Skip to main content

Non-symmetric Scattering in Light Transport Algorithms

  • Conference paper
  • First Online:
Rendering Techniques ’96 (EGSR 1996)

Part of the book series: Eurographics ((EUROGRAPH))

Included in the following conference series:

Abstract

Non-symmetric scattering is far more common in computer graphics than is generally recognized, and can occur even when the underlying scattering model is physically correct. For example, we show that non-symmetry occurs whenever light is refracted, and also whenever shading normals are used (e.g. due to interpolation of normals in a triangle mesh, or bump mapping [5]).

We examine the implications of non-symmetric scattering for light transport theory. We extend the work of Arvo et al. [4] into a complete framework for light, importance, and particle transport with non-symmetric kernels. We show that physically valid scattering models are not always symmetric, and derive the condition for arbitrary model to obey Helmholtz reciprocity. By rewriting the transport operators in terms of optical invariants, we obtain a new framework where symmetry and reciprocity are the same.

We also consider the practical consequences for global illumination algorithms. The problem is that many implementations indirectly assume symmetry, by using the same scattering rules for light and importance, or particles and viewing rays. This can lead to incorrect results for physically valid models. It can also cause different rendering algorithms to converge to different solutions (whether the model is physically valid or not), and it can cause shading artifacts. If the non-symmetry is recognized and handled correctly, these problems can easily be avoided.

This paper is available with larger fonts at http://www-graphics.stanford.edu/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Gwaiz, M. A. Theory of Distributions. Marcel Dekker, Inc., New York, 1992.

    Book  Google Scholar 

  2. Ambartzumian, R. V. Factorization Calculus and Geometric Probability. Cambridge University Press, 1990.

    Google Scholar 

  3. Arvo, J. Analytic Methods for Simulated Light Transport. PhD thesis, Yale University, Dec. 1995.

    Google Scholar 

  4. Arvo, J., Torrance, K., and Smits, B. A framework for the analysis of error in global illumination algorithms. In Proceedings of SIGGRAPH ’94 (July 1994), ACM Press, pp. 75–84.

    Google Scholar 

  5. Blinn, J. F. Simulation of wrinkled surfaces. In Computer Graphics (SIGGRAPH 78 Proceedings) (Aug. 1978), vol. 12, pp. 286–292.

    Article  Google Scholar 

  6. Chandrasekar, S. Radiative Transfer. Dover Publications, New York, 1960.

    Google Scholar 

  7. Christensen, P. H., Salesin, D. H., and DeRose, T. D. A continuous adjoint formulation for radiance transport. In Fourth Eurographics Workshop on Rendering (Paris, June 1993), pp. 95–104.

    Google Scholar 

  8. Christensen, P. H., Stollnitz, E. J., Salesin, D. H., and DeRose, T. D. Global illumination of glossy environments using wavelets and importance. ACM Trans. Graphics 15 (1996), 37–71.

    Article  Google Scholar 

  9. Cohen, M. F., and Wallace, J. R. Radiosity and Realistic Image Synthesis. Academic Press Professional, San Diego, CA, 1993.

    MATH  Google Scholar 

  10. Delves, L. M., and Mohamed, J. L. Computational Methods for Integral Equations. Cambridge University Press, New York, 1985.

    Book  Google Scholar 

  11. Drude, P. The Theory of Optics. Hemisphere Publishing Corp., New York, 1981. Original date of publication 1900. Translated from the German by C. R. Mann and R. A. Millikan.

    Google Scholar 

  12. Fournier, A. From local to global illumination and back. In Rendering Techniques ’95 (New York, 1995), P. M. Hanrahan and W. Purgathofer, Eds., Springer-Verlag, pp. 127-136.

    Google Scholar 

  13. Glassner, A. Principles of Digital Image Synthesis. Morgan Kaufmann, New York, 1995.

    Google Scholar 

  14. Hall, R. Illumination and Color in Computer Generated Imagery. Springer-Verlag, New York, 1989.

    Book  Google Scholar 

  15. Heckbert, P. S. Adaptive radiosity textures for bidirectional ray tracing. Computer Graphics 24, 4 (July 1990), 145–154.

    Article  Google Scholar 

  16. Heckbert, P. S. Simulating Global Illumination Using Adaptive Meshing. PhD thesis, University of California, Berkeley, June 1991.

    Google Scholar 

  17. Keitz, H. A. E. Light Calculations and Measurements. The Macmillan Company, New York, 1971.

    Book  Google Scholar 

  18. Lafortune, E. P., and Willems, Y. D. Bi-directional path tracing. In Proceedings of CompuGraphics (Alvor, Portugal, Dec. 1993), pp. 145–153.

    Google Scholar 

  19. Lafortune, E. P., and Willems, Y. D. A theoretical framework for physically based rendering. Computer Graphics Forum 13, 2 (June 1994), 97–107.

    Article  Google Scholar 

  20. Lewins, J. Importance, The Adjoint Function: The Physical Basis of Variational and Perturbation Theory in Transport and Diffusion Problems. Pergamon Press, New York, 1965.

    Google Scholar 

  21. Nicodemus, F. E. Radiance. Am. J. Phys. 31 (1963), 368–377.

    Article  Google Scholar 

  22. Nicodemus, F. E. Directional reflectance and emissivity of an opaque surface. Applied Optics 4 (1965), 767–773.

    Article  Google Scholar 

  23. Nicodemus, F. E. Reflectance nomenclature and directional reflectance and emissivity. Applied Optics 9 (1970), 1474–1475.

    Article  Google Scholar 

  24. Nicodemus, F. E. Comment on “current definitions of reflectance”. J. Opt. Soc. Am. 66 (1976), 283–285.

    Article  Google Scholar 

  25. Nicodemus, F. E., Ed. Self-Study Manual on Optical Radiation Measurements: Part I—Concepts, Chapters 1 to 3. No. 910-1 in Technical Note. National Bureau of Standards (US), Mar. 1976.

    Google Scholar 

  26. Nicodemus, F. E., Ed. Self-Study Manual on Optical Radiation Measurements: Part I—Concepts, Chapters 4 and 5. No. 910-2 in Technical Note. National Bureau of Standards (US), Feb. 1978.

    Google Scholar 

  27. Nicodemus, F. E., et al. Geometric considerations and nomenclature for reflectance. Monograph 161, National Bureau of Standards (US), Oct. 1977.

    Google Scholar 

  28. Pattanaik, S. N., and Mudur, S. P. Adjoint equations and random walks for illumination computation. ACM Trans. Graphics 14 (Jan. 1995), 77–102.

    Article  Google Scholar 

  29. Phong, B. T. Illumination for computer generated pictures. Communications of the ACM 18, 6 (June 1975), 311–317.

    Article  Google Scholar 

  30. Schröder, P., and Hanrahan, P. Wavelet methods for radiance computations. In Fifth Eurographics Workshop on Rendering (Darmstadt, Germany, June 1994), pp. 303–311.

    Google Scholar 

  31. Shirley, P., Wade, B., Hubbard, P. M., Zareski, D., Walter, B., and Greenberg, D. P. Global illumination via density-estimation. In Rendering Techniques ’95 (New York, 1995), P. M. Hanrahan and W. Purgathofer, Eds., Springer-Verlag, pp. 219–230.

    Google Scholar 

  32. Siegel, R., and Howell, J. R. Thermal Radiation Heat Transfer, second ed. Hemisphere Publishing Corp., New York, 1981.

    Google Scholar 

  33. Smits, B. E., Arvo, J. R., and Salesin, D. H. An importance-driven radiosity algorithm. In Computer Graphics (SIGGRAPH ’92 Proceedings) (July 1992), vol. 26, pp. 273–282.

    Google Scholar 

  34. Snyder, J. M., and Barr, A. H. Ray tracing complex models containing surface tessellations. In Computer Graphics (SIGGRAPH ’87 Proceedings) (July 1987), vol. 21, pp. 119–128.

    Google Scholar 

  35. Steel, W. H. Luminosity, throughput, or etendue? Applied Optics 13 (1974), 704–705.

    Article  Google Scholar 

  36. Taylor, A. E., and Lay, D. C. Introduction to Functional Analysis, second ed. John Wiley & Sons, New York, 1980.

    MATH  Google Scholar 

  37. Veach, E., and Guibas, L. Bidirectional estimators for light transport. In Fifth Eurographics Workshop on Rendering (Darmstadt, Germany, June 1994), pp. 147–162.

    Google Scholar 

  38. Veach, E., and Guibas, L. J. Optimally combining sampling techniques for monte carlo rendering. In SIGGRAPH ’95 Conference Proceedings (Aug. 1995), Addison Wesley, pp. 419–428.

    Google Scholar 

  39. von Fragstein, C. 1st eine lichtbewegung stets umkehrbar? Opt. Acta 2 (1955), 16–22.

    Article  MathSciNet  Google Scholar 

  40. von Helmholtz, H. Helmholtz S Treatise on Physiological Optics, vol. 1. Dover Publications, New York, 1962. James P. C. Southall, Ed. Original date of publication 1856. Translated from the third German edition.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien1996

About this paper

Cite this paper

Veach, E. (1996). Non-symmetric Scattering in Light Transport Algorithms. In: Pueyo, X., Schröder, P. (eds) Rendering Techniques ’96. EGSR 1996. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7484-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7484-5_9

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82883-0

  • Online ISBN: 978-3-7091-7484-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics