Skip to main content

Proving Conjectures by Use of Interval Arithmetic

  • Chapter

Abstract

Machine interval arithmetic has become an important tool in computer assisted proofs in analysis. Usually, an interval arithmetic computation is just one of many ingredients in such a proof. The purpose of this contribution is to highlight and to summarize the role of interval arithmetic in some outstanding results obtained in computer assisted analysis. ‘Outstanding’ is defined through the observation that the importance of a mathematical result is at least to some extent indicated by the fact that it has been formulated as a ‘conjecture’ prior to its proof.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aigner and E. Behrends. Alles Mathematik. Vieweg, Braunschweig, 2000.

    Google Scholar 

  2. G. Alefeld, A. Gienger, and F. A. Potra. Efficient numerical validation of solutions of nonlinear systems. SIAM J. Numer. Anal., 31:252–260, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New York, 1983.

    MATH  Google Scholar 

  4. American National Standard Institute. IEEE standard for binary floating point arithmetic IEEE/ANSI 754-1985. Technical report, New York, 1985.

    Google Scholar 

  5. K. Appel and W. Haken. Every planar graph is four colorable, part I: Discharging. Illinois J. of Mathematics, 21:429–490, 1977.

    MathSciNet  MATH  Google Scholar 

  6. K. Appel and W. Haken. Every planar graph is four colorable, part 11: Reducibility. Illinois J. of Mathematics, 21:491–567, 1977.

    MathSciNet  MATH  Google Scholar 

  7. C. V. Boys. Soap Bubbles. Dover Publ. Inc., New York, 1959. (first edition 1911).

    Google Scholar 

  8. C. Camacho and L. de Figueiredo. The dynamics of the Jouanolou foliation on the complex projective 2-space. Ergodic Theory Dyn. Sys., to appear.

    Google Scholar 

  9. C. L. Fefferman and L. A. Seco. Interval arithmetic in quantum mechanics. In Kearfott, B. R. et al., editor, Applications olInterval Computations, volume 3 of Appl. Optim., pages 145-167. Kluwer, Dordrecht, 1995. Proceedings of an international workshop.

    Google Scholar 

  10. S. P. Ferguson. Sphere Packings, V. PhD thesis, Department of Mathematics, University of Michigan, 1997.

    Google Scholar 

  11. J. HaIes. The Kepler conjecture. Technical report, 1998. http://www.math.1sa.umich.edu/-hales/countdovn/.

    Google Scholar 

  12. J. Hass, M. Hutchings, and R. Schlafly. The double bubble conjecture. Electron. Res. Announc. Am. Math. Soc., 1:98–102, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Hass and R. Schlafly. Double bubbles minimize. Ann. Math. (2), 151:459–515, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 1996.

    MATH  Google Scholar 

  15. R. B. Kearfott. Rigorous Global Search. Kluwer Academic Publishers, 1996.

    Google Scholar 

  16. U. Kulisch and W. Miranker. Computer Arithmetic in Theory and Practice. Academic Press, New York, 1981.

    MATH  Google Scholar 

  17. O. E. Lanford III. A computer-assisted proof of the feigenbaum conjectures. Bull. Am. Math. Soc. New Ser., 6:427–434, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Lohner. AWA: Software for the computation of guaranteed bounds for solutions of ordinary initial value problems. Technical report, Institut für Angewandte Mathematik, Universität Karlsruhe, 1994. Software available at ftp://ftp.iam.uni-karlsruhe.de/pub/awa/.

    Google Scholar 

  19. J. J. Moré. A collection of nonlinear model problems. In E. L. Allgower and K. Georg, editors, Computational Solution of Nonlinear Systems of Equations, volume 26 of Lectures in Applied Mathematics. American Mathematical Society, Providence, 1990.

    Google Scholar 

  20. A. Neumaier and T. Rage. Rigorous verification in discrete dynamical systems. Physica D, 67:327–346, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Schwinger. Thomas-Fermi model: The second correction. Physical Review, A24:2253–2361, 1981.

    MathSciNet  Google Scholar 

  22. S. Singh. Fermat’s Enigma: The Quest to Solve the World’s Greatest Mathematical Problem. Walker & Company, 1997.

    Google Scholar 

  23. J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

    MATH  Google Scholar 

  24. J. H. Wilkinson. Rounding Errors in Algebraic Processes. Dover, New York, 1994. Originally published as Notes on Applied Science No. 32, Her Majesty’s Stationery Office, London, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Frommer, A. (2001). Proving Conjectures by Use of Interval Arithmetic. In: Kulisch, U., Lohner, R., Facius, A. (eds) Perspectives on Enclosure Methods. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6282-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6282-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83590-6

  • Online ISBN: 978-3-7091-6282-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics