Skip to main content

Weighted Importance Sampling Techniques for Monte Carlo Radiosity

  • Conference paper
  • First Online:
Book cover Rendering Techniques 2000 (EGSR 2000)

Part of the book series: Eurographics ((EUROGRAPH))

Included in the following conference series:

Abstract

This paper presents weighted importance sampling techniques for Monte Carlo form factor computation and for stochastic Jacobi radiosity system solution. Weighted importance sampling is a generalisation of importance sampling. The basic idea is to compute a-posteriori a correction factor to the importance sampling estimates, based on sample weights accumulated during sampling. With proper weights, the correction factor will compensate for statistical fluctuations and lead to a lower mean square error. Although weighted importance sampling is a simple extension to importance sampling, our experiments indicate that it can lead to a substantial reduction of the error at a very low additional computation and storage cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Arvo. Stratified sampling of spherical triangles. In Computer Graphics Proceedings, Annual Conference Series, 1995 (ACM SIGGRAPH ’95 Proceedings), pages 437–438, August 1995.

    Google Scholar 

  2. D. R. Baum, H. E. Rushmeier, and J. M. Winget. Improving radiosity solutions through the use of analytically determined form-factors. In Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23, pages 325–334, July 1989.

    Google Scholar 

  3. Ph. Bekaert. Hierarchical and Stochastic Algorithms for Radiosity. PhD thesis, Katholieke Universiteit Leuven, December 1999.

    Google Scholar 

  4. Ph. Bekaert, L. Neumann, A. Neumann, M. Sbert, and Y. D. Willems. Hierarchical Monte Carlo radiosity. In Rendering Techniques ’98 (Proceedings of the 9th. Eurographics Workshop on Rendering), pages 259–268. June 1998.

    Chapter  Google Scholar 

  5. F. Castro, R. Matinez, and M. Sbert. Quasi-Monte Carlo and extended first-shot improvement to the multi-path method. In Proc. Spring Conference on Computer Graphics ’98, pages 91–102, Bratislava, Slovakia, April 1998. Comenius University.

    Google Scholar 

  6. M. H. Kalos and P. Whitlock. The Monte Carlo method. J. Wiley and sons, 1986.

    Book  Google Scholar 

  7. L. Neumann. Monte Carlo radiosity. Computing, 55(1):23–42, 1995.

    Article  MathSciNet  Google Scholar 

  8. L. Neumann, A. Neumann, and Ph. Bekaert. Radiosity with well distributed ray sets. Computer Graphics Forum, 16(3):C261–C270, 1997. Proceedings of Eurographics ’97.

    Article  Google Scholar 

  9. L. Neumann, W. Purgathofer, R. Tobler, A. Neumann, P. Elias, M. Feda, and X. Pueyo. The stochastic ray method for radiosity. In P. Hanrahan and W. Purgathofer, editors, Rendering Techniques ’95 (Proceedings of the Sixth Eurographics Workshop on Rendering), July 1995.

    Google Scholar 

  10. S. N. Pattanaik and S. P. Mudur. Computation of global illumination by Monte Carlo simulation of the particle model of light. Proceedings of the Third Eurographics Workshop on Rendering, pages 71–83, May 1992.

    Google Scholar 

  11. M. J. D. Powell and J. Swann. Weighted uniform sampling — a Monte Carlo technique for reducing variance. J. Inst. Maths. Applics., 2:228 – 236, 1966.

    Article  MathSciNet  Google Scholar 

  12. M. Sbert. An integral geometry based method for fast form-factor computation. Computer Graphics Forum, 12(3):C409–C420, 1993.

    Article  Google Scholar 

  13. M. Sbert. The use of global random directions to compute radiosity — Global Monte Carlo techniques. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, November 1996.

    Google Scholar 

  14. J. Spanier. A new family of estimators for random walk problems. Journal of the Institute of Mathematics and its Applications, 23:1–31, 1979.

    Article  MathSciNet  Google Scholar 

  15. J. Spanier and E. H. Maize. Quasi-random methods for estimating integrals using relatively small samples. SIAM Review, 36(1): 18–44, March 1994.

    Article  MathSciNet  Google Scholar 

  16. L. Szirmay-Kalos and W. Purgathofer. Global ray-bundle tracing with hardware acceleration. In Rendering Techniques ’98 (Proceedings of the 9th. Eurographics Workshop on Rendering), pages 247 – 256. June 1998.

    Chapter  Google Scholar 

  17. E. Veach and L. J. Guibas. Optimally combining sampling techniques for Monte Carlo rendering. In SIGGRAPH 95 Conference Proceedings, pages 419–428, August 1995.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Bekaert, P., Sbert, M., Willems, Y.D. (2000). Weighted Importance Sampling Techniques for Monte Carlo Radiosity. In: PĂ©roche, B., Rushmeier, H. (eds) Rendering Techniques 2000. EGSR 2000. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6303-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6303-0_4

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83535-7

  • Online ISBN: 978-3-7091-6303-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics