Skip to main content

A General Model of Co-evolution for Genetic Algorithms

  • Conference paper
Artificial Neural Nets and Genetic Algorithms

Abstract

Compared with natural systems, Genetic Algorithms have a limited adaptive capacity, i.e. they get quite frequently trapped at local optima and they are poor at tracking moving optima in dynamic environments. This paper describes a general, formal model of co-evolution, the Linear Model of Symbiosis, that allows for the concise, unified expression of all types of co-evolutionary relations studied in ecology. Experiments on several difficult problems support our assumption that the addition of the Linear Model of Symbiosis to a canonical Genetic Algorithm can remedy the above shortcomings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Angeline and J. B. Pollack. Competitive Environments Evolve Better Solutions for Complex Tasks. In Fifth International Conference on Genetic Algorithms, pages 264–270, 1993.

    Google Scholar 

  2. T. Bäck. Self-adaptation. In T. Bäck, D. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Computation. Oxford University Press, 1997.

    Google Scholar 

  3. D. Boucher, editor. The Biology of Mutualism: Ecology and Evolution. Croom Helm, 1985.

    Google Scholar 

  4. H. Cobb and J. Grefenstette. Genetic Algorithms for Tracking Changing Environments. In S. Forrest, editor, International Conference on Genetic Algorithms: ICGA′93, pages 523–530, 1993.

    Google Scholar 

  5. L. Eshelman, editor. Proceedings of the Sixth International Conference on Genetic Algorithms, San Mateo, California, 1995. Morgan Kaufmann.

    Google Scholar 

  6. G. Hartvigsen and W. Starmer. Plant-herbivore coevolution in a spatially and genetically explicit mode. Artificial Life, 2(2):129–156, 1995.

    Article  Google Scholar 

  7. W. Hillis. Co-evolving parasites improve simulated evolution as an optimization procedure. In C. Langton, C. Taylor, J. Farmer, and S. Rasmussen, editors, Artificial Life II, SFI Studies in the Sciences of Complexity, volume 10, pages 313–323. Addison-Wesley Publishing Co., 1991.

    Google Scholar 

  8. W. Hillis. Co-evolving parasites improve simulated evolution as an optimization procedure. In C. Langton, C. Taylor, J. Farmer, and S. Rasmussen, editors, Artificial Life II, pages 264–270. Massachusetts: Addison-Wesley, 1992.

    Google Scholar 

  9. P. Husbands and F. Mill. Simulated Co-Evolution as The Mechanism for Emergent Planning and Scheduling. In Fourth International Conference on Genetic Algorithms, pages 264–270, 1991.

    Google Scholar 

  10. L. Lawlor. Direct and indirect effects of n-species competition. Oecologica, 43:355–364, 1979.

    Article  Google Scholar 

  11. D. Lewis. Symbiosis and mutualism. In Boucher [3], pages 29–39.

    Google Scholar 

  12. J. Maresky, Y. Davidor, D. Gitler, and G. Aharoni. Selectively destructive re-start. In Eshelman [5], pages 144–150.

    Google Scholar 

  13. J. Paredis. Co-evolutionary Constraint Satisfaction. In H. S. Y. Davidor and R. Männer, editors, Parallel Problem Solving from Nature — PPSN III, pages 46–55, Berlin, Oct 1994. Springer-Verlag.

    Google Scholar 

  14. J. Paredis. The symbiotic evolution of solutions and their representations. In Eshelman [5], pages 359–365.

    Google Scholar 

  15. M. A. Potter and K. A. DeJong. A Cooperative Co-evolutionary Approach to Function Optimization. In H. S. Y. Davidor and R. Männer, editors, Parallel Problem Solving from Nature — PPSN HI, pages 249–257, Berlin, Oct 1994. Springer-Verlag.

    Google Scholar 

  16. H. Sakanashi, H. Suzuki, and Y. Kakazu. Controlling dynamics of ga through filtered evaluation function. In H. S. Y. Davidor and R. Männer, editors, fParallel Problem Solving from Nature — PPSN HI, pages 239–248, Berlin, Oct 1994. Springer-Verlag.

    Google Scholar 

  17. K. Sims. Evolving 3D Morphology and Behavior by Competition. In R. Brooks and P. Maes, editors, Artificial Life IV, pages 28–39, 1994.

    Google Scholar 

  18. M. Starr. A generalized scheme for classifying or-ganismic associations. Symposia of the Society for Experimental Biology, 29:1–20, 1975.

    Google Scholar 

  19. X. Yao and P. J. Darwen. Evolving Robust Strateies for Iterated Prisoner’s Dilemma. In X. Yao, editor, Progress in Evolutionary Computation, pages 276–292, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Morrison, J., Oppacher, F. (1999). A General Model of Co-evolution for Genetic Algorithms. In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6384-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6384-9_44

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83364-3

  • Online ISBN: 978-3-7091-6384-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics