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Abstract. We present a new sampling method for procedural and complex
geometries, which allows interactive point-based modelimyrandering of such
scenes. For a variety of scenes, object-space point setseagenerated rapidly,
resulting in a sufficiently dense sampling of the final ima@& present an inte-
grated approach that exploits the simplicity of the poimtitive. For procedural
objects a hierarchical sampling scheme is presented thatadample densities
locally according to the projected size in the image. Dynapmacedural ob-
jects and interactive user manipulation thus become plessilhe same scheme
is also applied to on-the-fly generation and rendering oies, and enables the
use of an efficient occlusion culling algorithm. Furthermdsy using points the
system enables interactive rendering and simple modificati complex objects
(e.g., trees). For display, hardware-accelerated 3-Dtpeirdering is used, but
our sampling method can be used by any other point-rendappgpach.

1 Introduction and Motivation

The complexity of virtual environments has grown spectatyitaver the recent years,
with the advent of high performance, but affordable, graphardware. The paradox is
that the majority of objects in such scenes often covers aifidyv, or even fractions of,
pixels on the screen. The traditional advantage of polyigased scan-line coherence is
thus lost, while resources are wasted by transforming apgiolj geometry which is
either invisible, or is smaller than a pixel. This has led®investigation of alternatives
to pure polygon-based rendering in recent research. Seesegarchers have turned to
ray-tracing based approaches (e.g., [14, 24]); An intergstcent alternative igoint-
based renderingd, 16, 19], which is actually an old idea revisited [6].

Point based rendering methods represent the scene’s ggoased set opoint
samplesthat is object space position, surface normal and matéai@. Usually, the
point samples are obtained from images of the scene thatdaadepth and material
information, but they are rendered and lit as independenatlgmolygons or oriented
disks. It has been shown that such point sample represergaiie well suited both for
fast rendering of extremely complex geometry [19] and fghhjuality visualisation
[16]. These methods however generate samplespas-processthus restricting their
use to static, unmodifiable scenes.

In this paper, we focus on points as a primitive well adaptedhfieractive applica-
tions and non-static scenes. We believe that points areplary well suited for such
applications for the following reasons:

e Objects can be represented at different levels of detailseficiently, by prop-
erly choosing point densities (e.g., [19]). When we intdvaty modify proce-
dural objects, sample recomputation is necessary fonadldeof detail, at every



Fig. 1. Examples of our point sample generation algorithm.

frame. Most level of detail techniques create coarse ld@t®m-up, resulting in
computational expense proportional to the object’s coriyleln contrast, point
samples can be generated top-down, so coarse representatoobtained very
quickly. In addition, a coarse representation of an objact loe refined incre-
mentally, for example for a closer view, by adding new pailftthe object does
not change, all old samples remain valid.

¢ Rendering procedural and dynamic objects requires adapgfinement in criti-
cal regions. With points this can be easily achieved in agdttborward manner
by adding additional points locally. Since point repreaéinhs do not require the
maintenance of topological information, object topology te trivially changed.
Examples are CSG models or geometry modifiers such as the rnwiake or
holes madifier used in Fig.1. In contrast, the use of meshgs @ triangles),
to represent dynamically changing procedural objects orstandard topolo-
gies requires intricate book-keeping when adaptively suaditig, and careful
processing to avoid cracks and other artifacts. This leadsmplex implemen-
tations and numerical robustness problems.

e Points representing a single object or surface are indegpgndo they can be
generated in parallel, in contrast to polygonal meshes. Asha# see, points
also lead to simple solutions for visibility culling, andrncéake advantage of
hardware acceleration more easily than for triangles, whécjuire the use of
triangle-strips which are non-trivial to generate adajyive

We present an integrated system which incorporates the aulvemtages, and can
be used for applications such as interactive proceduraéttiod for design of outdoors
or indoors scenes, or VR/game type interactive viewing andpoéation. To achieve
sufficiently rapid generation of point samples in this cahtee introducey/5 adaptive
sampling. Our new scheme allows us to hierarchically genemtesamplesocally,
in the regions they are required, according to the curreswpoint. We apply this
approach to procedural models, including displacemensraag terrains. For complex
objects such as trees, we use quasi-random sampling to teepenats. The continuous
level of detail property of points allows smooth frame ratatcol. Finally, the use
of a hierarchical caching mechanism, parallel computadioth an direct mapping to
graphics hardware vectors, significantly increases thaefity of rendering. Examples
of our approach are shown in Fig. 1.

2 Related work

Levoy and Whitted [6], were the first to explicitly investigathe use of points as an
alternative to traditional geometry; They treated issuegigplacement mapping and
texture filtering. In the last few years, there has been @mit interest in point-based



approaches. Grossman and Dally [4] generated point repedgeTs of objects in a
preprocess, and presented efficient ways of rendering thamSurfels approach [16],
concentrates on ways to efficiently render point represents and presents several
reconstruction mechanisms. Points are also used in theaalgbrithm [19], whose
goal is to render very large polygonal data sets. The empludsihis work is the
compactness and the flexibility of the data structure andeguent rendering quality
to allow treatment of enormous databases, and in partithitse that do not fit into
main memory. A direct ray-tracing algorithm for point-séi@s been developed by
Schaufler and Wann Jensen [20]. The use of particles for imoded.g., [23], is also
related to the use of points. The particle systems of ReewaBlau [18] are in the spirit
of our work, however not in an interactive context. In [26], explicit level of detail
mechanism is applied in which leaves become points and ttsappiear, resulting in
effects similar to ours for trees, but from a completelyefiént standpoint.

Interactive display using ray-tracing approaches is addated to our work; ex-
amples include the Utah interactive ray-tracing environtfiet] and the Render Cache
[24]. Image-based rendering techniques share severdbmnshwith points based meth-
ods, in particular for hole filling. Some of the solutions dped, for example layered
depth-images e.g., [22, 8] and the work of Max for trees [8]iara similar vein to those
developed for Surfels for example.

In what follows, we will be using procedural models, often basethe noise func-
tion [15]. We have used or been inspired by several modelsritbesl in [11, 7]. The
procedural and other geometric modifiers we use are inspiyetidowork of Neyret
[12] and Dischler e.qg., [2]. The approach of Meyer and Neyr6t [& particular per-
mits interactive viewing of similar kinds of procedural otig The generation of slices
however requires quite sophisticated hole filling techngqu€he initial idea of line-
based occlusion culling for which we use for terrains can baddu [5].

The Reyes [1] rendering architecture is close in spirit toapproach. Objects are
tessellated into polygons, until their size is under soneglefined threshold. The major
differences are that their system stays in the polygonadidyand the emphasis there is
high quality rendering rather than interactivity; the des and tradeoffs are thus very
different from our own.

A very recent paper partially covers similar ideas for thedering of complex static
scenes [25], in the context of a walkthrough system.

3 v/5-Sampling: adaptive point generation

As mentioned in the introduction, procedural objects likgpthiced surfaces will require
adaptive sampling. Th¢/5-sampling scheme is a hierarchical object-space sampling
which allows us to efficiently treat displacement mapped dbjgrocedural geometry
modifiers and terrains.

We start with an initial set of samples for each object, withhesample corre-
sponding to a region of surfage(“sample area”) on the object (Fig. 2(a)). The union
of these regions entirely covers the object. The projecifdahe regiorA in image space
isA ~ A®X whereq is the angle of the surface normal to the viewing directiom, an
d is the distance of the surface element to the eye (Fig. 2(a)).

If we were to compute the exact projectioif the sample regions onto the image
plane, we would have an image of the object without holes. Siacgoal is interactive
rendering, we instead project the center of the sample tanthge, and draw a simple
primitive around it in image space (a hardware acceleraitgdid practice). To avoid



(b)
Fig. 2. (a) The basic point sample geometry in world and image spézeObject curvature
results in denser sampling as we approach silhouettes.ciivejéoreshortening results in denser
image space sampling further in the distance. (c) After disghent, holes appear in the steep
parts (left). With adaptive insertion of new samples, thedes are filled (right),

holes, this primitive should have an image space area whiguighly the size ofV'.
The size of these primitives provides a user-controllediodf between speed and qual-
ity. The user defines a threshold,;,, which is the desired image size of a projected
sample region. For example;, is 4, a sample will cover 2x2 pixels on average in
the image. Thus for larger values &}, fewer samples will be generated, resulting
in faster display. This is similar to the approach used in @tg{i9], for controlling
display speed.

Clearly, a uniform sample density in object space does m@tyd result in a uniform
density inimage space, as illustrated in Fig. 2(b)-(c). Rispment mapping makes this
worse. In what follows, we present a sampling scheme which isegesample density
where required for such objects.

3.1 The Hierarchical Sampling Scheme

When choosing the initial points, we try to capture all esséobject features by choos-
ing a sufficiently dense set of points. For certain classggatedural objects, we can
use a priori information about the frequencies used to geeehem. If probable un-
dersampling is detected during evaluation of a point, newpas are created locally
in the neighbourhood, which can in turn recursively spawn reewpdes. Appropriate
sampling of a displaced surface, for instance, should asgesample density in steep
regions.

To guide the refinement process, we definetthdersampling factor = A’ /A,
which is a measure of how well the current set of samples repte#®e object, given
the users choice of sample si&g,,. If F = 1 we meet the user defié,;, criterion.

If F < 1too many samples were initially created and finalli# if> 1 more samples
are needed, thus spawning additional refinement.

We assume that we have &m v) parameterisation of the object considered. Ini-
tially, we create a uniform grid of points in the parameter dom The grid step size
is h; we can considetp = (h,0) andvp = (0,h) to be the initialspawning vectors
Fig. 3(a). When denser sampling is required locally,raéfneor subdividesingle grid
points. To refine an initial grid point, four new points areénted at relative positions:

U1=2Uo/5+V0/5, V1=—Uo/5+2Vo/5, (1)

as well as—u; and—v; (see Fig. 3(c)).
Thus, after each initial point has been refined, the initial eefined points form a
new uniform grid of step sizB/+/5 (Fig. 3(b)). The new grid is spawned by vectais
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Fig. 3. /5 sampling. (a) initial grid with vectorsg, ug (b) once subdivided and rotated grid
spanned by vectorg;, u; (c) adaptively refined sample set (d) fractal covered by gead
samples (e) resolving boundary problems

andv; and it isrotatedby an angle ofx = arctan J2 ~ 26.6°.
This refinement procedure can also be applied to the newggidg offset vectors
Uz = 2U1/5+4V1/5, Vo = —u1 /54 2v1/5, —Up and -V, and so forth. The grid at level

i has grid size/5 ' and a rotation angle afi. Note that this refinement process can
be done locally, resulting in increased sample density wheegled (see Fig. 3(c)). All
descendants of a single grid point form a fractal, Fig. 3fdjich is very similar to the
dragon fractal [21].

The computational effort required far5 sampling is minimal, since we can pre-
compute vectors;, V. In order to subdivid€u, v) at leveli, we simply insert new points
at(u,v) + u;, (u,v) +vi, (u,v) —u;, (u,v) —v;. The samples form a forest, with one tree
per initial sample, which are “root”, Fig. 3(d). Each node Bazhildren, four with an
offset according the level in the tree and a self copy.

Consider the 2x2 grid shown in Figure 3(d), which has been sideti globally
several times. Some regions, shown in white in the figure, arermeached, due to
the fractal like nature of our construction. Our solutiondsatso examine neighbours
during subdivision. When subdividing a poiptwe always look at its neighbours; if a
neighbourp’ lies outside, but one of its children lies inside, we attactsia child top,
Fig. 3(e). Note that these neighbours do not exist in theaimgtiid or its subdivisions.
Care has to be taken since other neighbourp ofiay then have the same children
attached. For example; &nd 4 are attached t@' and also tog in Fig. 3(e). The
solution is to attach such “boundary children” pfto a single neighbour off. We
choose the neighbour which is inside the boundary and is sideethe child being
considered.

This sampling scheme has nice properties. Due to its unifgrarid its lack of
randomness new samples are well positioned in between othmlesaresulting in
little overlap. The scheme is purely hierarchical, i.e.ergvpoint has exactly one
parent in a previous level. Two other schemes with this pitypane a correspond-
ing v/2-subdivision schemeug§ = vo = 1/2) or a+/9-subdivision scheme{(i,Vvi} =
{-1/3,0,1/3}2\ (0,0). The former has a very directional nature: when refining a
sample, only one new sample is created, and it is alwaystoaffse certain direction.
The latter scheme has a large branching factor of 9.

3.2 Displacement mapping

Displacement mapping is a way to add very rich visual detaktbh@rwise simple mod-
els. However, the sample density problems mentioned aboweteeworse when dis-
placement mapping is applied.

DefineA to be the sample area of the undisplaced surfaceAgrtde sample area



of the displaced surface. Alsgy; is the projected area on the image planégfwith
a the angle between the the undisplaced and the displaceadsurfamals, an the
angle between the viewing direction and the displaced surfagmal, Fig. 4(a). Thus,
;o Ad co  cofP
Ad = cosu’ d2  coxx dZA @
The geometry of these quantities is illustrated in Fig. 4€Q)
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Fig. 4. Undersampling factor determination.

We select the number of initial samplesby assuming that all points have distance
d (later on, we will account for the error due to this assumptistomatically):

A{otal 2
Nns = = = A = Ay,ndS, 3
o Avin ®3)
whereAqtq IS the total area of the object. After displacement we have:
A Amde
= — 4
Ad cosu cost ’ 4)
and after image prOjectlon CosB cosB
Amlnd2 cos = A:nian 5)

which determines the undersampllng factor for displacement

3.3 Procedural Geometry Modifiers

Interpreting scene objects as point sample generatomssaftr procedural geometry
manipulation beyond simple displacement, which can be venypticated with a sur-
face based object representation. We attach a callbackidarto each object, which
processes each sample point created. The function can théifyrthis point, remove
it, or create several new points.

An example is the WickerWork-modifier (see Fig. 7). For eachmipsample the
modifier tests whether the sample is (a) in a hole of the wickdafe: remove it), (b)
in the region where two strings overlap>(create two points, one with positive, one
with negative elevation), or (c) it is in the region of a singteing, in which case it
is just displaced accordingly. For each modified point, a nedersampling factor is
computed, using Eq. (5). The Wickerwork-modifier returnsaibug larger than 1 only
in case (c). Another example of modifiers are Holes in the spiidfey. 1.

3.4 Terrains

Terrains are different in that they are infinite, so we cantent svith a uniform sam-
pling. Nevertheless, it is possible and effective to repreieem as point sets since
their image is finite. Furthermore, their heightfield natalso enables efficient occlu-
sion culling, explained below. In the following we assume #redin is a heightfield on
thez= 0 plane. The elevation is positive, with maximum vahigy.



Base Plane Sampling. Obviously, it is sufficient to sample a sector of the base plane
with the projection of the camera as its apex and an openinlg arfgch is sufficient to
contain all visible points. We use a parameterisation #ed$ to a sufficiently uniform
sampling of the sector’s projection onto the image plane. fivée describe how the
sector is computed and then define a mapping-df 1] x [0, 1] to the sector.

(@ WP by © @

Fig. 5. Side view: (a) horizon is visible and thdax = o, (b) horizon invisible dmax is finite.
Top view: (c) Paramterization of a sector, ({darameter.

The medial axis of the sector is the projection of the camsergwing direction
onto the base plane. Its opening angle is determined sutlit tt@ntains all visible
base plane points. We can parameterise this sector usingnaaliwed medial axis
vectormand a perpendicular vect@r The sector point defined by parametard) is
(M+up)d (Figure 5(c)).

We scalep so thatu is in the range—1,1]. For d a possibly infinite interval
[dmin, dmax] is needed to address the entire visible sector. If the horigovisible,
dmax €quals infinity (Fig. 5(a)), otherwise it can be obtained fritva intersection of
the viewing frustum with the base plane (Fig. 5(b),(d)). Thiiea,, can be deter-
mined accordingly (Fig. 5(a)-(b)), however it usually hadéodecreased further since
invisible base plane points are likely to be elevated ineowiewing frustum.

For the parameterisation of the interJédhn,dmay We consider the typical case
where the viewing direction is parallel to the base plane. imdhse, thg;-coordinate
of a projected point is proportional tg/d, if the horizon is ay; = 0. Consequently, we
computed (V) = (1/dmin—V(1/dmax— 1/dmin)) ~*, wherev € [0, 1]. Note that fordmax=
co we can set Idmax = 0. Thus, we parameterise the sectordfy, v) = (M+ up)d(v),
whereu € [—1,1] andv € [0,1] (Fig. 5(d)).

Fig. 6(a) shows a uniforrfu,v) — grid of this parameterisation, projected to image
space. If the viewing direction is parallel to the base pl&fig.(6(a)), the grid remains
uniform, if the viewing direction moves up or down (Fig. 6(ki))e projected pattern
becomes less uniform. However, this is just an initial pattémritical undersampling
is detected, we automatically insert new samples.

v grid looking at the horizon uv grid looking down *

constant 0.0,

constant v

v A

(a) (b) ()
Fig. 6. (a) If we look straight at the horizon, the projected grid igorm. (b) If we look down,

there is distortion. The elevation occurs along the conaidime in image space, facilitating
occlusion culling. (c) Undersampling factBrgeometry. (d) Occlusion culling for terrains.



Another alternative would be to directly parameterise thagmplane with(u, v)
and map these to the base plane point visible through thigarpaint. Our parameter-
isation however fits well with our occlusion culling method désed below.

Terrain Generation. We generate a set of points on the base plane sector using a
uniform grid of valid (u,v) values. Due to our choice of parameterisation, the image
projections of these points on the base plane are approsdynatiform. By elevating
these points, the sampling on the image plane becomes rifovrapresulting in the
same kind of undersampling as for finite displaced objects.

If (u,v) are sampled uniformly with step sizé&u,Av), the base plane aréarep-
resented by this sample is approximately (see Fig. 6(c)):
op(u,v) | |9p(u,v)

ou

AUAV ~ d(v)3(1/dmax— 1/dmin) AUAV. (6)

Ax
‘ ov

Elevating this arealy, Fig. 6(c)-(d)) and projecting it onto the image plane resinl

! d(V)3 (1/dmax— 1/dmin) COWAU Av
Ad ~ CO$ dlZ 9

(7)

so the undersampling factbr= A}/ Amin. Note that this factor accounts for under- and
oversampling due to non-optimal sector sampling as well agalthe displacement.

Occlusion culling. The sector parameterisation has a nice property for ocelusilling:
if we consider base plane lines with constantheir projection also forms a line in im-
age space. By elevating these points, their image is onlyeghaong this line (see
Figure 6(b)). Consequently, a point(atVv) can only be hidden by a poifa, V'), where
V' < v. This property is reportedly used in computer games and ées bsed before
e.g., in [5].

As a result, we can render the terrain line by line, where eaehHas constant.
The lineu =y, is rendered from front to back, uniformly samplirgn the interval
[0,1]. The current horizon point is the point on the line that catlsehas the maximum
y-coordinate in the image. A later pointdt> v is hidden if it is below the horizon.
We do this occlusion test twice: first we test whether the poinild/de visible with
maximum elevation. If it cannot be rejected trivially, theal elevatiorz is computed
and the test is repeated withavoiding many costly elevation computations.

We only perform occlusion culling for initial sample point€hild samples have
differentu and violate the strict ordering alorng A point only spawns samples if it is
not occluded. Nonetheless, an initial point can be occluddde one of its children
is not. We account for this by approximating the maximum afien of the point and
its children by extrapolating the elevation to the childtesing the terrain gradient at
the point. We only discard points if none of its children abbk visible, based on this
computation.

4 Complex Geometry

Point based rendering is also a highly efficient means forrémelering of complex
geometry, e.g., defined by polygons. Others have investdhis approach very suc-
cessfully (QSplat [19], Surfels [16]), using precomputechgkes.



To achieve rapid sample generation for complex geometry, neate a vector of
point samples for every object, randomly distributed olerdbject. There is no spatial
order within the vector. We generate this vector by addrgsaiinsurface points with
(u,v)-coordinates and sampling the object using quasi randonbatamin our case the
first two Halton-sequences [13]. This way, we can create atrariy long vector and,
more importantly, we can extend this efficiently when needed.

Due to our construction, any prefix of the vector contains $aswvhich are quite
evenly distributed over the object’s surface. At each frawe determine how many
sampless are necessary to obtain adequate image sample densitg.déithent vector
has fewer elements, it is filled to sizg, by using subsequent samples of the Halton
sequence. Only the first samples are rendered, since the vector may be longer.

To determinens, we compute the minimum distandeof the object’s bounding box
to the camera. If the object’s surface areajsve selechs = A/d?Al,;.. Note that this
neglects the cosine of the surface normal to the camena, isdlects the “worst” case
of an object directly facing the viewer.

Our approach provides straightforwdedel-of-detail(LOD) control. By selecting
ns, we have an almost continuous degree of accuracy. Objectsmyitblygons can
be rendered with good quality even with < m samples. Since we always render the
prefix of a list up to a certain number, the overall appearaidbe object will not
change quickly from frame to frame, and flickering or poppantifacts are diminished,
compared to traditional LOD approaches.

Finally, simple time dependent object modifications candréqsmed on-the-fly, for
example the movement of trees in a turbulent breeze. Forgaiohsample of a tree
we precompute the distance to the stem. According to thisrdistthe point is moved
in the current wind direction. Wind directions are defined tyrdulence function. We
compute the wind direction for each object at its center amdthis direction for the
entire object. We do not insert additional samples to fillgondial resulting holes, as a
display speed/computation tradeoff.

5 System Issues

5.1 Sample distance and splat size

Almost continuous and predictable quality control are a maglvantage of point based
rendering methods. Very fast images can be obtained by riegdiew, large points,
whereas many small points require more time, but give acewesults. In our imple-
mentation the user can steer this tradeoff by defining theetbsample density in the
rendered image: the average distance in pixels between eamigking this size, the
point radius is selected automatically, such that holesinest always avoided.
Alternatively, the user can select a desired frame rate. iffeieeded for render-
ing each frame is measured and the sample density parametgapted continuously.
During motion, the user might see coarse, approximate solsitat high frame rates,
which refine quickly as soon as motion stops. This is illustidh Fig 8, and in the
accompanying movie (see the publications page at http://wepiwia.fr/reves).

5.2 Caching ofy/5-sampled Points

If we consider the samples obtained by #{6 scheme as a forest, the depth of some
trees changes from frame to frame, but the upper parts iri¢harbhy remain the same.
It is thus natural to store the forest computed in each framdeta reuse it for the next



frame. Such a forest is stored per object.

The cached forest can then be traversed top down: for eachthedefinement
criterion is reevaluated considering the new camera. Ifad ile the cache needs to
be refined, new children are computed. If an inner node isifled as a leaf in the
new frame, all the children in the cache are skipped. Thikiocgcmechanism can
significantly reduce the sample computations; the sulidivisriterion however has to
be evaluated for every sample at every frame.

5.3 OpenGL issues

For point rendering we simply use Open@&L_PQO NTS. Evidently, higher quality
rendering could be achieved by using ellipsoidal splats dlse Surfels approach [16].
The current implementation of hardware supported pointddiour ability to correctly
treat texture and transparency. Use of a Surfels-type ramglerethod would resolve
these problems.

The rendering of unmodified complex geometry is acceleratddg OpenGL’s
gl Vert exPoi nt er -calls, where an entire array of points can be passed to OpenGL
in one call. If the object is composed of different materiale generate random points
on the object, but store these in different vectors, onedchenaterial. Thengis dis-
tributed over the arrays, and each material’s sample vécta@ndered separately with
the according material properties, reducing expensive Gpanaterial switches.

5.4 Parallelism

Point sample generation is a perfect candidate for paisat&n. No neighbourhood
or coherence between samples is considered, so samples gendrated on parallel
processors or remote machines. W8 subdivision scheme leads to a forest of com-
pletely independent trees, which can be computed indepépderparallel processors.

6 Results

We have tested our system in three different scenarios. Tétadian indoors proce-
dural design test, where we add procedural objects to the saedénteractively select
their parameters. The second is the design of an outdootd vierwhich we choose
procedural parameters for the terrain. Finally, we have a fRrame-style scenario,
where the user can move around and interact with the scene.

The indoor design example is illustrated in Fig. 7, inclgdém indoor plant moving
in the wind of a fan, a procedural wicker work basket and a roglepaeight. The user
can move in this scene at 13 frames per second(fpdddifications of the procedural
objects as shown in the figure can be done at 8 fps for the paggtyand 4 fps for
the basket. During modification of the paperweight object 8%heftime is spent on
the base object sample generation, 75% on the displacemmpitation, and 3.5% on
the refinement decisions. When the user moves around thenget object, render-
ing becomes dominant. The time needed for refinement goes 8@%, whereas the
generation of new samples requires limited resources.

For the outdoor design and VR scenarios, we use procedui@helrased on fractal
turbulence functions generated by Poisson events [7].dardp give higher regions a
rougher appearance, we start with only a small number of tenoal octaves (e.g., 3).
If the resulting height is above a user-defined thresholditiathal octaves are blended

1Al timings are on a Pentium Il PC at 733 Mhz (Sgi 330), with a VRB/{dia Quadro) graphics card.



in, resulting in smooth valleys and rocky mountains (thfe&fcan also be obtained
with multifractals [3]). By applying an exponential funaticthe valleys can be made
wider and the mountains steeper. Since we know the area repgddsy each sample,
we stop this evaluation process for detail that is too smabdaepresented by the
sample. This avoids computation for unnecessary or eveediredl detail. The model
is fast enough for on-the-fly terrain generation but as a naffieient alternative, we

can replace it by a tiled, precomputed terrain texture. \WWe @ahplemented the sky
model of [17], which is precomputed and mapped to a dome arthendcene, adding
further realism to our outdoors views.

An example of an interactive design session for an outdo@sesin illustrated in
Fig. 8, where we add mountains and trees. The center right insagmdered with
280,000 points, 23,000 of which are the online evaluatediterrWithout occlusion
culling the number of terrain samples is 40,000. The treesbeamoved at 14 fps, if
the view point does not change and thus the terrain does gaireerecomputation.
The rightmost image is obtained by increasing sample dgmsgulting in 3.3 million
points, which took 2 seconds. The terrain is always compuyeshbadditional thread
on the second processor.

In the VR- or game-like scenario, the user moves around instsoane. All terrain
points below water level are replaced by lake surface samptaich in turn is displaced
according to a procedural wave function (e.g., the rippigbé accompanying video).
For the images in Fig. 9 we use a precomputed terrain storetkixtare. Again 1,000
trees were added. The trees are moving in the wind, the usereatecipples in the
lake by throwing virtual stones. At 400x400 resolution we abttiout 8 fps.

7 Conclusion and Discussion

We have presented a novel sampling approach, which geneeatgses for procedural
and complex geometry efficiently. The approach, coupled eatthing mechanisms, is
fast enough for interactive viewing on todays PC graphicd\Wware. Our object-space
sampling is based on a user-controlled speed/qualitytibté4\,;,, namely the desired
minimum image space coverage of a sample. This in turnsaaritre sample density.

For procedural objects, we introduce@-sampling. Local refinement is controlled
by an undersampling factor, defined by #e,, threshold. We showed how this factor
is computed for displacement maps and other proceduralfrardiFor terrains, we in-
troduced a suitable parameterisation, also allowing otuzulling. Complex unmod-
ified geometries such as trees can also be sampled efficigittiyHalton sequences.
Samples are stored in vectors which can be efficiently an@inentally updated.

Evidently, there are certain cases where point-based EmeBnNs are not the best
choice. Insufficient point densities or rendering techegiead to visible holes in con-
tinuous surfaces. Our method strives to address this prolmechoosing sample den-
sities based on the current viewpoint. Furthermore, colteremer smooth surfaces
cannot be exploited. Clearly, polygons are more efficientmthey cover many pixels
on the screen, but when this is not the case, point represergdtecome the natural
choice.

The main limitation of our approach is currently the expeofsgenerating points.
Using a hierarchy on very complex objects and a more genecilision culling ap-
proach for all objects would reduce the number of samplegmgéed. Hardware ac-
celerated noise functions would also greatly improve théopeance of our method.
Better hardware support of point rendering could improwedhality of our images.
Other directions include rendering with shadows or more stipated illumination
models.
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Fig. 7. Interactive design of an interior environment. To a radjosolution of an office rendered
with polygons, we added a complex tree, a wicker work basket graghar weight, all displayed
with 75,000 points. After turning on the fan, the tree is movinghe wind (center, 13 fps

at 400x400). The images on the right show the interactivegbaf parameters of procedural
objects. Top row: changes at 4 fps, bottom row: 8 fps, the lasadd.5 fps.

Fig. 8. Interactive design of an outdoors scene (resolution 400x40Ve start with a simple
terrain (left: 23,000 points, 6 fps), add 1000 chestnutstreade of 150,000 triangles each and
add two clouds (280,000 points, 5 fps). If we increase acgumae get the right image using
3,300,000 points after 2 sec.

Fig. 9. Two snapshots of an interactive session in a dynamic proaédistual world. The user

navigates at about 8 fps. The trees are moving in the wind andgér “throws rocks” into the
lakes. The terrain is precomputed and stored in a texture.




