Skip to main content

Numerical Verification and Validation of Kinematics and Dynamical Models for Flexible Robots in Complex Environments

  • Chapter

Abstract

We give a survey on well-known and new interval methods and algorithms with result verification in the field of robotics. In particular we present optimal linear controller design, reliable geometric computations for distances between a point and a non-convex polyhedron or a NURBS curve, path planning, and failure detection with fault tree logic for flexible robots in complex environments. We also present an extension of a multi body modelling and simulating tool, which provides error propagation control and reliable numerical algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baluska, R. (1998) Fuzzy Modeling for Control. Kluwer Academic Publisher, Boston.

    Google Scholar 

  2. Bernd, Th., Kroll, A. (1998) FIMO 8.1: Ein Programmpaket zur rechnergestützten Fuzzy-Modellierung nichtlinearer Prozesse. 8. Workshop FuzzyControl, Dortmund, GMA-Fachausschuss 5.22, 154-167.

    Google Scholar 

  3. Bezdek, J. C. (1981) Pattern Recognition with Fuzzy Objective Function AIgorithms. Plenum Press, New York.

    Google Scholar 

  4. Büdding, G., Fausten, D., Krämer, W., Luther, W., Möllers, Th., Otten, W., Traczinski, H. (1999) Verifikation von Lösungen ausgewählter Probleme aus der Modellierung von Manipulatoren. Technical Report, Gerhard-MercatorUniversität Duisburg SM-DU-433.

    Google Scholar 

  5. Carreras, C., Walker, I. D., Nieto, 0., Cavallaro, J. R. (1999) Robot reliability estimation using interval methods. In: MISC’99: Workshop on Applications of Interval Analysis to Systems and Control, Girona, Spain, 371-385.

    Google Scholar 

  6. Denson, W., Chandler, G., Crowell, W., Clark, A., Jaworski, P. (1994) Nonelectronic Parts Reliability Data. Technical Report NPRD-95, Reliability Analysis Center, Rome, NY.

    Google Scholar 

  7. Dyllong, E., Luther, W. (2000) An accurate computation of the distance between a point and a polyhedron. In: Berveiller, M., Louis, A. K., Fressengeas, C. (Eds.) ZAMM, Vol. 80 of GAMM 99 Annual Meeting, Metz, France, April 12-16, WILEY-VCH, Berlin, S771-S772.

    Google Scholar 

  8. Dyllong, E., Luther, W. (2000) Distance-Calculation Between a Point and a NURBS Surface. In: Laurent, P.-J., Sablonniere, P., Schumaker, L. L. (Eds.) Curve and Surface Design, Saint Malo, 1999, Vanderbilt University Press, Nashville, TN, ISBN 0-8265-1356-5.

    Google Scholar 

  9. Dyllong, E., Luther, W., Otten, W. (1999) An accurate distance-calculation algorithm for convex polyhedra. Reliable Computing 3 (5), 241-254.

    Google Scholar 

  10. Fausten, D., Luther, W. (2000) Verifizierte Lösungen von nichtlinearen polynomialen Gleichungssystemen. Technical report, Gerhard-Mercator-Universität Duisburg SM-DU-477.

    Google Scholar 

  11. Fausten, D., Möllers, Th., Traczinski, H. (1999) Verified simulation of a hydraulic drive. In: RoMoCo’99: IEEE Workshop On Robotic Motion And Control, 23-27.

    Google Scholar 

  12. Gass, S. I. (1985) Linear Programming: Methods and Applications. Mc Graw Hill, New York.

    Google Scholar 

  13. Gomez, C. (Ed.) (1999) Engineering and Scientific Computing with Scilab. Birkhauser.

    Google Scholar 

  14. Kecskeméthy, A. (1996) MOBILE Version 1.2 User’s Guide and Reference Manual. 22. Luther, W. (1999) Accurate robot reliability estimation by fault tree techniques. Technical report, Gerhard-Mercator-Universität Duisburg SM-DU-459.

    Google Scholar 

  15. Kieffer, M., Walter, E. (1998) Interval analysis for guaranteed nonlinear parameter estimation. In: Atkinson, A. C., Pronzato, L., Wynn, H. P. (Eds.) MODA 5 - Advances in Model-Oriented Data Analysis and Experiment Design, Physica, Heidelberg, 115–125.

    Google Scholar 

  16. Kieffer, M., Jaulin, L., Walter, E., Meizel, D. (1999) Guaranteed mobile tracking using interval analysis. In: MISC’99: Workshop on Applications of Interval Analysis to Systems and Control, Girona, Spain, 347-360.

    Google Scholar 

  17. Knüppel, O. (1993) Bias- basic interval arithmetic subroutines. Technical Report 93.3, TU Hamburg-Harburg.

    Google Scholar 

  18. Knüppel, O. (1993) PROFIL- Programmer’s Runtime Optimized Fast Interval Library. Technical Report 93.4, TU Hamburg-Harburg.

    Google Scholar 

  19. Krämer, W. (1998) APriori Worst Case Error Bounds for Floating-Point Computations. IEEE Trans. on Computers 47 (7), 750–756.

    MathSciNet  Google Scholar 

  20. Kroll, A. (1997) Fuzzy-Systeme zur Modellierung und Regelung komplexer technischer Systeme, Ph. D. thesis, Universität Duisburg.

    Google Scholar 

  21. Lohner, R. (1989) Einschließungen bei Anfangs- und Randwertaufgaben gewöhnlicher Differentialgleichungen. In: Kulisch, U. W. (Hrsg.) Wissenschaftliches Rechnen mit Ergebnisverifikation, Vieweg, Braunschweig, 183-223.

    Google Scholar 

  22. Luther, W. (1999) Accurate robot reliability estimation by fault tree techniques. Technical report, Gerhard-Mercator-Universität Duisburg SM-DU-459.

    Google Scholar 

  23. Luther, W., Otten, W. (1999) Verified calculation of the solution of algebraic Riccati equation. In: Cendes, T. (Ed.) Developments in Reliable Computing, 105–119.

    Google Scholar 

  24. Luther, W., Otten, W., Traczinski, H. (1999) Verified calculation of the solution of discrete-time algebraic Riccati equation. In: MISC’99: Workshop on Applications of Interval Analysis to Systems and Control, Girona, Spain, 411–421.

    Google Scholar 

  25. Luther, W., Traczinski, H. (1999) Error propagation control in MOBILE: extended basic mathematical objects and kinetostatic transmission elements. In: Kecskemethy, A., Schneider, M., Woernle, C. (Eds.) Advances in Multibody Systems and Mechatronics, TU Graz, 267–276.

    Google Scholar 

  26. Morales, D., Son, T. C. (1998) Interval Methods in Robot Navigation. Reliable Computing 4, 55–61.

    Google Scholar 

  27. Sherbrooke, E. C., Patrikalakis, N. M. (1993) Computation of the solution of nonlinear polynomial systems. Computer Aided Geometrie Design 10, 379–405.

    Article  Google Scholar 

  28. Simeon, B. (1995) MBSPACK - numerical integration software for constrained mechanical motion. Surv. Math. Ind., 169–202.

    Google Scholar 

  29. Sima, V. (1996) Algorithms for linear-quadratic optimization. Marcel Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Luther, W., Dyllong, E., Fausten, D., Otten, W., Traczinski, H. (2001). Numerical Verification and Validation of Kinematics and Dynamical Models for Flexible Robots in Complex Environments. In: Kulisch, U., Lohner, R., Facius, A. (eds) Perspectives on Enclosure Methods. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6282-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6282-8_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83590-6

  • Online ISBN: 978-3-7091-6282-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics