
NASA- TM-111:353
,_A:_"_: i_'_- '< _J_¸

/fl '" <<_4< <_-,z-'

DOMINANT TAKEOVER REGIMES FOR GENETIC ALGORITHMS

David Noever

Biophysics Branch, ES76

National Aeronautics and Space Administration

George C. Marshall Space Flight Center

Huntsville, AL 35812 USA

Subbiah Baskaran

Institut fuer Molekulare Biotechnologie, e.V.

Beutenbergerstr. 11, DO-7745, Jena, Germany

Biophysics Branch, ES76, National Aeronautics and Space

Administration, George C. Marshall Space Flight Center

Huntsville, AL 35812 USA

The genetic algorithm (GA) is a machine-based optimization

routine which connects evolutionary learning to natural genetic laws

[1-2]. The present work addresses the problem of obtaining the

dominant takeover regimes in the GA dynamics. Estimated GA run

times are computed for slow and fast convergence in the limits of

high and low fitness ratios. Using Euler's device for obtaining partial

sums in closed forms, the result relaxes the previously held

requirements for long time limits. Analytical solutions reveal that

appropriately accelerated regimes can mark the ascendancy of the

most fit solution. In virtually all cases, the weak (logarithmic)

dependence of convergence time on problem size demonstrates the

potential for the GA to solve large N-P complete problems.

A central issue in how the GA processes strings (solution encoded

genomes) is takeover times for the most fit genome [2]. Takeover

times here refers to how the computational time or complexity scales

with larger problem sizes. Short takeover times correspond to rapid

convergence onto the most fit individual. Conversely, long takeover

times correspond to slow convergence and sluggish dynamics. A

historical discussion of computational complexity appears in
reference 3.

Here we solve the standard GA models for generational reproduc-

tion [4], evaluate the takeover times, and compare the results using

various approximation techniques. The approximations take place

only in time and fitness space, such that the exact results can be com-

pared directly. The aim is to identify and understand why the GA

sorts through some regions of the fitness landscape so efficiently but

gets bogged down in other regions.

For discrete time steps between generations, t_{0,1,2...}, let Pi, t
correspond to the proportion of alleles (or bit string values) set to the

value I for a particular allele position i at generation t. Let Pt, o rep-

resent P for the founder generation, t=0. For simplicity, all subse-

quent work will treat binary genetic algorithms wh_h have alleles

possessing either of two values, 0 or 1; the multivalue case is a trivial

generalization at this level of proof. Let fl correspond to the

organism's fitness (some survival probability) sampled with allele

value 1 in a particular position j. Likewise, takefo to represent the

fitness of all organisms sampled with allele value 0 in position j. For

any defined fitness ratio, r=fl/fo, the value will be considered time-

independent and constant across generations.

Thus to begin, assume generational reproduction on a binary fit-

ness landscape (fo,f0 with fitness ratio, r=fl/fo. Previous results have

established an equivalence condition to match generational and

steady-state reproduction, so we consider the following derivations to

develop with some parallel applicability for steady-state GAs (e.g.

Genitor, etc.). In the binary GA [5], generational reproduction implies
that

Pt+I = (fl / St)Pt (1)

where St defines the average population fitness, S t =flPt+(1-Pt)fo.

An iterated recursion relation is complicated by the appearance of Pt

in the average population fitness, St. Here St=Ptfl+ (1-Pt)fo is the

total average population fitness. Physically the last term represents the

copying of one individual with a reproductive rate,fl/St.

The recursion relation governing inverse population growth is

(X=I/P)[5]: X t = 1-1+ Xt-I = A + BXt_ 1 . (2)
r r

Iterating and solving as a function of the fitness ratio and time gives:

t t n

Xt=AEBn+BtXo=(r-I-----2) E(I] +_
n=0 r n Ok`r) r " (3)

Equation (3) can be inverted to solve for population dynamics, Pt:

Po rt

Pt = t + PoFt rt-I (r - 1) (4)

where the term Ft is the binomial series

n=O

The aim of this analysis is to solve for closed form results in the lim-

its of fitness space for long and short times. The approximate limits

will parameterize the GA convergence for arbitrary fitness values.

The Case of Long Times (t-->_) and Fitness Ratios r >I

For an infinite series summed with large fitness ratios, then for

(1/r)< 1, the series (5) converges according to

eo

Ex n = l+x+x2+ (1 -x) -1 (6)
n=0

or

Ft = (1_1)_1 r= r- 1 " (7)

Thus, in the limit of long times and fitness ratios greater than unity,

the population changes according to the dynamical equation:

Port (8)
Pt = l + Port •

Equation (8) can be solved for how the computational complexity

varies with the population size, n. Two cases are examined, the worst

and average complexities which in turn depend on the expected fre-

quency of the final solution appearing in the initial population, Po. In

the average case, the initial population has a random frequency for the

best solution, thus Po=0.5. Alternatively in the worst case, the initial

population has a minimum frequency for the best solution, tiros

Po=l/n. Near convergence the final population approaches unity for

all cases, thus, Pf = 1-(I/n)=(n- 1)/n. With this dependence on popu-

lation size, it is possible to solve directly for the takeover time (or

computational complexity) of the most fit member

ln[P:/Po(I-P:)]
t¢ = In(r) (9)

For worst case convergence times, then

ln[n(n-1)]
tc = In(r) ~ O[ln(n)] . (10)

Similarly for average convergence times, then

ln[2(n - 1)]
tc = In(r) ~ O[ln(n)] . (11)

Both cases for takeover times (10-11) demonstrate the same weak

logarithmic dependence on population size.

The Case of Both Arbitrary Times and Fitness Ratios

For a finite series summed with arbitrary fitness ratios, then the
series (5) converges according to

t

Ex n = l+x+x2+ (1-x t)(1- x) (12)
n=0

or l_(1/r)t 1 [rt_l]

Vt LTq-_lj. (13)

Thus, for finite times and arbitrary fitness ratios, the population
changes according to the dynamical equation:

Po rt po rt

Pt = l + Port_l(r_ l)F t = (l_Po) + Por t • (14)

This agrees with the result derived independently by Deb and
Goldberg [6] and Ankenhrandt [4].

Equation (5) can be solved for the computational complexity with
the population size, n and fitness ratio, r.

• [Pf(1-Po)]

tc='nLeo(1-ey)J
In(r) (15)

Again, two cases are examined, the worst and average complexities.
For worst case convergence times, then

tc = _ ~ O[ln(n)] . (16)

Similarly for average convergence times, then

tc = _ - O[ln(n)] . (17)

Both cases for takeover times demonstrate the same weak logarith-
mic dependence on population size.

The Case of Long Times (t-->oo) and Low Fitness Ratios (r<l)

For an infinite series summed with low fitness ratios, then the

series (10) converges according to

1-(1/r) t 1 [rt-1] rt-1

Ft = _ = r-_r_l[-7-LT_1 j = limt-->,:o r - I

= (1 -r)-lfor r < 1 . (18)

Thus, for infinite times and low fitness ratios, the population changes
according to the dynamical equation:

Port Port (19)
Pt = l + Port_l(r_ l)i.t "= l_ Po •

Equation (5) can be solved for the computational complexity with the

population size, n. ln[Pf(1-Po)/Po]
tc = In(r) (20)

Again, two cases are examined, the worst and average complexities.

For worst case convergence times, then

ln[(n-1) 2/n]
tc = In(r) (21)

For large populations, n-->_o, then the logarithmic numerator goes to

the limit, In[n-2+(1 / n)] = in(n- 2). For small populations, n-->0,

then the logarithmic numerator goes to the limit, ln[n- 2 + (1/n)]
= In[(1 / n)- 2].

Similarly for average convergence times, then

ln[(n-1)ln]
tc = In(r) (22)

For large populations, n-->oo, then the logarithmic numerator goes to

the limit, ln[l + (1 / n)] = 0.

The Case of Finite Times and Arbitrary Fitness Ratios r

For a finite series summed with arbitrary fitness ratios, then the

series (5) converges according to an ingenious tool sometimes called

Euler's device [7]. For this case, the series is rewritten for z=(-l/r)

and the geometric series can be summed for any intermediate time (in
powers ofp=2q q=1,2,3...)

t

E zn = 1- z + z 2 - z 3 +... (23)
n=0

t

Ez n = 1-z+z 2 -z3+ (24)
n=0

To evaluate any intermediate sum,/"2p--l, Euler's device gives:

Fl=(l-z)=l+l/r;F2p_l=(l+zP)Fp_l =[l+(1/r)P]Fp_l .(25)

This case represents the main exposition of this paper. It enables one
to inspect the GA dynamics in intermediate time intervals without a

lack of analytical generality. For any intermediate generation, the
series can be summed in terms of previously known terms. As an
example, consider the series up to generation 15:

F3=(I+I/r2)FI;F7=(I+I/r4)F3

=l+l/r+l/r2+...+l/r7;Fl5 =(l+l/r8)F7 . (26)

Thus, in the limit of any finite time and arbitrary fitness ratios, the

population changes according to the dynamical equation:

Por2P -1

P2p-I = l+Po(l+l/rP)Fp_lr2p_2(r_l). (27)
_ f

Fig. 1 shows the stepped amplification for discrete iterations using
Euler's device on the series sum and the population.

The principal value of the partial summation formalism is to allow
intermediate stages of the growth cycle to be expressed in closed

form without resorting to any assumptions of long times or con-
straints on the fitness ratio. The appeal is that programmed changes in

population (injection or withdrawal of strings) can be undertaken
without loss of analytic versatility. Additionally, the time complexity
for regions of rapid convergence (following such injection or with-

drawal) can be monitored without resetting the population balance

with a new fitness ratio. Finally, the appeal of a 2q representation
space for population changes automatically suggests a simple map-
ping onto the hypercube of available search space. The generation
steps thus naturally can be fitted to vertices of an ever enlarging
(hypercube) search space.

Not only does (27) give the partial summation in a closed

(polynomial) form, but also allows for the immediate production of
interval summations, e.g. the growth that occurred between genera-
tions 7 and 15 (orp-1 to 2p-l). Rewriting Euler's device in terms of

q for powers ofp=2q gives:

100 1,0

--'0-" series sum

60 -0.8 .=*_
r_ .

_, //II , r'(t27)

-40o '11F 3)

0 0.5

0 50 I00 150

Generations, t= 2p-I

Fig. 1. Stepped population growth and series sum using Euler's device
to obtain partial summations without constraining the fitness space or
simulation time• The bars highlight the points of partial summation on a
binary landscape (t=2p-1 where p=2q).

q:F2q+ll=(l+Z2q)r2q_l (28)

q- l:I"2q-l_l =(l+Z2q-I)F2q-l_l . (29)

By subtracting (29) from (28) and rewriting in terms ofp gives the
interval summation formula:

1-'2p_ 1 - l'p_ 1 = I"2p_ 1 - (1 + z p/2)Fp/2_ l . (30)

For example, the population growth between generations 7 and 15
can be written in exact closed form as:

= rl5-(i + I/ r4)r3 . (31)P15 _ _7

As shown schematically in Fig. 2, a complete interval analysis

becomes possible for subsets of the partial summation. By breaking

the population growth curve into discrete intervals, a useful formal-

ism evolves for addressing intermediate changes in GA dynamics

(e.g. withdrawal or addition of strings, changes in fitness)• Thus the

objective of tracking regions of accelerated convergence is simplified

without loss of mathematical generality.

1.2

1,0

o 0.8
,,u

,,.., 0.6

o 0.4

0.2-

Long times,
lowfitness

t i
I

, /!

I /
I t
I ;
! ;
i l
i !

'2S_ /

• | • i0.0

0 loo 200 300 400

Generation time

Fig. 2. Schematic of interval summations

within the partial sums of Euler's device.

(;

r=l.Ol I
.......... r=l.03

r=lD5

• i • , • [

5OO

The Case of Arbitrary_ Times (t-->_o) and Fitness Ratios r=-I

For completeness sake, consider the trivial case of equal fitness, r= 1.

When the two solutions have indistinguishable performance, the

population should remain fixed on average at the initial value, Po. As

a check on the previous formalism, such a result does indeed follow

when the infinite series sums for equal fitness, then for (1/r)=l the

series (5) converges according to

t

Z xn =l+x+x2+ t (32)

n=0

or

1" t = 1 + 1 + 1+...+1 = t . (33)

Thus, in the limit of arbitrary times and equal fitness ratios, the popu-

lation remains unchanged according to the dynamical equation:

Po rt

Pt = 1 + Po t r t-I (r - 1) = Po • (34)

A somewhat shorter derivation follows from observing that

(r-l)=0 in this case, thus for any finite number of terms in the sum-

mation, the dependence on time should vanish entirely from the
denominator of (30).

Summary_ of Results

A summary of the various approximations is shown in Fig. 3.

The graphical difference between exact and approximate population

dynamics is highlighted in Fig. 4. The time complexities calculated in

the various approximate limits are compared in Fig. 5. In general the

weak (logarthmic) dependence of the GA processing on problem size

gives it great potential compared to other sorting and search routines

(Fig. 6).

Population balance General formalism Fitness series

. Por' P,' P,rt Port r .a_ (/)nPt l+Portrt.l(t.l) l+Port'l(r'l)rt (I'Po)+Po rt a

e_
o

=.

g

t-->** any t
r<l r=l

seres sum series sum

I rt-I rt-I -t -_-)q= -iT._[__I=tim r_=tt "_,_i-.rl
r" r-1 t->.,. _ =(l-r)

population population

Por t Port rt=t P rtpt__.--_.-°

Pt' l+Port.l(r.1)Ft 1.po 1+Port ..

takeover time takeover time

In[(_] Pt = Po ln[2(n-l)l

to---_T- -o[_n)l
t,= ha(r)

• t finite

arbitrary r

series sum

r,.,-,_.@ r_,.:.,.e)_.:t,.,.(-t_r,.,

population

pot2p't

P_p-t l+Po(l.t__)rp.lr2P.2(r. 1)

t--_.oo

r>l

.I Fitness ratio,r

Fig. 3. Phase diagram for series summation in approximate

limits of short and long times and arbitrary fitness values•

Much work has been published on the compromises struck

between rapid GA convergence and processing parameters (e.g. ref-

erence 6). A preliminary discussion here presents the fundamental

issue in terms of accelerated regions of GA convergence• In general,

GA populations move toward optimum following an S-curve or

logistic growth. The central steep ascendency of the S-curve

corresponds to highly efficient GA processing. In this regime, genetic

mixing improves overall performance, such that neither good strings

get heavily disrupted (strong crossover) nor do bad strings get unnec-

essarily preserved (low selection). Thus GA efficiency can match

with the genetic terms of a balanced tradeoff struck between diversity

andselectivity.Overtime,thistradeoffcanbeimaginedschemati-
callytocombinetwocompositeoperators.Forthesameoperations
mappedintotimeandfitnessspace,neighborhoodsofhighdiversity
correspondtohighfitnessratios,whileneighborhoodsofstrong
selectivitycorrespondtohighfitnessratios.Inthistranslation,
regimesofacceleratedconvergencecanbeidentifieddirectlywith
theirapproximatetimecomplexities(Fig.3).

Long times,
Iow fimess general cash

1.2 1.2

--"_I.0-] ,r • 1.0 -- --

/ 06
02

0 100200300400500 F'lmessratio a, 0.0

Generations _ _1.01 I 0 100 200 300 400 500

r=l.03 [Generationlong times, r= l.05
high fitnes$

_ 0.4

.........
0 100200300400500

Generations

12 •

_ 0"8-ll'0t highfitness___approx, toolj
0 100 200 300 400 500

Generations

Fig. 4. Summary of low and high fitness approximations and their

effects on population growth. Lower right shows the comparison

between exact and approximate solutions. Note that the exact and high
fitness regimes essentially overlap.

........ tons ames I
_ hish__::;, I high fitness

l // Ionstlmes" I approx.

._--- exact

Problem size

Fig. 5. Comparative time complexities (takeover times) for the

approximate limits. Short times correspond to regions of accelerated
convergence.

/ / o,o,

/ _ //8_a_
/_ //search
]t--,// O[nlaC,01 Genetic

I / / /,180_t_m

_// Domain size

Fig. 6. Comparative computational complexity between various sort
routines.

To summarize, the work has analyzed the population dynamics of

a general GA in fitness space. The iterated population yields recursion

relations and a convenient formalism is developed for the approxi-

mate cases of long and short times as well as high and low fitness

values. The validity of these closed forms is compared to the exact

result. By using the elegant tool of partial summation (Euler's device)

then the analytical basis of the GA is prepared to handle discontinu-

ous changes in parameters without loss of mathematical generality.

For example, the introduction or removal of strings can be safely

accounted for by using the discrete summation formalism in a par-

ticularly transparent way. An additional advantage in using the partial

series summation (Fig. 1) is to relax the requirements for long

(infinite) time series. In practice, most GAs run no longer than a few

decades of generational time steps. Future work will examine the

potential for abrupt population changes or more dynamic fitness

landscapes (time dependent optimizations) in a focused effort to

understanding GA processing and convergence.

References

1. Holland, J.H.: Adaptation in Natural and Artificial Systems. Ann

Arbor, Michigan: University of Michigan Press 1975.

2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and

Machine Learning. Reading, Massachusetts: Addison Wesley
1989.

3. Cook, S.A.: Comm. of ACM 26, 401 (1983).

4. Ankenbrandt, C.: (1991) "Time Complexity and Convergence of

Genetic Algorithms".Rawlins, G.J.E. (ed.): Foundations of

Genetic Algorithms. San Mateo, California: Morgan Kaufmann
Publishers 1991.

Noever D. and Baskaran, S.: "Steady State vs. Generational

Genetic Algorithms: A Comparison of Time Complexity and

Convergence Properties" Santa Fe Institute preprint series, 92-07-

032 (submitted to Machine Learning) (1992).

Goldberg, D.E. and Deb, K.: "A Comparative Analysis of

Selection Schemes Used in Genetic Algorithms," Rawlins, G.J.E.

(ed.): Foundations of Genetic Algorithms. San Mateo, California:

Morgan Kaufmann Publishers 1991.

Broucke, R.A." Comm. of the ACM 14, 34 (1971).

5.

6.

7.

