Skip to main content

Computer Vision and Mathematical Morphology

  • Conference paper
Theoretical Foundations of Computer Vision

Part of the book series: Computing Supplement ((COMPUTING,volume 11))

Abstract

Computer Vision and Mathematical Morphology. Mathematical morphology as originally developed by Matheron and Serra is a theory of set mappings, modeling binary image transformations, which are invariant under the group of Euclidean translations. This framework turns out to be too restricted for many applications, in particular for computer vision where group theoretical considerations such as behavior under perspective transformations and invariant object recognition play an essential role. So far, symmetry properties have been incorporated by assuming that the allowed image transformations are invariant under a certain commutative group. This can be generalized by dropping the assumption that the invariance group is commutative. To this end we consider an arbitrary homogeneous space (the plane with the Euclidean translation group is one example, the sphere with the rotation group another), i.e. a set X on which a transitive but not necessarily commutative transformation group Г is defined. As our object space we then take the Boolean algebra P(X) of all subsets of this homogeneous space. Generalizations of dilations, erosions, openings and closings are defined and several representation theorems can be proved. We outline some of the limitations of mathematical morphology in its present form for computer vision and discuss the relevance of the generalizations discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, M.: Geometry I. Berlin, Heidelberg, New York, Tokyo: Springer 1987.

    Book  MATH  Google Scholar 

  2. Beucher, S., Blosseville, J. M., Lenoir, F.: Traffic spatial measurements using video image processing. In: SPIE Cambridge 87 Symp. on Advances in Intelligent Robotics Systems, Nov. 1987.

    Google Scholar 

  3. Gouzènes, L.: Strategies for solving collision-free trajectories problems for mobile and manipulator robots. Int. J. Robotics Res. 3, 51–65 (1984).

    Google Scholar 

  4. Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche, und Isoperimetrie. Berlin, Göttingen, Heidelberg: Springer 1957.

    Book  MATH  Google Scholar 

  5. Heijmans, H. J. A. M.: Mathematical morphology: an algebraic approach. CWI Newslett. 14, 7–27 (1987).

    MathSciNet  MATH  Google Scholar 

  6. Heijmans, H. J. A. M., Ronse, C.: The algebraic basis of mathematical morphology. Part I: dilations and erosions. Comp. Vis. Graph. Im. Proc. 50, 245–295 (1989).

    Article  Google Scholar 

  7. Heijmans, H. J. A. M.: Morphological image operators. New York: Academic Press 1994 (Advances in Electronics and Electron Physics, Suppl. Vol. 25).

    MATH  Google Scholar 

  8. Kendall, D.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. London Math. Soc. 16, 81–121 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  9. Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen. In: Gesammelte mathematische Abbandlungen, Vol. I, pp. 460–497, 1872.

    Google Scholar 

  10. Matheron, G.: Random sets and integral geometry. J. Wiley: New York 1975.

    MATH  Google Scholar 

  11. Mundy, J. L., Zisserman, A., Forsyth, D., eds.: Applications of invariance in computer vision. Berlin, Heidelberg, New York, Tokyo: Springer 1994 (Lecture Notes in Computer Science, Vol. 825).

    Google Scholar 

  12. Robinson, D. J. S.: A course in the theory of groups. Berlin, Heidelberg, New York, Tokyo: Springer 1982.

    Book  MATH  Google Scholar 

  13. Roerdink, J. B. T. M.: On the construction of translation and rotation invariant morphological operators. Report AM-R9025, Centre for Mathematics and Computer Science, Amsterdam, 1990 (To appear in: Mathematical morphology: theory and hardware, R. M. Haralick, ed., Oxford University Press).

    Google Scholar 

  14. Roerdink, J. B. T. M.: Mathematical morphology on the sphere. In: Proc. SPIE Conf. Visual Communications and Image Processing’ 90, Lausanne, pp. 263–271, 1990.

    Google Scholar 

  15. Roerdink, J. B. T. M.: Mathematical morphology with non-commutative symmetry groups. In: Mathematical morphology in image processing (Dougherty, E. R., ed.), pp. 205–254. New York: Marcel Dekker 1993.

    Google Scholar 

  16. Roerdink, J. B. T. M.: Solving the empty space problem in robot path planning by mathematical morphology. In: Proc. Workshop ‘Mathematical Morphology and its Applications to Signal Processing’, Barcelona, Spain, May 12–14 (Serra, J., Salembier, P., eds.), pp. 216–221, 1993.

    Google Scholar 

  17. Roerdink, J. B. T. M.: Manifold shape: from differential geometry to mathematical morphology. In: Shape in picture (NATO ASI Series), vol. F 126, O ( Y.-L., Toet, A., Foster, D., Heijmans, H. J. A. M., Meer, P., eds.), pp. 209–223. Berlin, Heidelberg, New York, Tokyo: Springer 1994.

    Google Scholar 

  18. Roerdink, J. B. T. M., Heijmans, H. J. A. M.: Mathematical morphology for structures without translation symmetry. Signal Proc. 15, 271–277 (1988).

    Article  Google Scholar 

  19. Ronse, C: Fourier analysis, mathematical morphology, and vision. PRLB Working Document WD54, 1989.

    Google Scholar 

  20. Ronse, C., Heijmans, H. J. A. M.: The algebraic basis of mathematical morphology. Part II: openings and closings. Comp. Vis. Graph. Im. Proc. Image Understanding 54, 74–97 (1991).

    MATH  Google Scholar 

  21. Serra, J.: Image analysis and mathematical morphology. New York: Academic Press 1982.

    MATH  Google Scholar 

  22. Serra, J., ed.: Image analysis and mathematical morphology, Vol. 2: theoretical advances. New York: Academic Press 1988.

    Google Scholar 

  23. Suzuki, M.: Group theory. Berlin, Heidelberg, New York: Springer 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Wien

About this paper

Cite this paper

Roerdink, J.B.T.M. (1996). Computer Vision and Mathematical Morphology. In: Kropatsch, W., Klette, R., Solina, F., Albrecht, R. (eds) Theoretical Foundations of Computer Vision. Computing Supplement, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6586-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6586-7_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82730-7

  • Online ISBN: 978-3-7091-6586-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics