
Dynamically Adapting Clients to Web Services
Changing

Mehdi Ben Hmida1, Céline Boutrous-Saab1, Serge Haddad1, Valérie
Monfort1,2, and Ricardo Tomaz Ferraz2

1 LAMSADE, Université Paris 9 Dauphine,
Place du Maréchal de Lattre Tassigny

Paris Cedex 16, France
2 CRI, Université Paris 1 Sorbonne,

90, rue de Tolbiac
75013 Paris, France

Abstract. Web Service is the fitted technical solution which provides
the required loose coupling to achieve Service Oriented Architecture
(SOA). However, there is still much to be done in order to increase
flexibility and adaptability to SOA-based applications. In previous re-
searches, we proposed approaches based on Aspect Oriented Program-
ming (AOP) and Process Algebra (PA) to address flexibility and client
generation issues in the Web Service context. In this paper, we extend our
previous formalism defined for abstract BPEL processes, with three AOP
constructs. The new formalism allows to specify dynamic change-prone
BPEL processes. We also define the extended interaction relation which
characterizes the concept of correct interaction between the adaptable
BPEL process and its client. Then, we propose an algorithm to generate
a client which dynamically adapt itself to the service changing.

Key words: Service Oriented Architecture (SOA), Web Services (WS),
BPEL4WS, Aspect Oriented Programming (AOP), Process Algebra (PA).

1 Introduction

Web Services (WS) are “self contained, self-describing modular applications that
can be published, located, and invoked across the Web” [1]. They are based on
a set of XML [2] standards to make it more portable than previous middleware
technologies [3]. WSs need to be composed to fulfill business requirements. The
Business Process Execution Language for Web Services (BPEL4WS or BPEL)
has been proposed for this purpose and becomes a standard [4]. BPEL supports
two different types of business processes:

1. Executable processes specify the exact details of business processes and are
executed by a BPEL engine.

2. Abstract business processes specify the public message exchange between the
client and the service (the interaction protocol).

2 M.B. Hmida, C.B. Saab, S. Haddad, V. Monfort, R.F. Ferraz

Web Service technology is asked to handle the same features as middlewares
such as DCOM [5], J2EE [6] or CORBA [7] already handle. The features, such
as security, reliability, or transactional mechanisms, can be considered as non-
functional aspects. Obviously, these aspects are crucial for business purposes and
one cannot build any genuine IS without consideration for them.

However, managing these aspects is likely to involve a great loss in interop-
erability and flexibility. This effect has already been experienced with the above
middleware technologies. Mostly, middleware delegates these tasks to the under-
lying platform, hiding these advanced mechanisms from the developer, and then
establishing a solid bond between the application and the platform.

Moreover, WS providers are faced to some important difficulties to change
their services behaviours because WSs are shared by many clients and a minor
change leads to client execution problems.

Regarding the above limitations, we identified two requirements that Web
Service technology has to handle:

1. Service providers need to dynamically change the behaviour of an already
existing Web Service to adapt it to the new applications requirements.

2. The Web Service client needs to dynamically adapt itself to the service chang-
ing to avoid execution failures.

Previously, we proposed two approaches to address flexibility and client gen-
eration. The first approach is based on AOP [8] and aims to change the WS
behaviour without touching its implementation [9, 10]. The second is based on
Process Algebra (PA) and defines a formalism for the abstract BPEL language
in order to automatically generate a client which correctly interacts with the
service [11].

In this paper, we extend our BPEL specification formalism (defined in the
second approach) to generate a client which is able to dynamically adapt itself
to a service changing. More precisely, we add three AOP constructs and their
operational semantics. These constructs describe change-prone BPEL processes.

This paper is organized as follows: section 2 presents our previous works.
Section 3 defines the extended BPEL formalism. Section 4 applies our approach
to a concrete case study taken from industry. Section 5 draws limitations and
some possible enhancements for the approach. Section 6 draws comparisons with
other works. We conclude and enumerate future works in section 7.

2 Our previous approaches

2.1 Aspect Oriented Programming (AOP)

Many researches [12–14] consider Aspect Oriented Programming AOP as an
answer to improve WS flexibility. AOP is a paradigm that enables the mod-
ularization of crosscutting concerns into single units called aspects, which are
modular units of crosscutting implementation. AOP concepts were formulated
by Chris Maeda and Gregor Kiczales.[8]

Dynamically Adapting Clients to Web Services Changing 3

Crosscutting concerns are requirements that cannot be localized to an indi-
vidual software component and that impact many components. In aspect-speak,
these requirements cut across several components. Aspect-oriented languages
such as AspectJ [15], JBoss AOP [16], AspectWerkz [17], Spring AOP [18], etc.
are implemented over a set of definitions:

1. Joinpoints: They denote the locations in the program that are affected by a
particular crosscutting concern.

2. Pointcuts: They specify a collection of joinpoints.
3. Advices: They are codes that run upon meeting several conditions. Advices

can be executed before, after or around a joinpoint.

To better clarify, consider the classical example to implement a logging func-
tionality. Logging code is often scattered horizontally across object hierarchies
and has nothing to do with the core functions of the objects it is scattered
across. The same is true for other types of code, such as security, exception han-
dling, and transparent persistency. This scattered and unrelated code is known
as crosscutting code and is the reason for AOP’s existence.

Using Object-Oriented Programming, every time we need to introduce the
logging functionality in an application, the programmer must add the logging
code into the appropriate objects. Using AOP, we can insert the logging code
into the classes that need it with a tool called a weaver. This way, objects can
focus on their core responsibilities. The figure 1 shows the weaving process.

Fig. 1. The weaving process

The weaver is in charge for taking the code specified in a traditional (base)
programming language, and the additional code specified in an aspect language,
and merging the two together. The weaver has the task to process aspects and

4 M.B. Hmida, C.B. Saab, S. Haddad, V. Monfort, R.F. Ferraz

component code in order to generate the specified behaviour. The weaver inserts
the aspects in the specified joinpoint transversally.

2.2 Aspect Service Weaver (ASW)

In our first approach, we developed an AOP-based tool named Aspect Service
Weaver (ASW) [9, 10]. The ASW intercepts the SOAP messages between a
client and a WS and redirects these messages for other WSs (advice services)
that implement the new behaviours. We use the AOP weaving time to intercept
and redirect the messages (before or after an original WS invocation). The ad-
vice services are registered in a file called “aspect services file descriptor”. The
pointcut language is based on XPath [24]. XPath queries are applied on BPEL
to select the set of methods on which aspect services are inserted.

Based on a well defined set of rules the engine generates complex interactions
among original Web Services methods and advice services.

Fig. 2. Interactions schemas

For example, whenever a new behaviour is inserted before a service method
invocation (figure 2.a), the engine redirects the request to the proper advice
service (3) before the request reaches the original method. Then, it captures the
http/SOAP answer (4) and sends it to the original method (5). The original

Dynamically Adapting Clients to Web Services Changing 5

method performs its task and sends back the answer to the engine (6). Finally,
the engine dispatches the final answer to the client caller (7). The interactions
performed whenever an ”after” or a ”replace” advice is detected are described
in the figure 2.b and figure 2.c, respectively.

But, what happens if the advice service requires new interactions with the
client? These interactions are not expected and leads to client execution failures.

We solve this problem by extending the abstract BPEL formalism defined in
our second approach [11]. In that work, we proposed a dense time operational se-
mantics for abstract BPEL constructs based on Timed Automata (TA)[19]. The
theorical developments follow these steps: associating operational rules with each
abstract BPEL construct, defining an interaction relation which formalizes the
concept of a correct interaction between two communicating systems (the client
and the WS), and the design of an algorithm that generates a client automa-
ton which is in an interaction relation with the WS. The client automaton is
interpreted by the client program.

3 Adaptable BPEL Processes Formalisation

BPEL provides a set of operators describing in a modular way the observable
behaviour of an abstract process. As shown in [20], this kind of process descrip-
tion is close to the process algebra paradigm illustrated for instance by CCS
[21], CSP [22] and ACP [23]. However, time is explicitly present in some of the
BPEL constructors and thus the standard process algebra semantics are inap-
propriate for the semantics of such a process. Thus our semantics associates a
timed automaton [19] (TA) with an abstract process.

Let us briefly present TA and our formal semantic for abstract BPEL pro-
cesses.

3.1 formal semantics for abstract BPEL processes

TA is a tuple T = (L, C,B, A, E, S0, F), where L is the set of locations (or
control states), C is the set of clocks, B is the set of boolean expressions built
other atomic boolean propositions, A is the set of actions, E is the set of edges;
an edge e = (s, g, a, r, d) of L×B ×A×B ×L is defined by the source location
s, the guard g, the action a, the subset r of clocks reset by e and the destination
location d. S0 and F are the initial and final locations of the TA. Atomic boolean
propositions are expressed as ”x op n” and ”x− y op n” with x, y belonging to
C and op a comparison operator (<,>, =); n is an natural constant. These
propositions are combined with usual operators (not, and, or) to build boolean
expressions. A variant of TA associates I(s) a boolean proposition with each
location.

The semantics of TA is defined by timed executions. At any time, each clock
has a value v(c); v is called a valuation of clocks. A configuration or state of T
is a pair (s, v) with s ∈ L and I(s)(v) = tt (true). The initial state is (S0, 0), i.e
at time t = 0, all clocks values are null. We denote by v + t the valuation defined
by (v + t)(c) = v(c) + t. There are two kinds of transitions in T .

6 M.B. Hmida, C.B. Saab, S. Haddad, V. Monfort, R.F. Ferraz

1. A transition (s, v)
(g,a,r)−−−−→ (s′, v′) corresponds to an edge e = (s, g, a, r, s′)

of T ; This transition is possible iff g(v) = tt and I(s′)(v′) = tt where v′ is
defined by v′(c) = 0 for c ∈ r and v′(c) = v(c) otherwise.

2. A transition (s, v)
d(t)−−→ (s, v+t) corresponds to some time passing in location

s and may occur iff (∀t′ < t I(s)(v + t′) = tt.

An execution of T is a sequence of states and transitions from the initial
state to a state (s, t) where s ∈ F

In order to formalize BPEL as dense timed process algebra, we have to define
the actions (alphabet) of the process algebra. The possible actions are message
receiving (?m) and sending (!m), internal actions (τ), raise of exceptions (e ∈ E),
expiration of timeout (t0) and the termination of the process (

√
). We distinguish

three kind of actions: the immediate actions corresponding to a logical transition
(τ, e,

√
), the asynchronous actions where an unknown amount of time elapses

before the occurrence of actions (?m, !m) and the synchronous actions (t0) which
occur after a fixed delay.

Now, we present some operational rules useful to better understand the rest
of the paper. To see all rules, the reader is invited to read [11].

For example, the process ?o[m] (resp. !o[m]) which corresponds to the re-
ception of a message of type m (resp. sending of message of type m) executes
the action ?m (resp. the action !m) which corresponds to the message reception
action (resp. the message sending action) and becomes the empty process (the
process which does nothing).

∗o[m] ∗m−−→ empty with ∗ ∈ {?, !}
The sequential process P;Q (P and Q are BPEL processes) which corresponds

to the execution of the process P followed by the execution of the process Q,
becomes the process P’;Q if the process P executes an action a different from
termination action and becomes P’. If P terminates, the process P;Q becomes
the the process Q.

∀a 6= √ P
a−→ P ′

P ;Q a−→ P ′; Q′

P
√
−→

P ; Q
√
−→ Q

Let us now present the new operators added to the formalism in order to
formally handle adaptable BPEL process.

3.2 Extended Formalism for Adaptable BPEL processes

We extend the previous defined formalism with three AOP constructs. The new
constructs enable to specify processes which behaviours are prone to change. So,
given an abstract BPEL process P defining the original behaviour, we have:

Dynamically Adapting Clients to Web Services Changing 7

1. Before(P) specifies that P may have a new behaviour executed before it.
2. After(P) specifies that P may have a new behaviour executed after it.
3. Around(P) specifies that may have a new behaviour that replaces P .

We insert two parameterized actions in the alphabets of the TA. These actions
are labelled : !esc[Q] and ?esc[Q] (where Q is an abstract BPEL process). !esc[Q]
specifies that the ASW sends a message, containing the new behaviour Q to the
client, by performing the action !esc. ?esc[Q] specifies that the client is waiting
to receive a message, containing the new behaviour Q.

Now, we present the operators semantic rules. We stress that our operators
do not take into account the time because we consider that the introduction of
the new behaviour is an immediate action.

Process Before(P) sends, by performing the action !esc, a message con-
taining the new behaviour Q and becomes the sequential process Q;P . If no
behaviour is inserted, Q is the empty process (the process which does nothing).

Before(P)
!esc(Q)−−−−−→ Q; P

Process After(P) becomes process After(P ′) if P performs an action a, differ-
ent from the termination action

√
, and becomes P ′. If P terminates, process

After(P) sends, by performing action !esc, a message containing the new be-
haviour Q and then becomes Q. Q is empty process if there is not new behaviour.

∀a 6= √ P
a−→ P ′

After(P) a−→ After(P ′)

P
√
−→

After(P)
!esc(Q)−−−−−→ Q

Finally, process Around(P) sends, by performing action !esc, a message con-
taining the new behaviour Q and then becomes Q. If no behaviour is inserted,
Around(P) performs action !esc(empty) and becomes P .

∀Q 6= empty Around(P)
!esc(Q)−−−−−→ Q

Around(P)
!esc(empty)−−−−−−−→ P

3.3 The Interaction relation

During the interaction, the client may send a message from the set of messages
expected by the service. Conversely, every expected message by the client cor-
responds to a message which may be sent by the server, based on previously
exchanged messages. In addition to these messages, the client also expect the
esc operation message sent by the ASW and containing the automaton of the
new behaviour.

8 M.B. Hmida, C.B. Saab, S. Haddad, V. Monfort, R.F. Ferraz

Classical comparison relations between timed systems are language equality
and bisimulation. But, equality relation does not take into account intermedi-
ate actions and the bisimulation relation does not distinguish different kinds of
actions. We have then defined a relation analogous to the bisimulation relation
which take into account the kind of actions. The interaction relation definition
is made of three steps:

First, since the relation abstracts the internal actions, we define derivations
abstracting invisible actions. If action a is not time passing (d(t)), s −→ a −→ s′

means that process can evolve from s to s′ by first executing (possibly several)
invisible τ actions, then a and again τ actions. For time passing actions d(t),
s −→ d(t) −→ s′ means that the process can evolve from s to s′ with internal
actions interleaved with time passing, and with a total time passing of t.

Second, for each possible action a, we define its complementary action c(a)
which will be used in the definition of equivalent states. We have c(!m) =?m,
c(?m) =!m (in particular c(?esc) =!esc and c(!esc) =?esc) and c(a)=a otherwise.

Finally, TA Q and R interacts if for each state of a TA P able to do action
a, its equivalent state of the interaction TA Q is able to do c(a).

3.4 Algorithms for the adaptable BPEL process and client
automata generation

The ASW takes the abstract BPEL process and the “Aspect Services file de-
scriptor” as input and generates the automaton corresponding to the original
BPEL process and its new behaviours. The automaton generation follows these
steps:

1. ASW generates the automaton of the original BPEL process [11].
2. ASW looks in the “aspect services file descriptor” for joinpoint matchings

with the original BPEL process.
3. If there is a joinpoint matching, the ASW replaces in the automaton, the

identified joinpoint by the adequate AOP operator.

Regarding client generation, the algorithm is based on a kind of automaton
determinization of the service. The algorithms follow these rules:

1. A node of the deterministic client automaton is a set of nodes of the service
automaton. This set must not include AOP operators nodes (before, after
or around).

2. Each AOP node in the service automaton corresponds to a special node in
the client automaton. The client stops its execution at this special node, in
order to replace it with the automaton of the new behaviour.

3. Similarly to the approaches which determinize subclasses of timed automata,
we require that the deterministic automaton has the same clocks as those
of the original automaton. Then, we inspect edges of the service automaton
and we define edges and guards of the deterministic automaton.

Let us now explain the approach principles through a more realistic scenario
taken from one of our industrial projects.

Dynamically Adapting Clients to Web Services Changing 9

4 Concrete scenario

A company aims to develop automatons to analyse blood plasma, which means
patient data information has to be highly reliable and correct. In order to support
consequent evolution and successive reuse of the machines, the company decided
to define and to promote a flexible and adaptable architecture according to
the new emerging requirements. We decided to use Web Services technology to
implement this architecture.

The Application must display specific Human Machine Interface (HMI) ac-
cording to profile and maturity level of the user. Access is allowed or denied
according to user profile and protected from unauthenticated usage.

Consider the hypothetical scenario where an original Web Service has an
authentication policy like Kerberos token and, that after a while, the company
resolves to replace this authentication policy for a digital certificate security
policy. Using a classical approach, considering that a change is required in the
authentication method signature, clients have to rewrite manually the invocation
of methods authenticated with the new security policy.

Using the ASW engine, the programmer can, for instance, develop an aspect
Service called ”analyseResults” and specify, in the “aspect services file descrip-
tor”, that before the invocation of the authenticated methods in the Original
Web Service the engine must invoke the advice service “digital-certificate”. This
way, on the next Original Web Service invocation, the ASW will be aware of
the rules specified in the “aspect services file descriptor” and will generate the
automaton corresponding to the original BPEL process and its new behaviours.

Fig. 3. An interaction scenario for the insertion of new security policy

10 M.B. Hmida, C.B. Saab, S. Haddad, V. Monfort, R.F. Ferraz

The “aspect services file descriptor” in fig. 3 indicates to the engine that
always the methods that match with the XPath expression “//invoke[starts-
with(@name,“SendResult”)]” (equivalent to the invocation of methods whose
names match the regular expression “SendResult*”) were invoked the engine
must invoke before the advice service digital-certificate.

At runtime, the ASW will inform the clients about the new security policy
and then send it the corresponding automaton. So, when the ASW receives a
SOAP message from the client (step 1 in fig. 3) to invoke an authenticated
method, then it looks in the “aspect services file descriptor” and finds a digital-
certificate security policy inserted before the method (step 2 in fig. 3), then it
generates the automaton of the new security policy (step 3 fig. 3) and sends it
to the client by invoking the operation !esc (step 4 in fig. 3).

The client handles the operation ?esc. It extracts the automaton of the
digital-certificate service from the received message and suspends its execution
to integrate the new behaviour.

5 Discussion

Our approach let us adapt all Web service clients to the service changing without
stopping them and rewriting clients programs code. However, the approach does
not allow to adapt the client behaviour giving its context, nor to adapt the ser-
vice execution giving a client. Consider, from one hand, that depending on the
client location, the company wants to offer different levels of authentication. For
instance, local clients can still use the digital authentication and have access to
the entire service, whereas remote clients can only have access to some restricted
services (for example viewing some information) by using the old authentication
(Kerberos). From the other hand, the service offers also the possibility to receive
normal or compressed XML. A client can, for example, specify to receive com-
pressed XML when he uses a remote connection and normal XML otherwise. In
this case, we have to take into account each client’s context and to adapt the
offered service to each client.

The ASW does not support such possibilities since there is no way to get
the information concerning a client and there is no possibility to allow a specific
treatment per client. The behaviour of the service can only be modified globally
and not depending on the client execution context.

Thus, the ASW may have in addition to the Aspect Services File descriptor”,
a behaviour file per client. The ASW receives from the client in addition to the
invocation message itself, the client context in the SOAP header. Giving the
information it contains, the ASW executes the service and returns the result,
or detects that the client context has changed and requires to adapt the service
and the client behaviours consequently. It generates then the corresponding au-
tomaton and sends it to the client by invoking the operation !esc. The client
before resuming its execution handles the execution of the ?esc. It extracts the
automaton and integrates the new behaviour. Thus the client must be able to
receive the operation !esc at any moment.

Dynamically Adapting Clients to Web Services Changing 11

6 Related works

In [12] and [13], the authors propose AOP-based approaches that improve the WS
flexibility. These approaches define specific AOP languages to add dynamically
new behaviours to BPEL processes. But, neither of them address the client
execution errors thrown by the inserted behaviour.

Web Service Management Layer (WSML) [14] is an AOP-based platform for
WSs that allows a more loosely coupling between the client and the server sides.
WSML handles the dynamic integration of new WSs in client applications to
solve client execution problems. Conversely, our approach propose to adapt a
client to a modified WS and not to replace it with another one.

Some proposals have emerged recently to abstractly describe WSs, most of
which are grounded on transition system models (Labelled Transition Systems,
Petri nets, etc.) [26–28]. But, none of them address the client generation issue.

7 Conclusion

In this paper, we have proposed a solution based on AOP and PA to adapt a
client to a modified BPEL process. We have extended our abstract BPEL for-
malism with three AOP constructs specifying change-prone processes. We have
also described two algorithms to generate the service and the client automata.

As future works, we propose To extend the ASW to take into account the
client execution context. We also propose to formally handle the aspects inter-
action issue (Aspects applied at the same joinpoint). Finally, we propose to add
the new formalism to the current ASW implementation as proof-of-concepts.

References

1. Tidwell, D., Web services - the web’s next revolution. IBM developerWorks (2000).
2. Extensible Markup Language(XML) 1.0, W3C Recommendation, February (2004).
3. Web Services Architecture, W3C Working Draft 14 November 2002.
4. Andrews, T. et al., Business process execution language for web services (2003).
5. DCOM Architecture, Microsoft Corporation, technical report, 1998.
6. Java Platform Enterprise Edition(J2EE), web site available at http://java.sun.com

/javaee/index.jsp.
7. Object Management Group (OMG), Common Object Request Broker Architecture

(CORBA/IIOP), revision 3.0.3, 2004.
8. G. Kiczales et al. , Aspect-Oriented Programming, in proc. of ECOOP’97. LNCS

1241, Spinger-Verlag, (1997).
9. R. F. Tomaz, M. Ben Hmida and V. Monfort, Concrete Solutions for Web Services

Adaptability Using Policies and Aspects , The International Journal of Cooperative
Information Systems (IJCIS), to be published, (September 2006).

10. M. Ben Hmida, R. Tomaz Feraz and V. Monfort, Applying AOP concepts to in-
crease Web Service Flexibility, in JDIM journal, ISSN 0972-7272, Vol.4 Iss.1 (2006).

11. S. Haddad, P. Moreaux and S. Rampacek, Client synthesis for Web Services by
way of a timed semantics, In Proc. of ICEIS’06, Paphos-Cyprus (2006).

12 M.B. Hmida, C.B. Saab, S. Haddad, V. Monfort, R.F. Ferraz

12. Anis Charfi and Mira Mezini. Aspect-oriented web service composition with
ao4bpel. In ECOWS, volume 3250 of LNCS, pages 168-182, Springer, (2004).

13. Carine Courbis and Anthony Finkelstein. Weaving aspects into web service orches-
trations. In ICWS, pages 219-226, (2005).

14. B. Verheecke, M.A. Cibran and V. Jonckers, AOP for Dynamic Configuration and
Management of Web Services, ICWS-Europe, LNCS 2853, pages 137-151, (2003).

15. R. Laddad, ASPECTJ in Action: Practical Aspect-Oriented Programming, Port-
land : Book News, Inc, 2004.

16. JBoss AOP, Web site availble at http://www.jboss.org.
17. AspectWerkz, Web site available at http://Aspectwerkz.codehaus.org.
18. Spring AOP platform, Web site available at

http://www.springframework.org/docs/ reference/aop.html.
19. R. ALur and D.L. Dill, ”A theory of Timed Automata”, Theorotical Computer

Science, 126, pp. 193-235, 1994.
20. Staab, S., van der Aalst, W., Benjamins, V., Sheth, A., Miller, J., Bussler, C.,

Maedche, A., Fensel, D., and Gannon, D. (2003). Web services: Been there, done
that? IEEE Intelligent Systems, 18:72-85.

21. Milner, R. (1989). Communication and Concurrency. Prentice-Hall, Englewood
Cliffs, NJ, USA.

22. Hoare, C. (1985). Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, NJ, USA.

23. Bergstra, J. and Klop, J. (1984). Process algebra for synchronous communication.
Information and Control, 60(1- 3):109-137.

24. XML Path Language (XPath) Ver. 1.0, W3C Recommendation 16 November
(1999).

25. X. Nicollin and J. Sifakis. The algebra of timed process, atp: Theory and applica-
tion. Technical report, Information and Computation (1994).

26. R. Hamadi and B. Benatallah, A Petri Net-based Model for Web Service Compo-
sition, Proceedings of Australasian Database Conference, Australia (2003).

27. X. Fu, T. Bultan, and J. Su., Analysis of Interacting BPEL Web Services, In Proc.
of WWW’04, ACM Press, USA (2004).

28. A. Ferrara, Web Services: A Process Algebra Approach, Proceedings of the 2nd
International Conference on Service Oriented Computing, ACM Press, USA (2004).

