Skip to main content

Blossoming and Divided Difference

  • Conference paper
Book cover Geometric Modelling

Part of the book series: Computing ((COMPUTING,volume 14))

Abstract

Blossoming and divided difference are shown to be characterized by a similar set of axioms. But the divided difference obeys a cancellation postulate which is not included in the standard blossoming axioms. Here the blossom is extended to incorporate a new set of parameters along with a cancellation axiom. Both the standard blossom and the divided difference operator are special cases of this new extended blossom. It follows that these dual functionals all satisfy a similar collection of formulas and identities, including a Marsden identity, a recurrence relation, a degree elevation formula, a multirational property, a differentiation identity, and expressions for partial derivatives with respect to their parameters. In addition, formulas are presented that express the divided differences of polynomials in terms of the blossom. Canonical examples are provided for the blossom, the divided difference, and the extended blossom, and general proof procedures are developed based on these characteristic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, P. J.: de Boor-Fix functionals and polar forms. Comput. Aided Geom. Des. 7, 425–430 (1990).

    MathSciNet  MATH  Google Scholar 

  2. Barry, P. J.: de Boor-Fix functionals and algorithms for Tchebycheffian B-spline curves. Const. Approx.12 385–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barry, P. J., Goldman, R. N.: Algorithms for progressive curves: Extending B-spline and blossoming techniques to the monomial, power and Newton dual bases. In: Knot insertion and deletion algorithms for B-spline curves and surfaces (Goldman, R., Lyche, T., eds.), pp. 11–63. Philadelphia: SIAM, 1993.

    Google Scholar 

  4. de Boor, C.: A practical guide to splines. New York: Springer, 1978

    Google Scholar 

  5. de Boor, C.: A multivariate divided difference. Approx. Theory 8 1–10 (1995)

    Google Scholar 

  6. de Boor, C., Fix, G.: Spline approximation by quasi-interpolants. J. Approx. Theory 8 19–45 (1973)

    Article  MATH  Google Scholar 

  7. de Casteljau, P.: Formes a Poles. Paris: Hermes, 1985

    Google Scholar 

  8. Dahmen, W., Micchelli, C. A., Seidel, H. P.: Blossoming begets B-splines built better by B-patches. Math. Comput. 59 97–115 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Davis, P. J.: Interpolation and approximation. New York: Dover, 1975

    Google Scholar 

  10. Goldman, R. N.: Blossoming and knot insertion algorithms for B-spline curves. Comput. Aided Geom. Des7 69–81 (1990)

    MATH  Google Scholar 

  11. Goldman, R. N.: The rational Bernstein bases and the multirational blossoms. Comput. Aided Geom. Des16 710–738 (1999a)

    Google Scholar 

  12. Goldman, R. N.: Blossoming with cancellation. Comput. Aided Geom. Des16 671–689 (1999b)

    MATH  Google Scholar 

  13. Goldman, R. N.: Rational B-splines and multirational blossoms (2000a) - in preparation

    Google Scholar 

  14. Goldman, R. N.: The multirational blossom: An axiomatic approach. (2000b) - in preparation

    Google Scholar 

  15. Goldman, R. N.: Axiomatic characterizations of divided difference. (2000c) - in preparation

    Google Scholar 

  16. Goldman, R. N., Barry, P. J.: Wonderful triangle. In: Mathematical methods in computer aided geometric design II (Lyche, T., Schumaker, L., eds.), pp. 297–320. San Diego: Academic Press, 1992

    Google Scholar 

  17. Lee E. T. Y.: A remark on divided difference. Am. Math. Monthly 96, 618–622 (1989)

    Article  MATH  Google Scholar 

  18. Lyche, T., Schumaker, L., Stanley, S.: Quasi-interpolants based on trigonometric splines. J. Approx. Theory 95 280–309 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marsden, J. E.: Basic complex analysis. San Franscisco: W.H. Freeman, 1973

    MATH  Google Scholar 

  20. Marsden, M. J.: An identity for spline functions with applications to variation-diminishing spline approximation. J. Approx. Theory 3 7–49 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mazure, M.-L.: Blossoming of Chebyshev splines. In: Mathematical methods for curves and surfaces (Daehlen, M., Lyche, T., Schumaker, L., eds.), pp. 353–364. Nashville: Vanderbilt University Press, 1995

    Google Scholar 

  22. Pottmann, H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Des. 10 181–210 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Ramshaw, L.: Blossoming: A Connect-the-Dots Approach to Splines. Digital Systems Research Center Technical Report 19 Palo Alto (1987)

    Google Scholar 

  24. Ramshaw, L.: Beziers and B-splines as multiaffine maps. In: Theoretical foundations of computer graphics and CAD (Earnshaw, R. A., ed.), pp. 757–776. NATO ASI Series F, Vol. 40, New York: Springer Verlag, 1988.

    Google Scholar 

  25. Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Des. 6 323–358 (1989)

    MathSciNet  MATH  Google Scholar 

  26. Schumaker, L. L.: Spline functions: basic theory. New York: J. Wiley, 1981

    Google Scholar 

  27. Seidel, H. P.: A new multiaffine approach to B-splines. Comput. Aided Geom. Des. 6 23–32 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Seidel, H. P.: Symmetric recursive algorithms for surfaces: B-patches and the de Boor algorithm for polynomials over triangles. Const. Approx. 7, 257–279 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vegter, G.: The apolar bilinear form in geometric modeling. Math. Comput. 69 691–720 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Goldman, R. (2001). Blossoming and Divided Difference. In: Brunnett, G., Bieri, H., Farin, G. (eds) Geometric Modelling. Computing, vol 14. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6270-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6270-5_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83603-3

  • Online ISBN: 978-3-7091-6270-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics