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Abstract

We describe a series of experiments in generating traditional musical harmony using Genetic
Algorithms. We discuss some problems which are specific to the musical domain, and conclude
that a GA with no notion of meta-level control of the reasoning process is unlikely to solve the
harmonisation problem well.

1 Introduction

In recent years, the use of evolutionary techniques such as Genetic Algorithms (GAs) has generated
significant interest in the artificial intelligence and computer science communities. This has been
reflected in a number of publications in the computer music world, some of which will be discussed
later.

In this paper, we explore two aspects of the application of GAs to music:

1. the use of knowledge-rich structures and procedures within the algorithm itself, as opposed to
the more traditional use of GA components which are not problem-specific;

2. the strict use of objective methods, in the sense that any reasoning encoded in the GA should be
stated explicitly, rather than being implicit in the expressed opinion of a human user.

These criteria are important because we are working in the wider context of simulating and under-
standing aspects of human behaviour, so we are not interested just in achieving a musical result: we
wish to be able to examine the internal behaviour of our methods, and attempt to form some notion
of why the answer we achieve is produced. In particular, we wish to compare the behaviour of our
harmonisation system with human behaviour, and attempt to explain any discrepancies.

This paper is structured as follows. We present a brief statement on the issues interaction vs. non-
interaction in GAs from the point of view of this study. We then outline existing applications of GAs in
computer music. We present a case study of a knowledge-rich musical GA, including a discussion of
some significant problems, and then draw conclusions about the implications of the work for musical
GAs in general.

2 Interactive GAs

The Interactive GA (IGA) approach, sometimes taken by GA applications in the musical domain (see
section 3, below), uses a human listener as a means to evaluate the fitness of chromosomes. This
approach is inappropriate to our ends in this research, for the following reasons.

1Andrew Tuson may now be contacted care of the Department of Computing, City University, London, UK.
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1. It is subjective, because it relies on individual preferences – we want an objective measure of
what is going on in our system, so we can properly judge its performance;

2. Human listeners tend to become more open to a given piece of music on repeated hearings, and
are prone to other inconsistencies based on mood, attention span, and so on;

3. An IGA does not allow us to study the fitness function itself, to determine how faithful it is to
our chosen task – so using an IGA would be removing a major object of interest in this study.

A further tenable position on this issue, lying part-way between the two poles of interactive and
non-interactive, is the idea of using a corpus of existing works and some form of machine learning
system to infer a fitness function. This approach has been applied by, for example, Spector and Alpern
(1994), Burton and Valdimirova (1997b) and Johanson and Poli (1997). Again, for our purposes, this
approach is inappropriate, as we are primarily interested in the nature of the search space and how
to control search, rather than the nature of the result (given that it be acceptable music). In fact, use
of neural networks makes the fitness judgements even more inscrutable, since at least one can ask a
human judge for the motivation behind his or her judgements.

In the experiments described here, music-theoretical knowledge is used to construct a fitness func-
tion in objective and consistent logical terms, which allows us to examine the behaviour of the system
more scientifically than would an IGA. The GA can then be used to compare theories (psychological
or otherwise) of musical behaviour by observing the search patterns and results produced. In particu-
lar, it is to be emphasised that the encoded musical knowledge does not directly constrain the search
path – it merely constrains the solution. So our interest focusses on what our GA can tell us about the
search paths which arise from this unconstrained setup.

3 Existing Work on GAs in Music

GAs have been used in music generation elsewhere. Examples include Horner and Goldberg (1991)
who used a GA for thematic bridging; Biles (1994), who used an IGA for Jazz improvisation; Jacob
(1995), who devised a composing system using an IGA; and McIntyre (1994) and Horner and Ayers
(1995). McIntyre used a GA to generate a four part harmonisation of an input melody, focusing on
Baroque harmony, while Horner and Ayers focussed on the harmonisation of chord progressions using
GAs.

A main aim of our harmonisation project is to investigate the potential of a knowledge-rich GA
and its performance in the musical domain. So our solution space is not artificially constrained as in
McIntyre’s system (which only used a C major scale); nor is there problem abstraction as in Horner
and Ayres’ system, (which uses the GA to generate parts, given a chord progression, which is a
significantly simpler task). Our work aims to harmonise input melodies with no explicit cues as to
the required harmony, and does not limit itself to a specific key or scale; and it works at the level of
individual voices, with all the extra constraints this entails.

Finally, for a more complete summary of GA work in music, see Burton and Vladimirova (1997a).

4 Harmonising Chorale Melodies by GA

In this section, we present the results of a study on the use of GAs in generating four-part homophonic
tonal harmony for user-specified melodies. The domain-specific (i.e., musical) knowledge in this
system is implemented in three parts of the GA. These are described in turn, and followed by an
overview of the GA configuration used.
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4.1 Chromosome Representation

Generally speaking, keys and chords are the main concepts in harmonisation of western tonal music.
Harmonisation rules are expressed in terms of relationships between triads, and between degrees
of scale within a key signature (e.g., tonic-dominant, etc) but not the absolute pitch. Therefore, in
this implementation, musical information (e.g., pitch, interval, time, duration) is represented after
normalisation with respect to key – that is, absolute pitch information is abstracted out. Then, pitch
is expressed in terms of scale degree. To express all twelve semitones, the standard five accidentals
are used. Different octaves are distinguished by an associated integer. Finally, time intervals are
represented as integers. The representation conforms to the CHARM specification of Wiggins et al.
(1989).

As noted earlier, a knowledge-rich and directly meaningful representation is used in our chromo-
some representation. This representation may be thought of as a matrix, which consists of five strings
of equal, fixed length. The top four strings contain soprano (fixed), alto, tenor and bass parts, with
the fifth describing the durations of the chords. The user inputs the soprano information (assumed
to be the melody); the GA will then harmonise the input soprano, homophonically, with a further
three voices in conjunction with the musical domain knowledge encoded in its operators and fitness
function.

This approach is illustrated in Figure 1, using the completed harmonisation for the first two bars
of “O Come, All Ye Faithful”; see Figure 4 for the score rendition of the corresponding output.

Soprano
Alto

Tenor
Bass

Duration

chromosome length
z �� �

[0,0,3] [0,0,3] [4,0,2] [0,0,3] [1,0,3] [4,0,2]
[2,0,2] [2,0,2] [2,0,2] [2,0,2] [4,0,2] [1,0,2]
[4,0,1] [4,0,1] [2,0,1] [0,0,2] [7,0,1] [1,0,1]
[2,0,1] [0,0,1] [0,0,1] [4,0,1] [4,0,1] [7,0,0]

1 2 1 1 2 2

Figure 1: Schematic Diagram of a Four-Voice Harmony Chromosome

In the figure, we can see the matrix arrangement produced by the direct representation of time (left
to right along the structure) and vocal part and note duration (top to bottom down the structure). For
the purposes of reproduction operators, we view the five horizontal layers as inseparable.

4.2 Reproduction Operators

The following crossover and mutation operators are used in this implementation, described here in
musical terms. The reader less familiar with musical jargon may find solace in Taylor (1996).

Splice: One point crossover between two chromosomes – selects a crossover point between success-
ive notes of the melody and corresponding chords.

Perturb: Mutate by allowing alto, tenor and bass to move up or down by one semitone or tone. The
selection of the various possible mutations is random.

Swap: Mutate by swapping two randomly picked voices between alto, tenor or bass. This gives
the effect of changing the chord between different open and closed positions, and of changing
inversions.

Rechord: Mutate to a different chord type. This mutation generates a new chord from the melody
data. A chord is built with the soprano note as root, 3rd or 5th. Doubling (necessary for a four
note chord) can be in any position.
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PhraseStart: Mutate the beginning of each phrase to start with tonic root position on a down beat.

PhraseEnd: Mutate the end of each phrase to end with a chord in root position.

4.3 Fitness Function

The fitness function judges the fitness of each chromosome according to the following criteria de-
rived directly from music theory. Within individual voices (as opposed to between voices), we prefer
stepwise progression over large leaps, and we keep the voice within its proper range. We penalise
progression to dissonant chords, and we avoid leaps of major and minor 7ths, of augmented and
diminished intervals, and of intervals larger than one octave.

Between voices, we apply the following criteria: we avoid parallel unison, parallel perfect 5ths,
and parallel octaves; we forbid progression from diminished 5th to perfect 5th (though the converse
is allowed); we avoid hidden unison; we forbid crossing voices; and we forbid hidden 5th and octave
in the outer voices, when soprano is not progressing stepwise.

Solutions are penalised for note doubling and omission, in the primary major and minor triads:
doubling of the root (tonic) is preferred, while doubling of the 3rd is penalised; doubling of the 3rd
is forbidden in a dominant chord; if it is necessary to omit a voice, omit the fifth only, except in 1st
inversion; in inverted chords, doubling of the bass is preferred; and we penalise doubling of tones
which give a strong harmonic tendency, such as leading notes.

In this implementation, the system does not have enough knowledge to plan for large scale har-
monic progression. The fitness function determines only the plausible harmonic movement between
two adjacent chords. The fitness function prefers (in decreasing order of preference): descending 5th
movement; progression towards the tonic; retrogression; and repetition.

4.4 GA Configuration

In most of these experiments, exceptions being mentioned explicitly here, a generational GA, in the
style of Davis (1991), with a panmitic (unstructured) population model was used. Strings were ini-
tialised by randomly picking chords containing the relevant soprano pitch. Finally, a population size
of at least 50 was used, with binary tournament selection.

5 Results and Analysis

All the output of the system was assessed by Dr. John Kitchen, a senior lecturer in the Faculty of
Music at the University of Edinburgh, according to the criteria he uses for 1st year undergraduate
students’ harmony. This example scored 5 out of 10 – a clear pass. While other examples were less
successful (most earning around the 30% mark), according to the assesser, this was mostly due to the
lack of coherent large-scale musical progression – which was not evaluated in the fitness function, so
this is not a surprise. The system was judged by the assesser to be better than student harmonisers at
getting the basic rules right.

Figure 2 shows a harmonisation by our system of the first eight notes of “Joy to the world”. The
output is not perfect, but it is surprisingly good given the limited, local nature of the rules built into
the system.

Some experimentation was carried out with various GA parameter settings, as shown in Figure 1;
the penalties given here are all-or-nothing penalties, except where two numbers are given, in which
case either value may be applied as appropriate. As expected, the weights of the various penalties
applied in the fitness function have a significant effect on the solution. Other parameters, such as
crossover rate, mutation rate, and different selection schemes appear to affect the time taken for the
population to converge, and do little for the solution quality. This is due to the fact that it is the fitness
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Figure 2: Harmonisation of the First Line of Joy to the World

function which primarily defines the knowledge in the system pertaining to what does or does not
constitute a good piece of music, while the other parameters define the search strategy.

Table 1: Probabilities and penalties used in the experiments

Population: 30-200 Migration interval: 20 generations
Operator Probabilities

P(Splice): 0.3 P(Perturb): 0.1
P(Swap): 0.2 P(Rechord): 0.3
P(PhraseStart): 0.05 P(PhraseEnd): 0.05

Fitness Penalties
Invalid Pitch: 1 Invalid Chord: 10,1
Invalid Range: 10 Invalid Interval: 10
Invalid Doubling: 10 Voice Crossing: 10
Hidden Unison: 10 Single voice progression: 10
Dual voice progression: 10 Harmonic progression: 10,1
Harmonic Analysis: 100,20

What is most significant – and problematic – is that, with the current evaluation functions and
reproduction operators, the GA still cannot satisfy all the constraints within 300 generations. Figure
3 illustrates a typical fitness profile of the best solution in each generation. The data is from the first
phrase of the hymn “O come, all ye faithful”, which is twenty four notes long. The figure shows the
distribution of penalties along the chromosome – in other words, the score of each harmonic move-
ment or chord in the piece – as the generations proceed. The higher the contour, the less acceptable
the chord at that point.

In the figure, we can see that the distribution of penalties at the beginning is quite random. After
a few generations, it starts to shape to a certain pattern. However, the GA could not reduce all the
penalties in the fitness function even with enlarged populations and when run for large amounts of
time. In an attempt to solve this problem, an experiment with an island model (Gordon et al., 1992)
with four population groups was carried out, to determine whether different groups might be able
to preserve their own salient cultures, and so bring the GA to a more globally acceptable solution.
However, though the experiment showed an improvement in search efficiency, the GA still could
not reduce all of the penalties at once, and the general shape of the unacceptable contour above was
maintained. The musical output associated with that final contour is shown in Figure 4.

Why, then, do these problems arise? They arise because the structure of a harmonisation of this
kind is very specific, in that individual variations in chord are very strongly context dependent. There-
fore, it is often the case that one cannot change any given chord without changing the chords around
it. In terms of the GA, this means that reduction of a fitness penalty in one position is likely to in-
crease penalties in other positions, because the movement from one chord to the next is not considered
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Figure 3: A Typical Fitness Profile Landscape
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Figure 4: A GA Harmonisation of “O Come, All Ye Faithful”

with respect to overall movement in the phrase. Human composers solve this problem by structuring
the construction process itself in an explicit way and designing an overall harmonic framework, and
then filling in the most crucial parts first – in short, a least commitment strategy is taken. This kind
of structured reasoning is not a feature of a simple GA of the kind used here, and so the results are
sub-optimal.

To restate this argument in terms of the search space: we believe that the problem is due to a mul-
timodal fitness landscape, characterised by many local optima in basins of attraction which separated
by very high barriers, due to the interactions described above. Before the GA can move from one
basin of attraction to another, multiple factors leading to a fitness penalty need to be changed. Such a
simultaneous change is very unlikely to occur.

There are various solutions which might be applied to solve this problem in a GA context. Niching
(Goldberg and Richardson, 1987) might be expected to help with the problems of multimodality, and
we expect to look at this in future. Linkage learning (Harik and Goldberg, 1996) is unlikely to help
as the spatial arrangement of the genes in our chromosome is already optimised, and so changing it
is unlikely to help the search. Further, the nature of the epistatic interactions is well understood, and
therefore this knowledge can be better utilised directly, rather than by having the GA learn it.
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6 Conclusions

It is quite clear from the experiments here and elsewhere that GAs can be applied successfully in the
musical domain – up to a point. Looking at the output of our systems from an aesthetic viewpoint,
the results are still far from ideal: the harmonisation produced by the GA has neither clear plan nor
intention. This is not a surprise as the discussion above suggested that we cannot expect large scale
structure to arise from the kind of programming inherent in a GA containing (even in this experiment)
relatively little domain knowledge.

However, we would claim that they are surprisingly successful musically, within this limitation.
The inclusion of well-established musical laws and constraints within the search seems to yield a
fairly lightweight but effective level of search control.

In summary, therefore, we conclude that while GAs can be surprisingly good at small, constrained
musical tasks, their performance, at least in this context of simulating human musical behaviour, is
currently limited by two issues.

1. GAs are a stochastic, heuristic search method, so one cannot be sure that an optimal solution
will be reached, even if there is one. In particular, in a problem of this kind, they tend to get
stuck in local optima in the search space.

2. GAs of the form used here lack structure in their reasoning. On the other hand, composers have
developed complex and subtle methods over several centuries involving different techniques for
solving the problems highlighted here. No musician would seriously suggest that an author of
hymn tunes works in the same way as our GA. Therefore, while we may be able to produce
(near) acceptable results with a GA, doing so says little about the working of the compositional
mind.

Other approaches to using GAs for this kind of task may be more successful. For example, one
might take the approach of optimising a set of instructions to plan a harmonisation, rather than actu-
ally operating on the musical score directly; this approach is similar to the indirect representational
approach used by Burke (1995) and others for timetabling and scheduling problems.

Genetic programming approaches may also be fruitful, but we suggest that in order to produce
music which is coherent within any accepted musical system (e.g., the tonal system used in the vast
majority of rock and pop music), there will need to be some encoding of musical practice in the
GP operators. An example of a GP music system which suffers from lack of such knowledge is the
GP-music program of Johanson and Poli (1997).

An alternative solution in the context of our GA would be to introduce even more knowledge-rich
mutations, which would possess knowledge about the entire harmonic structure of each candidate
solution, and thus would be able to leap directly across the barriers in the fitness landscape described
earlier in a single bound. However, it would be hard indeed to make a clear differentiation between this
approach and a conventional KBS, if indeed one could apply such a rule without being unacceptably
ad hoc.

We conclude, therefore, that neighbourhood search methods such as GAs are fundamentally lim-
ited in the musical harmonisation domain by the non-local nature of the harmonisation problem itself.
This said, at least intuitively, GAs seem to offer an interesting approach to the study of creativity. It
would appear that, if GAs are to both improve in musical performance, and allow us to gain insights
into the compositional mind, dealing with the issues raised here is an urgent task. We end with a
suggestion that it is likely that much can be gained in this particular problem by somehow combining
a GA with a conventional rule-based system.
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