of auctions that have to be understood for users and 
providers of Internet auctions. We try to omit mathematical details where possible, but do 
nevertheless try to explain the mathematical problems that have to be solved in auction 
design. We hope to stimulate the reader to start from this article for a more detailed tour 
through the recent auction literature. Last but not least we try to combine quite different 
aspects of auction theory in an interdisciplinary approach. A reader who would like to learn at 
this point more about the history of auctions, or read about the different formats in more 
detail, should have a look at  (Agorics Inc., 1996).  For diving deeper into the topic we 
recommend (Klemperer, 1999).  

Auctions on the Internet 
 
Why are auctions such a popular trading mechanism on the Internet? Broadly spoken, the 
reason for this popularity is that Internet enables a wide range of organizations and people to 
use auctions for a wide range of items and services at rather convenient transaction costs. Let 
us elaborate on this in some more detail, without repeating however the many possible 
explanations that can be found in (Herschlag & Zwick, 2000).  
 
Before Internet could be used as communication platform for auctions, the range of potential 
participants in auctions, either as a bidder or an auctioneer, was rather limited. Now with the 
Internet, and with auction platforms accessible via the Internet, everybody can participate and 
even create an auction. At first place this is a phenomenon of tremendously decreased 
transaction costs. Physical presence at the auction is not necessary anymore, when product 
information as well as bids and asks can be communicated electronically. Many companies 
have seen this opportunity in an early stage of E-commerce penetration on the Web and set-up 
private-to-private auction platforms.  Trading of collectibles has soon been complemented by 
using auctions as trading mechanism in retailing. Auction sites functioned as an “electronic 
catalogue with dynamic pricing”, selling new products in business-to-private auctions. 
Finally, the business-to-business applications entered the stage. Meanwhile the Internet hosts 
a huge collection of auctions. The best way of getting an overview is probably to consult 
listings like http://www.internetauctionlist.com/ or http://www.auctionguide.com/. 
 
The popularity of Internet auctions goes hand in hand with other business trends observed for 
the Internet. Three of these should be mentioned here.  
 
Firstly, we see changing roles of intermediaries and new forms of intermediation (Sarkar, 
Butler, & Steinfield, 1998, Scott, 2000,). Already in October 1998, the Keenan report stated   
“The power of instant communication destroys the power of middleman to hide the real price 
from buyers and sellers, creating new intermediaries who will control the distribution of basic 
goods. Distribution channels that are inherently inefficient, such as wholesale-retail chains, 
may be re-intermediated by a new middleman equipped with Internet Exchange technology” 
(Kennanvision.com, 1998). 
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Auctions on the large scale are only feasible due to the Internet. They are thus examples of 
cybermediaries. To some extend they constitute dis-intermediation as they are likely to 
replace a significant part of the business of brick-and-mortar auction houses. Whether the 
Internet auctions will be sustainable is likely to dependon whether or not they can provide a 
reliable service to their customers at a reasonable price. The first generation   Internet auctions 
seem to require just a software platform to create a successful auction business. This rather 
simple business model for consumer-to-consumer auctions, which lets the participants take 
care of all other phases of the transaction, seemed to be sufficient for success. This is best 
explained best by  enormous first mover advantages, as an auction is a perfect example for 
strong network externalities. Sellers like to use sites that have many visitors, since a large 
number of bidders increases the expected revenue. Bidders again prefer these sites because 
they can chose from a large number of different offers. They might hope that the 
segmentation of the market has the effect of less competitors in a specific auction, ignoring to 
some extent that they are looking for precisely that product and value it therefore higher.  
 
With more and more auction sites entering the stage, and with the trend that portals or 
companies that started with traditional retailing use now auctions as one of many versions of 
trading, the very simple model of trading platform can however risk to become a commodity. 
The trading itself is only a small part of the total change of ownership that, at the end has to 
include financial and physical settlement. Herschlag and Zwick (Herschlag & Zwick, 2000) 
give the example of Teletrade as an auction site that adds services for settlement for buyers 
and sellers, while ebay likes to classify itself as a “person-to-person” trading community. 
Whether the latter is a sustainable business model depends very much on the experiences that 
consumers make with their private trading partners. It could well be that online auction sites 
develop their own netiquete, maybe established through ratings of the auctioneers and 
bidders. But it could also be that on the long term auction sites which take care of logistics 
and settlement have an advantage against the platform only solutions. When more customer 
service is required, the traditional auction houses may even become the strongest competitors 
as they can rely on an established brand name as well as on their experiences in all phases of 
the settlement. However this brand name has to be protected and thus these sites will have to 
provide an above average service. It seems likely that we will see a range of service versions, 
where higher quality of service might have to be paid for by participation fees. Such fees 
could also serve partly to provide customers an insurance against bad fulfilment of the 
contract.  
 
The second business trend is customising, hand-in-hand with personal pricing. The principal 
idea of an auction is to find among a set of potential buyers those with the highest willingness 
to pay, where the second highest valuation is about what can be expected as revenue (due to a 
fundamental theorem on auctions this is true for all major single-item auctions with private, 
independently distributed valuations of bidders, see the next section). Auctions make 
therefore sense in cases where the valuations are diverse, and where identification of the 
customer with highest valuation is difficult. However this concept seems to be in contrast to 
the expectation that consumers of an online auction have. Typically, they would like to make 
a bargain. Auctions would certainly become unpopular if they were used by the high-end 
customers, driving prices to the same level or above prices in the store or catalogue. Therefore 
online auctions which sell new products have to put much attention on proper product 
selection. There has to be a kind of scarcity and the product has to address a consumer group 
that observes a discount through the auction. Typical products are thus completely new 
products which are not available yet, or products that are replaced by a new version. In both 
cases the auction implements a two-fold segmentation. It selects through the type of products 
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consumers who, in the first case, do not want to wait for until the next generation is in the 
store, and, in the second case, do not care for the most recent technology. Among those it 
applies personal pricing by finding the consumer with highest willingness to pay.  
 
Real customizing in such a market is rather limited. There has to be more than one bidder 
interested in the same copy, since otherwise the second price would be zero. A typical 
customisation dimension is time. If for example bandwidth in a telecommunication network is 
required for a certain time-interval at a certain capacity, or if a traveller needs a ticket for a 
very specific time, an auction can have the strength that searching and negotiating an 
alternative trade is not feasible, as it would exceed the time limit. On the other hand, 
auctioning last minute tickets identifies those travellers who are not bound to a certain time. 
 
Auctions are not the only trading mechanism that can realise personalised pricing. There are 
for example one-to-one price negotiation sides on the Web, in which a customer negotiates 
individually with a merchant on the price. From the list of frequently asked questions at 
haggelzone.com one can read (as of 11.12.2000) “Hagglezone.com is the anti-auction. At 
www.hagglezone.com, prices go down, not up. The buyer is in control of negotiating the price 
down against the chosen Haggler, instead of bidding prices up against hordes of other 
consumers”.  A “haggler” means a salesperson  the customer tries to negotiate with a price. 
Note that the underlying mechanism is similar to a Dutch auction, rather than an “anti-
auction”. Namely, in case the merchant is negotiating at the same time with several customers 
(which is not observable by the buyer), he can lower the price steadily until the first customer 
is willing to buy. If there are several items to sell, she can however continue decreasing prices 
for the other customers. Only if there is exactly one customer interested in the item it differs 
from a Dutch auction. In this case an auction would not be recommendable to the merchant, 
so the advantage is on the merchant’s side. One-to-one price negotiation is actually most 
appropriate, if more terms than the price are part of the negotiation, in which case there is 
likely exactly one customer for a given mix of terms. Furthermore, the price serves as a trade-
off between matched and un-matched customer expectations. An example is given by 
www.tradeaccess.com. Finally, there are sites like www.priceline.com realising B2C reverse 
auctions, and sites like www.letsbuyit.com that realises a flexible price through bundling of 
demand. 
 
The third business trend is customer involvement. At an auction site it is the customer who 
determines the price, not the auctioneer. With many items on sale at the same time, the 
customer gets a huge selection of items. In particular for moderated auctions, as they can be 
found on various sites (for example at www.ricardo.de) the customer contributes to the 
entertainment to non-active visitors of the auction site by taking part in an open, observable 
competition. Finally, customers of private-to-private auctions contribute to the success by 
setting up own auctions. Customers can even become almost professional traders by the help 
of the online auction infrastructure. Auctions like www.ricardo.de observe that items in their 
private-to-private auctions have previously been purchased in the business-to-consumer area. 
The Keenan report cites www.eBay.com with the information that in 1999, 10.000 customers 
made most of their personal income from trading goods with eBay (Keenanvision, 2000). 
 

Auction Design 
There are three major categories of auctions 

1. The classical auction in which an auctioneer sells to a group of bidders. The 
introduction presented already the main versions: English auction, first price sealed 
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bid auction, and Dutch auction. A fourth member of this category is the second-price 
sealed bid auction, also called the Vickrey auction, in which the winner has to pay 
only the second highest bid price.  

2. The reverse auction in which the auctioneer wants to purchase items from a set of 
bidders. One may use all of the four formats here, although the first-price sealed-bid 
auction seems the most used one.  

3. The double auction in which a group of buyers and sellers meet each other. The 
classical model is an exchange. Here sellers post asks and buyers post bids. 

Inside each of these categories, many parameters have to be chosen to fine-tune the auction 
procedure. These include features like activity rules, minimum increments, or decrements, as 
well as information disclosure policy in multi-round auctions. A mix of general format and 
features can be used to address specifically the goals of an auction, given a certain market 
situation. Of increasing interest are hereby multi-item auctions, where the seller has a set of 
items to sell, and buyers are interested in purchasing certain subsets of this set.  In this 
section we look at the role of information in auction design for single items, and then see  in 
the next section why multi-item auctions require a special treatment.  
 
Why is it such an important factor in the design of an auction, which information bidders and 
the auctioneer have about the value of the items on sale, and the information that they have 
about the other agents’ value estimates? We will describe in the following two extremes, in 
order to give an answer to this question. Again, when compared with the rich literature on 
auctions, see e.g. (Klemperer, 1999), our treatment has to be rather introductory. Furthermore, 
information distribution in practice is usually in between the two extremes. 
 
The first extreme is that where every bidder has private value of the item. The mathematical 
formalization is a value vi of bidder i. To capture the degree of information that other bidders 
have about i’s valuation we assume that they observe it as random variable Xi. In case of a 
discrete random variable they know thus the probability that the valuation of i takes a certain 
value. The private value model assumes that these random variables Xi are independent 
random variables. It is save to assume that the random variables are all identical, if bidders 
have no information about differences in the competitors’ values for the item. An example for 
an auction with a private value model is that of auctioning a collectible, e.g. some painting 
from an unknown painter from the 19th century, where the value for every bidder is a function 
of personal taste. We assume an unknown painter, because we want to exclude that the 
purchase is meant as an investment for later sale, in which case we would loose some of the 
independence of valuations. 
 
The second extreme is that of a common value. In this case the value of the item is 
independent of the bidder, or in other words common to every bidder. Mathematically this 
situation is modelled by a single random variable. The exact distribution of the random 
variable is unknown to the bidders, and possibly as well to the auctioneer. However all parties 
may have a certain degree of information about this random variable, by having done a priori 
some research. An example is shares on the stock market. Their value in the future, i.e. the 
price at which the stock market will trade them, is completely independent of bidders’ 
personal taste. The value is a random variable, of which well-informed bidders have a better 
estimate than less informed bidders.  
 
Auctions in practice are situated in between these two extremes. Buying a painting might well 
be seen as an investment, in which case the future demand for the painting, in other words the 
possible price that it might achieve in an auction, plays a significant role for its value. The 
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decision which shares to buy at which price can also be influenced by preferences for a brand 
name, or from hedging considerations for the own portfolio, which adds a private value 
component. 
 
Let us see now how the two cases influence the choice for the auction design. Notice that the 
bidding process may reveal information, in other words it signals other bidders. The 
auctioneer might want to support these signals, if it reduces the risks of bidders and thus 
increases the willingness to pay. She might want to mind these signals, if bidders can collude 
this way and decrease the outcome of the auction.    
 
Consider the ascending price English auction. If bidders have private valuations vi, and if they 
behave rationally, they should participate in the auction until the bid reaches vi. Indeed at that 
point a bidder’s utility ui which is defined by ui = vi – p, p being the price that the winner has 
to pay, is becoming 0, so she becomes indifferent between win or not to win. Observing the 
bid prices of other bidders is not of relevance for her. The only impact that they have to her 
strategy is that they determine at which price she is able to win the item. If she has the highest 
valuation and all bidders participate actively, she will purchase the item at a price slightly 
higher than the second highest bid from her competitors. If competitors follow the same 
rationale, this bid is equal to the second highest valuation of bidders. In this case the English 
auction realizes a so-called second price auction.  
 
Three factors play an important role here. Firstly, it is the activity of bidders. If activity is not 
stimulated, then the bidder with the highest valuation risks to make an initial bid that is 
already strictly higher than the second highest valuation. In this case all others drop out and 
she doesn’t realize the maximum possible utility. It’s thus wise for all bidders to start with a 
careful low bid. It’s also advisable for the auctioneer to let the auction start with a low initial 
bid, even if her reservation price is higher. The reservation price is the lowest price at which 
the auctioneer is willing to sell. In Ebay.com private-to-private auctioneers can for example 
set a start price and a reservation price. The latter is not visible to the bidders. 
 
Secondly, the termination rule of the auction plays a role. In the traditional offline auction 
setting, the auctioneer uses the going, going, gone mechanism to finalise the bidding. This 
enables the auctioneer to evaluate carefully, whether the current highest bidder is also the one 
with the highest valuation. If, like in many online auctions, the end is a fixed point in time, the 
auction looses its flavour of a second price auction. Now a bidder with a low non-competitive 
valuation may succeed to win by making the highest bid just before the auction finishes. 
Bidders can protect themselves against such competition only if they make a high bid early 
enough. But this makes it likely that a winning bidder has to pay a price that is very close to 
her own valuation, which turns the auction mechanism into a first price auction. Online 
auctions are therefore considered typically as a hybrid of a first and second price auction 
(Ockenfels & Roth, 2000). Some auction sites, e.g. www.amazon.com, avoid this by 
extending the auction automatically for a couple of minutes after the last bid was made. Quite 
astonishingly, the bidders can in principle avoid to pay more than the second highest 
valuation in a first price auction by using their information and doing some calculus. Indeed if 
they know how the random variables determining other bidders’ valuations are distributed 
they can calculate a strategy that gives them an expected utility that is equal to that in the 
English auction. Basically, they have to calculate the expected value of the second highest bid. 
For the interested reader we recommend an auction survey by Wolfstetter (Wolfstetter, 1996), 
or the original paper by Myerson (Myerson, 1981), to learn more about the precise conditions 
under which the revenue equivalence theorem applies. 
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Thirdly, minimal bid increments are of relevance. A minimal bid increment is the amount by 
which the next bid has to be higher than the current highest bid. Minimum bid increments can 
have the effect that not necessarily the bidder with highest valuation wins the auction. Say, for 
example, that the highest valuation among all bidders is 98, the minimal increment is 5 and 
the auction is at price of 95. If the current highest bid has not been by the bidder with highest 
valuation, the latter has to drop out, since winning with 100 would have a negative utility. 
 
Fixed end times and minimal increments may thus both lead to the effect that the auction is 
not efficient. Efficiency is defined as the property that the bidder with highest valuation will 
win the auction. Efficiency is desirable from a welfare perspective, and also from an 
auctioneer’s perspective. If the bidder with highest valuation wins, and if there is a strong 
competition, meaning that the second highest valuation is close to the highest, an efficient 
second price auction is close to optimal for the auctioneer. In economic literature an auction 
design is said to be optimal if the expected revenue for the auctioneer is maximized. We will 
use the attribute optimal in a different way throughout this paper, namely with respect to a 
specific instance of bidder valuations. We say that the auction is optimal for this instance if 
the revenue is equal to the maximum valuation.  
 
Let us now turn back to the role of information, and consider the case of a common value, 
where the final value of the item will be the same for every bidder, but the bidders have 
different estimates about this value. We look first at the English auction. We observe easily 
that the bidders should become careful with every bidder who drops from the bidding, since 
this indicates that her estimate tells that the (common) value of the item will be less than or 
equal to the current highest bid. The more bidders drop out, the more reliable becomes this 
signal from the auction process. An ascending price auction thus reveals information. 
Necessary is however activity by the bidders. We saw above that with a fixed termination date 
early bidding is discouraged, and thus information revelation is abandoned. The auction 
becomes a first price auction, with a significant risk of a winner’s curse. The winner’s curse is 
the effect that a winner in a common value auction pays more than the (later) value of the 
item. The winner’s curse is actually not tied to first price auctions, and can also occur in 
second price auctions with common value, though it will be less severe of course. 
 
The possibility to exchange information during the auction process makes up for the main 
difference between open outcry auctions and sealed bid auctions, in which the auctioneer 
collects bids in sealed envelopes and decides who wins the auction. Certainly, sealed bid 
auctions have the advantage of further lowering transaction costs, but the stronger the 
common value component is in the valuation of the item, the higher the risk of a winner’s 
curse. Furthermore, sealed bid auctions require trust in the auctioneer that she does not 
manipulate the bids. The sealed bid auction knows two versions: the first price sealed bid 
auction, and the Vickrey auction in which the price is that of the second highest bid. The 
revenue equivalence theorem (Myerson, 1981) tells us that the expected revenue for the 
auctioneer is the same for both models in the case of private values, since in the first price 
auction the bidder should adjust his bid to the expected second highest bid. Under common 
value situations this is not necessarily the case. 
 
The online auction www.ricardo.de experimented in May 2000 with a second price Vickrey 
auction. They called it an undercover auction. Results have been reported on their site at 
http://www.undercover.ricardo.de/undercover/mid.htm (11.12.2000). Comments to an 
announcement of that auction at www.zdnet.com showed that bidders have a hard time 
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understanding the principle of the second price. A concern was that a bidder might be tempted 
to bid very high, because this increases the chance to win the auction, while only the second 
price has to be payed. However this strategy would lead to a large loss if more than one 
bidder applies it. Rather than excluding by this argument the strategy, comments at 
www.zdnet.com brandmarked the auction mechanism as extremely unfair! Online auctions 
can well offer Vickrey auctions in a less explicit way. So does www.qxl.com, which offers to 
set a maximum bid upto which a bidding agent will increase the bid on behalf of the bidder 
whenever her bid is not the highest: “When you bid, we ask you to put in the maximum bid 
amount you are willing to pay for the item. Remember that bid amount reflect the amount you 
are willing to pay per item. So, if you bid £10, and you select to buy a quantity of 10, that 
means your total bill could be £100 for this auction. Once you set your Max. Bid, we place a 
bid on your behalf to enter you in the auction, and every time you're outbid, to make sure you 
stay the high bidder, up to the bid you specify.”  
 
The ricardo case indicates that smart auction design should take the user into account, in the 
sense that it might be too complex for her to behave optimally. If we follow this 
argumentation in a more formal way, we see that different auction designs have quite different 
computational complexity for the bidders and the auctioneer. The reader should take 
computational complexity as a measure of mathematical tasks that have to be solved in order 
to optimize the own strategy. In an English auction this is quite simple: the bidder observes 
and decides at every point whether she is willing to increase the bid or not. In the common 
value case the decision has to take the bidding of competitors into account, in the other case 
not. Two recent papers that take the cognitive costs of bidders into account are (Parkes, Ungar 
& Foster, 1999), and (Nisan & Ronen, 2000). 
 
Let us finally consider the Dutch auction. In the case of private valuations the bidder should 
use the same strategy as in the sealed bid first price auction or in the auction with a fixed 
termination date: forecast the second highest valuation of all bidders, and stop the descending 
auction clock at this value, in case that the own valuation is higher. Notice once more the 
computational problem of calculating this termination point! Without computational effort, 
maximum expected utility is not realized, because the bidder either fails to win, or she wins at 
a price strictly higher than the second highest valuation among the bidders. In case of a 
common value auction, the Dutch auction has the disadvantage that it does not reveal any 
information about other bidders’ estimates. Bidders can simply not observe other bidders’ 
decision to leave the auction. This delivers again a high risk for a winner’s curse.  
 
What we learn from this discussion is that auction theory is a very complex field of 
mathematical research. Although there are strong theorems that can be used to reduce the 
number of cases to be considered, like the revenue equivalence theorem or the revelation 
principle (Myerson, 1979), these theorems have to make assumptions that are not necessarily 
applicable in practice. Firstly, they assume rational decision making, secondly they assume 
unbounded computational and mathematical capabilities of decision makers, and thirdly they 
seem not to reflect that the process of an auction can have a strong psychological influence on 
the decision behaviour, which is in any case not necessarily completely rational. Every 
specific auction design requires not only a detailed theoretical foundation, but also empirical 
and experimental analysis, in order to be able to predict its outcome for bidders and 
auctioneer. The many auctions on the Internet do not only challenge auction research for that, 
but also turn out to become a means to improve the understanding of auctions. With millions 
of auctions going on all the time, auction research gets the empirical data required to fine-tune 
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designs. As an outstanding example of such online research we refer here to (Ockenfels & 
Roth 2000).    
 
To summarise, we can say that research on single-item auctions has to look in detail on 
bidders information about the item, on the spread of this information among bidders, the 
computational complexity of evaluating this information, and the diffusion of information 
during the auction process. 

Complements and Substitutes 
So far we considered the case that exactly one item is sold in an auction, and that the bidders 
valuation of that item is completely independent from other events. This assumption is hardly 
feasible in practice. Bidders might at the same time be active in many auctions, and the value 
of an item that they can win might well depend on other items they can purchase. For 
example, they might succeed to buy a complement for an item, giving the union of the two 
items a higher value than the sum of individual values. They might also face the situation in 
which they have purchased items that substitute each other. We consider in this section 
auctions in which one auctioneer tries to sell a set of items to a group of bidders. Such 
auctions are called multi-item auctions. The items may be different or identical. In the pure 
case of identical items we talk about multi-unit auctions. We assume furthermore that items 
are not divisible, such that it is not possible, say, that two bidders win both half of an item.  
 
Multi-item auctions have numerous applications, like selling airport time slots (Rassenti, 
Smith & Bulfin, 1982), railroad segements (Brewer, 1999), and shipping contracts (Caplice, 
1996). They are of interest as coordination mechanism in multi-agent systems (Nisan & 
Ronen, 2000), and have recently been investigated largely from a computer science and 
operations research perspective (e.g., Fujishima, Leyton-Brown & Shoham, 1998, Leyton-
Brown, Pearson & Shoham, 2000, Leyton-Brown, Shoham & Tennenholtz, 2000, Rothkopf, 
Pekec & Harstad, 1998, Sandholm, 1999, Sandholm & Suri, 2000, Tennenholtz, 2000, Vohra 
& de Vries, 2000, Wellman, Walsh, Wurman & MacKie-Mason, 1998). 
 
In terms of the broad range of auction features that we discussed in the previous section we 
have to restrict ourselves. We assume in the following private value. The value is now not 
anymore related to one single item, but is a function that maps every subset of items to a real, 
non-negative number. Such a function determines the type of a bidder. A type is thus a 
mapping v: 2S      ℜ. The outcome of the auction is an allocation of subsets of items to 
bidders. We denote by I the set of items and by B the set of bidders. Let J be a numbering of 
the union of all possible bids from all bidders. The set J gives a unique identifier to every 
subset for every bidder. We use it in the following to simplify our notation.  
 
As in every auction mechanism it has to be decided which are the winning bids. Based on our 
notation we can use an 0-1 vector x to model this decision, with the interpretation that xj = 1 if 
and only if bid j is assigned. By wj we denote the bid price. Efficiency of the auction can now 
be expressed as follows. The final allocation x should maximise the expression ∑j ∈ J  vj xj. . If 
pj denotes the price which has to be paid for winning bid j, then optimality is achieved if  
∑j ∈ J  pj xj equals this maximum value. 
 
Already the number of possible allocations of items, it is (|B| + 1)|S|, indicates that multi-item 
auctions can be expected to be far more complex than single-item auctions. They are almost 
the most general market mechanism for markets with indivisible goods, and have in particular 
been studied in the literature on resource allocation in multi-agent systems. What they don’t 
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capture are preferences of a bidder on allocations among the other bidders. They are also a 
special case of multi-attribute auctions. To see this observe that we can represent a subset by 
an attribute vector, with one component for every item in I, and an attribute having value 1, if 
the corresponding item is contained in the subset, 0, otherwise. This way every bid, becomes 
a bid on a product, which satisfies certain attributes. The fact, that only a limited number of 
copies are available of each item translates into the fact that the auctioneer in the multi-
attribute auction can only fulfil a certain mix of contracts.  
 
Multi-item auctions started to gain scientific popularity in terms of the huge frequency 
auctions organised by state authorities since about 1994. Some failures of the first designs of 
such auctions in New Zealand, and Australia, caused the FCC in the US to invite auction 
experts to help in creating an appropriate multi-item auction (McMillan, 1994). The result 
was a multi-round, parallel single-item auction, with rules for minimum increments and 
participation. Let us try to illustrate why, aside from the sheer number of possible allocations, 
multi-item auctions are such a complex issue.  
 
A major challenge in multi-item auction design is to solve the exposure problem. Suppose 
that items Q and R are strong complements to each other for a bidder A, thus she would be 
willing to pay 100$ if she can purchase both of them, while she values Q and R alone only at 
20$ each. Suppose that competitors B and C have only interest in Q and R, respectively, with 
a valuation of 30$. If Q and R are auctioned independently in single-item auctions, then A 
may have to bid on both, Q and R, higher than 30, due to the competition by B and C. At this 
time she might well win Q at, say, 30, but fail to win R, leaving her with a negative utility of –
10 $. If bidder A can announce her high valuation for {Q,R} to the auctioneer, B and C might 
on the other hand be discouraged by the threshold problem. Individually they are not able to 
compete against the high bid of A. Together their value might however add to more than the 
100$ by A. If the auction design is not capable to reveal this, A might win despite the higher 
revenue obtainable for the auctioneer if she assigns to B and C. However revealing this 
information in an ascending price auction might also be tricky for B and C. If for example B 
makes a high bid for Q, then a relative low bid from C for R is enough to beat A. C enjoys in 
this case free riding on the high bid from B.  
 
A way out of this dilemma is to use a utilitarian revelation mechanism, in which bidders tell 
the auctioneer their type and the auctioneer computes an allocation based on this information. 
A problem with this approach is that bidders might be better off if they do not tell the truth, 
but report a wrong type w instead. This problem will be discussed below. A second problem 
of the revelation mechanism relates to the fact that an open, ascending price auction may 
function to inform other bidders in common value auctions. This issue is not addressed here, 
as we said to restrict ourselves to private value auctions. One might however argue that a 
utilitarian revelation mechanism may be repeated in several rounds, allowing bidders to adjust 
their type by withdrawing or reducing a bid made in a previous round. This kind of 
mechanism has to our knowledge not been studied in the literature, althoughseveral authors 
did propose ascending price combinatorial auctions in order to overcome the complexity of 
winner allocation in an revelation mechanism. This will be the topic of the next section. 

Sealed Bid Combinatorial Auctions 
In a sealed bid combinatorial auction bidders make bids for subsets of items. We assume for a 
moment that this gives a bid vector w. The auctioneer computes on this basis an allocation x. 
If the bids reveal the true valuations of bidders, i.e. w = v, then finding an optimal solution of 
the following integer linear program yields an efficient allocation: 
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   max   wx 
   s.t.  Ax ≤ 1  
    x integer 

 
In this formulation A is a matrix of zeroes and ones with a row for every item i, and a 1 at 
position j of row i, if and only if item i is contained in bid j. The right-hand side 1 stands for a 
vector with as many components as A has rows, with a 1 in each component. Two issues have 
to be considered at this point. The first is whether this is a reasonable way of representing the 
allocation problem. The second is how bidders can be given incentives to bid w = v . This is 
necessary to make the approach efficient, and due to a result of Monderer and Tennenholtz 
(Monderer, & Tennenholtz, 1998) it is a basis to design an optimal auction, i.e., an auction 
with maximum possible revenue for the auctioneer.  

Coding and Computational Complexity of Sealed-bid Combinatorial 
Auctions 
Let us look at the integer linear programming model above and discuss how well it is suited to 
find an allocation of subsets to bidders in a sealed bid combinatorial auction.  
 
Firstly, we observe that several bids from the same bidder may win at the same time, as long 
as they are disjoint. This happens however only in the case of substitutes, since only in this 
case the sum of the values of two disjoint bids may be higher than the bid for the union of the 
two sets. To protect the bidder against winning several bids at the same time we have to add 
additional constraints to the linear programming model. If the bidder wants to win at most one 
bid from all her bids, one additional row per bidder suffices. It has a 1 in every column of the 
matrix that represents a bid by this bidder, and a 1 as right-hand-side, all other coefficients are 
equal to 0. If a single bidder wants to express that there are several subsets of bids, where she 
wants to win one from each subset, but possibly several bids in total, we have to add such a 
constraint for each of these subsets. Such a bid is called an OR of XOR bids (Nisan, 2000). 
Notably, other logic constraints, like if winning this bid I want also to win another bid, can be 
expressed by adding linear constraints to the model. Nisan describes in a recent paper how 
different representations of combinatorial auctions can be converted into each other (Nisan, 
2000).  
 
Secondly, the simple encoding of bidders’ types by listing all subsets for every bidder is not 
feasible for even small numbers of bidders and items. For 20 items and 100 bidders the matrix 
has already 20 rows and more than 20 million columns. It’s not only the storage that causes a 
problem here, but also the fact that every bidder would have to communicate more than a 
million values. A sealed bid combinatorial auction has thus to restrict itself to a small number 
of bids from each bidder. Subsets for which a bidder does not make a bid are assumed to have 
a default value. For example, one might assume that such subsets have a value equal to zero. 
Many authors make also the free disposal assumption saying that getting additional items 
does not decrease the value. If the model does not exclude that the same bidder wins several 
subsets, the value of every subset that can be composed as disjoint union of subsets for which 
a bid has been made is assumed to be equal to the sum of the values of the subsets.  
 
The restriction to a reasonable number of bids is less serious when a combinatorial auction is 
done in several rounds, versus in one round of sealed bids. In this case a bidder has a chance 
to submit in a later round bids which she did not consider in the beginning, and thus even 
learn her true valuation during the bidding process (Parkes, & Ungar, 2000). This can be seen 
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as adding in every round columns to the integer linear programming problem, which relates 
nicely to a column-generation algorithm in combinatorial optimisation. In such an algorithm 
we start with a small number of columns and find the optimal solution (in our terms this 
means a small number of initial bids). We then “generate” new columns which, once added to 
the linear program, can improve the optimal solution. Note that every new column extends the 
number of possible solutions of the optimisation problem (all previous solutions plus 
solutions that use that column), thus with a column added the optimal solution is at least as 
good as before. In a multi-round combinatorial auction, column generation means that bidders 
can submit bids in every round which improve the revenue for the auctioneer. In a one-round 
sealed bid auction one can use a similar approach by letting bidders submit a pricing 
procedure. This is a software agent that is able to calculate for every subset the price that a 
bidder is willing to pay for that subset. An approach like that can be found in various online 
auctions for single items. It is called a bidding agent. A bidder parameterises this agent by her 
maximal price, and the agent will generate minimal incremented bids in an ascending price 
auction, until this price reached.  
 
Thirdly, and most important the above integer linear programming problem is NP-hard. This 
means that there will be no algorithm that can solve this problem in a number of operations 
that is polynomial in the encoding length of the problem, as far as P≠NP, which, although 
never formally proven, is generally assumed to be true. This is already true if every bid 
contains not more than 3 items, and all bid prices are 1 or if every bidder makes exactly one 
bid with bid price 1 (Rothkopf, Pekec, & Hastard, 1998, van Hoesel, & Müller, 2000). On the 
other hand the problem is polynomial solvable if there exists a sorting of items such that every 
bid contains a set of neighboured items (Rothkopf, Pekec, & Hastard, 1998). This latter result 
holds only in the case of complements. If bids substitute each other, and therefore additional 
constraints are required telling that every bidder is allocated at most one bid, it becomes NP-
complete. This follows from a result about the complexity of certain scheduling problems 
(Keil, 1992).  
 
Complexity results for the winner determination problem have to be taken with some care. 
Note that we want to have an algorithm that is polynomial in the length of the encoding of a 
problem. Now, if every bidder would submit a bid for every subset, the encoding would 
already take a huge amount of space. Indeed, it can be shown that with this huge input the 
winner determination problem can be solved in polynomial time (Müller & Schulz, 2000). 
But with a large number of items, an exponential number of bids would not be realistic from a 
bidders point of view, therefore it is reasonable that in many applications we are not in this 
extreme case of an exponential number of bids. 
 
The fact that the winner determination problem is NP-hard is the most serious obstacle 
towards the application of sealed bid combinatorial auctions, and will form the core of the 
discussion of the remaining part of this chapter. We will first explain the classical Vickrey-
Clarke-Groves pricing mechanism for sealed bid combinatorial auctions. We give a very 
simple proof that it is truth revealing. If it is used in combination with a heuristic or an 
approximation algorithm it requires a warranty on the allocation algorithm that leads at the 
same time to some abnormal effects. These are recent results by Nisan and Ronen (Nisan, & 
Ronen, 2000), which we summarise without giving proofs. We will then illustrate that the 
complexity of computing a good allocation in a combinatorial auction has to do with the 
complexity of defining market clearing prices in a market with indivisible items. We finally 
give a framework to solve the allocation problem with a primal-dual algorithm. This 
framework computes such prices, however with the disadvantage of being not optimal. If it is 
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combined with a carefully adjusted pricing mechanism, it gives a truth revealing 
combinatorial auction mechanism, however only for special cases.  

The Vickrey-Clarke Groves Mechanism 
A combinatorial auction is one of many mechanisms that could be thought of as a clearing 
mechanism for a market with indivisible items. A general analysis of such markets is far 
beyond the scope of this paper, so we will have to make some assumptions in this section. 
 
Our first assumption is that the auctioneer has the goal to maximize own revenue. The best 
result that can be achieved, given certain types of bidders, and assuming that bidders do not 
bid more than their valuation, is the solution of the above integer linear optimisation problem 
with w = v. A bidder may however be better off in bidding less than her valuation. In order to 
achieve nevertheless an allocation that is close to this optimum the auctioneer has to set 
incentives to bidders to report their true valuation in their bids.  
 
Take for example the case of a sealed-bid auction for a single item. Bidders submit sealed 
bids with a price wj. If the auctioneer chooses the highest bid as winning bid, bid 1, say, and 
sets p1 = w1, then the corresponding bidder would have been better off if he had submitted a 
bid that is just above the second highest bid. Thus the auction mechanism sets incentives for 
strategic behaviour. However, a classical mechanism is available to avoid strategic behaviour. 
We have seen it already in the introduction. It is based on an appropriate modification of the 
payment scheme: winning bid 1 has only to pay the second highest bid, i.e., p1 = w2, say. 
Under this design, which is called the Vickrey auction, the best strategy for bidders is to 
reveal their true valuation (Vickrey, 1961). We observe that in a highly competitive market 
the auctioneer makes still almost optimal revenue, as the second highest valuation is likely to 
be almost equal to the highest valuation. 
 
To put these ideas into formulas for the general case we need the following definitions. A set 
Jc of bids of a bidder c is said to constitute a weakly dominant strategy, if for every set of bids 
by other bidders any other set Jc' of bids from c would not improve her revenue. In other 
words, independent of what other bidders bid, the set Jc is always the best response. An 
auction mechanism is called truth revealing if for every bidder, bidding her true valuation is a 
weakly dominant set of bids. 
 
Remember that we call an auction mechanism efficient if the total valuation of the allocation 
is maximal with respect to all feasible allocations, i.e. it maximises total welfare. Suppose we 
have a truth revealing mechanism and all bidders use their weakly dominant strategies. We 
will then have an efficient mechanism if the allocation x is an optimal solution for the above 
integer linear optimisation problem. Thus a truth revealing mechanism does provide the 
auctioneer with the right data to achieve efficiency.  
 
For multi-item auctions the Vickrey-Clarke-Groves mechanism (Clarke, 1971, Groves, 1973), 
which is frequently also called the Generalized Vickrey Auction, is an auction design that 
satisfies truth revealing. It works as follows. Suppose w are the bid prices reported by bidders, 
and A is the matrix of bids, as described above. Let x’ be the optimal allocation with respect to 
these bids, i.e. the optimal solution of the integer linear program given by A and w. The 
vector x’ defines the winning bids. Next the auctioneer computes the prices for the winning 
bids. Let c be some winning bidder, and   let   xc’ be the part of x’ related to bids from bidder 
c, and x-c' the other components of x’, and the same convention apply to other vectors and 
matrics involved. The auctioneer now deletes for a moment all bids from bidder c, and solves 
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the integer optimization problem given by the objective w-c x-c and the constraint A-c x-c ≤ 1. 
Let z-c be the optimal solution, in other words the best allocation of winning bids if bidder c 
would not have particiapted in the auction. The price p(c) to be paid by c is  p(c) = wc xc’ – (w 
x’  – w-c z-c).  The term in brackets that is subtracted from the bidder’s bid price can be viewed 
as the marginal contribution of   bidder c to the auction. This price is computed for every 
bidder who wins a bid under the allocation xc’.  
 
To give an illustration, consider our example from the previous section. We have seven bids, 
3 from bidder A, and two from bidders B and C, respectively. The optimisation problem to 
solve is: 
 
 Max  100 x1 + 20 x2 + 20 x3 +30 x4 + 30 x5 + 30 x6 + 30 x7 

 s.th.        x1 +      x2 +                 x4 +                   x6               ≤ 1 
         x1 +                  x3 +                 x5 +                    x7  ≤ 1 

         x1 +      x2 +     x3                                                                             ≤ 1  
                                          x4 +        x5                                          ≤ 1 

                                                                     x6 +       x7 ≤ 1 
         x1 , x2 , x3 , x4 , x5 , x6 , x7 ∈ { 0,1}  
 
The optimal solution is x1 = 1, and all other xi = 0. The price to be payed by bidder A is 100 
minus her marginal contribution. The latter is equal to (100 – 60), as excluding every bid from 
A leaves us with the integer linear programming problem: 
 
                 Max   30 x4 + 30 x5 + 30 x6 + 30 x7 

     s.th.       x4 +                   x6             ≤ 1 
                                  x5 +                   x7  ≤ 1 

                                    x4 +      x5                                        ≤ 1 

                                               x6 +      x7 ≤ 1 
                    x4 , x5 , x6 , x7 ∈ { 0,1}  
 
which has an optimal value of 60.Therefore A wins the set {Q,R} for a price of 60. 
 
We shall briefly give the proof for truth revelation. For that we have to compare a bidder’s 
revenue for arbitrary bid prices w with the revenue when she changes to her valuation. With 
similar conventions as above, and an easy calculation, the first value is vc xc’ + w-c x-c’ – w-c z-

c , and the second value is given, as vc xc
t  + w-c x-c

t – w-cz-c , using xt for the optimal allocation 
under the true valuation. The last term is identical in both formulas. The sum of the first two 
terms is in the first case equal to the objective value of the feasible allocation x’ with respect 
to the objective composed from vc and w-c. In the second case the sum of the two terms is the 
objective value of the optimal feasible allocation under this objective. Therefore the value of 
the second formula is larger than the value of the first. 
 
As VCG is truth revealing it is also efficient. And again it is likely to get very close to the 
optimum value for the auctioneer, when for example for every winning set there is a loosing 
bid on that set (or on a subset) that makes almost the same price offer. Truth revealing 
requires however to reveal the complete type, which might be information that is exponential 
in the number of items, as we discussed above. Another disadvantage of VCG is that it 
requires solving the winner determination problem once in phase 1 and again for each winner 
of a bid in phase 2. Although the later would be polynomial in the size of the input if all bids 
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are reported, the overall mechanism of reporting bids and computing an allocation and prices 
needs an exponential number of operations.  
 
One might argue that a good heuristic algorithm could replace the exact computation of the 
winner determination. Based on this idea, Nisan and Ronen defined VCG-based mechanisms 
(Nisan & Ronen, 2000). Such a mechanism uses the same second price formula as the 
VCGmechanism. However the vectors x and z are replaced by the solutions computed by the 
heuristic. Truth revealing VCG-based mechanisms can be characterized as follows (Nisan & 
Ronen, 2000). Let the range of an allocation mechanism be defined as the set of all different 
allocations that can be proposed by a mechanism. For example, a very simple mechanism 
might assign the whole set of items always to one bid and chose for that the bidder with 
highest bid for the set (or a subset, if we assume free disposal). In this case the range of the 
algorithm consists of as many different allocations as there are bidders, namely assigning 
everything to bidder 1, or to bidder 2, or to bidder 3, etc.. A sufficient condition for a truth 
revealing VCG-based mechanism is that it is maximal in its range. This means that the 
allocation algorithm chooses always an allocation that is at least as good with respect to the 
current bids as any other allocation in its range. If one looks at the proof above one observes 
that this property guarantees indeed truth revealing as it leaves no benefit for strategic 
behaviour. Furthermore, Nisan and Ronen showed that being maximal in the range is also 
necessary for a VCG based mechanism in order to be truth revealing.  
 
From this result they make some astonishing observations. If the range does contain every 
allocation, then it is clear that the allocation algorithm has actually to find the optimal 
allocation. But this problem is NP-hard. If the range is however a subset of all allocations, 
then the algorithm must have some very counter intuitive behaviour. To see this, let x be an 
allocation that assigns some set S1 to bidder 1, a set S2 to bidder 2 and so forth, but that is not 
in the range of the algorithm. Whatever bidders will bid, the algorithm will not suggest this 
allocation. Then look at the following valuation: bidder 1 values all items in S1 by 1, bidder 2 
values all items in S2 by 1, etc., while every bidder values all the other items by 0. The 
allocation algorithm would in this case not do the obvious allocation x, namely giving S1 to 1, 
S1 to 2, etc..  

Supported Allocations 
It is important to mention that the direct equivalence of the winner allocation problem in 
sealed bid combinatorial auctions and the set packing problem from combinatorial 
optimisation gives us as well a huge family of polynomial solvable cases. For example, we 
may associate every bid with a node in a graph, give it the weight wj, and connect two nodes 
by an edge if the bids compete on a common item. This leaves us with the problem to 
calculate a maximum weighted stable set in a graph. Combinatorial optimisation research has 
identified many classes of graphs for which the stable set problem is polynomial solvable 
(see, e.g., Skiena, 1998). In particular in cases where the bids have a geometric or geographic 
interpretation the graph is often a so-called intersection graph. In many such cases the 
geometric representation can be used to design polynomial algorithms (see, e.g., Felsner, 
Müller & Wernisch, 1997) .  
 
Important, and this not only from the algorithmic perspective, are those cases for which 
winner determination is polynomial due to the fact that the linear program that we get when 
we drop the integer constraints from the above ILP has nevertheless an integer optimal 
solution. In this case we can use a polynomial algorithm to solve the winner determination 
problem, or to speak more pragmatically, every commercial linear programming solver can be 
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used to compute the best allocation. Nisan observed that the fact that the LP has integer 
optimal solution is actually directly related to an economic property underlying the 
combinatorial auction (Nisan, 2000). This property is the topic of this section. 
 
An allocation x in a combinatorial auction is supported by single-item prices yi, if for all bids 
j, xj = 1 implies ∑i ∈ j  pi ≤ wj, and xj = 0 implies ∑i ∈ j  pi  ≥ wj. It is exactly supported if xj = 1 
implies ∑i ∈ j  pi = wj . An allocation x is called full if every item is contained in some winning 
bid. From an application point of view a supported allocation has the advantage of 
publishable prices that explain to the bidders why they lost or won a bid. From a 
computational point of view it is of importance because of its relation to the solvability of the 
allocation ILP. It is an immediate consequence of linear programming duality that a 
combinatorial auction instance admits an optimal allocation x that is exactly supported by 
single item prices if the linear relaxation of the allocation ILP has an integral optimal solution. 
Indeed, the single item prices are equal to the dual variables, one for every item, and the dual 
feasibility together with the complementary slackness condition xi(∑i ∈ j  yi - wj) = 0 prove that 
the solution is exactly supported. The dual of the linear relaxation of the allocation ILP is 
    
   min   y 1 
   s.t.  yA ≥ w  
    y ≥ 0 
 
Nisan showed almost the opposite direction as well. Namely, if a combinatorial auction 
instance admits a full allocation supported by single-item prices, then this allocation is 
optimal and the allocation LP has an integral optimal solution. Furthermore, it has a full 
allocation that is exactly supported (Nisan, 2000). Let us show the very simple proof of that 
result.  Suppose x is a full allocation supported by single item prices y. First we may assume 
without loss of generality that the allocation is supported exactly, since for a winning bid j 
with ∑i ∈ j  yi < wj we can increase yi to make the left-hand-side equal to the right hand side 
(Note that every i is contained in at most one winning bid). After this modification, the prices 
yi form a feasible dual solution. Let us now compare the primal and dual objectives of x and  
y, respectively. We see that ∑ j wj xj = ∑i : xj = 1  ∑i ∈ j  yi = ∑i    yi . The last equation holds 
because x is a full allocation, thus this condition is essential in the proof. By this equality we 
have a primal feasible x, and a dual feasible y, with identical objective value, proving the 
optimality of both.   
 
There are many cases for which the allocation LP has an integral optimal solution, and is 
therefore supported (Müller & Schulz, 2000, Vohra & de Vries, 2000). In many cases the 
solution procedure does not have to rely on a LP solver, but could be done directly by a 
combinatorial algorithm, which is in most cases the faster approach. There are also classes for 
which one has a polynomial algorithm, but for which the LP does not necessarily have an 
integer solution. Here the allocation is in general not supported.   

Primal-dual Algorithms 
Primal-dual algorithms have particularly nice properties when applied to the winner 
determination problem in combinatorial auctions. Firstly, they compute solutions that are 
exactly supported. Secondly, for some special cases the payment phase can be adjusted in a 
way that makes the auction mechanism truth revealing. Thirdly, a primal-dual approach 
certificates the quality of the current allocation with respect to the criterion revenue 
maximization for the auctioneer. Indeed, the primal objective is a lower bound and the dual 
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objective gives an upper bound on the revenue that can be achieved with respect to the current 
bids. 
 
When adapted to our context a primal-dual algorithm works as follows. We are given the  
binary optimization problem to maximize the function wx subject to the intersection 
constraint Ax ≤ 1 and the constraint that primal variables are binary. The dual program we 
look at is the dual of the linear relaxation of this binary program.  It is given by the objective 
y1 and the constraint yA ≥ w.  We try to construct a feasible primal solution x, i.e. an 
allocation, and a dual feasible solution y, i.e., single-item prices such that x and y together 
fulfil the primal complementary slack constraint xi(∑i ∈ j  yi - wj) = 0. Together with dual 
feasibility, this slack condition translates to the condition that the allocation x is strictly 
supported by prices y . 
 

Remember that a Dutch auction is an auction in which prices are descending. A Dutch 
primal-dual algorithm (Müller & Schulz, 2000) for winner determination mimics the 
principle of a Dutch auction. Single-item prices (dual variables) are iteratively reduced to 
levels at which the price of a bundle j, say, with respect to these single-item prices hits the bid 
price for the bundle. At such a level further reduction of prices of items in bundle j is not 
possible without becoming dual infeasible. The Dutch primal-dual algorithm decides for j 
whether it is assigned or not, fixes all prices of items in j and continues to reduce prices of 
other items. The algorithm terminates when no more dual variables can be reduced, or all bids 
are decided.  The choice of variables, which are going to be reduced in the next iteration, and 
how much they are reduced, makes different versions of this scheme.  
 
The following example illustrates the algorithm. There is a set of two items, a and b, and there 
are three bids: 12 for {a}, 10 for {b}, and 23 for {a,b}. Suppose we do a greedy allocation of 
bids, which means that we assign a bid whenever its dual constraint becomes tight, and all 
items in the bid are still available. We start with prices for a, and b to be equal to 23. Prices 
will first go down to 12 for a, and b, the bid for {a} is assigned. Now, only the price for {b} 
can be further reduced. At price 11 the dual constraint on the set {a,b} becomes tight. This bid 
cannot be assigned. Now all prices are frozen and the algorithm stops. If we had not assigned 
{a}, then {a,b} could have been chosen. In both cases the dual objective equals the optimal 
solution, only in the second case the primal solution is optimal, too. 
 
Lehmann, O'Callaghan and Shoham investigated the special case of combinatorial auctions in 
which every bidder is interested in at most one subset of items (Lehmann, O’Callaghan & 
Shoham, 1999). For this case they prove sufficient conditions for a combinatorial auction 
mechanism, i.e., a winner determination and payment algorithm, to be truth revealing. Key to 
their result is to adjust the payment scheme in a way that bidders cannot regret too high bids. 
The payment scheme is not equal to the VCG scheme. In order to explain their approach we 
need some definitions. 
 
A combinatorial auction mechanism for single-minded bidders is called exact, if it assigns to 
a bidder either the empty set or exactly the set she is interested in. It is called monotone if 
winning bids would keep winning, if they would be replaced by a higher bid on the same set, 
or the same bid on a subset of items. In other words if a bid j with xj = 1 is replaced by a bid k 
with Ik ⊆  Ij, and wk  ≥ wj, then xk = 1. Lehmann et al. prove that in a mechanism that satisfies 
exactness and monotonicity, given a bid j together with a fixed set of other bids, there exists a 
critical value cj such that for wj < cj the mechanism will set xj = 0 and for wj > cj the 
mechanism will set xj = 1. This motivates the following definition.  An exact and monotone 
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mechanism is called critical if xj = 1 implies pj = cj. As a final condition in order to make a 
winner determination algorithm truth revealing they need participation. A mechanism fulfils 
participation if xj = 0 implies pj = 0. The result is then that a mechanism for single-minded 
bidders, which fulfils exactness, monotonicity, critical and participation is truth revealing. 
 
The Dutch primal-dual allocation algorithm fulfils exactness. Furthermore it fulfils 
monotonicity. First, assume a bidder replaces a bid j by a bid k that bids a higher price on the 
same set. Then tightness of the dual constraint for k is not later achieved than it has been 
achieved for j. Second, suppose a replacement of a bid j by a bid k on a subset of its items. 
Then the dual constraint becomes tight at higher individual prices for each item in the bid, 
which again moves the decision about this bid to an earlier stage of the algorithm. But at 
earlier stages of the algorithm no bid l with Ik ∩ Il  ≠ ∅ can exist. From monotonicity it 
follows that there exists a critical price pj for every bid. Using this in the payment phase of the 
mechanism guarantees participation and by that we get a truth-revealing mechanism. 
 
The primal-dual view has recently proven to be rather helpful in understanding combinatorial 
auctions. In particular one can interpret ascending price auctions with combinatorial bids as 
primal-dual algorithms (Parkes & Ungar, 2000). Furthermore, the modeling of markets for 
indivisible items by integer linear programming models, their relaxations, and the dual 
programs of the later can lead to valuable insights in market design (Bikchandani & Ostroy, 
2000). 

Summary 
This chapter has given an introduction on auction mechanisms as means of dynamic pricing 
on the Internet. We have explained how the popularity of auctions can be explained by 
general trends in the digital economy, like new forms of intermediation, customization, and 
customer involvement. We then outlined several design issues of an auction. Starting at 
simple single-unit, single-item auctions, we showed how in particular business-to-business 
applications require more complex auction formats. Such auction formats have to address the 
needs coming from complementarity or substitutability of items in a multi-item setting. 
Designing such auctions requires an integrated treatment of the computational aspects of 
auction design, i.e. how much information has to be communicated and how does the 
auctioneer process this information, and the economical aspects of the design, i.e., what are 
the strategies of bidders, what revenue can the auctioneer make, and is the allocation of items 
efficient with respect to the bidders preferences.  
 
We could certainly not cover all aspects that should be covered if this chapter would claim to 
be a survey paper. However this has not been the intention. We rather want to encourage the 
reader to use the references of this chapter and dive into the theory. Touching this theory at 
least to some extent, rather than leaving it aside, had the intention to convince the reader that 
auction design is a far more complex engineering task than one might expect at first glance. 
The author maintains a Web portal listing resources on the subject at 
www.etrade.infonomics.nl. 
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