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as well as considering the structure of documents. This paper describes POOL, a Probabilistic
Object-Oriented four-valued Logic, which allows a uniformview on hypermedia documents
for the purpose of their retrieval: documents, images, authors, dates, etc. are treated as objects
and POOL models the content of objects, the facts about objects, and the structure of objects
to provide for a relevance-based ranking of hypermedia documents.
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1 Introduction

For nearly a decade, an exponentially growing amount of electronic multimedia in-
formation has become widely available, e.g. on CD-ROM, on the Internet and in
digital libraries. Information retrieval (IR) [29] aims toprovide effective and effi-
cient methods of representing, managing, retrieving and displaying such informa-
tion. Increasingly typical for electronic documents is their hypermediacharacter:
(1) they are composed of objects of various media (e.g. text,image); (2) they can be
classified into groups (e.g. in an image object peter is classified a sailor); (3) they
may be organised into a logical structure (e.g. a chapter andits sections) or a seman-
tic structure (e.g. objects created by the same authors are linked together); and (4)
relationships may exist between objects (e.g., spatial andtemporal relationships in
images and videos, respectively). Hypermedia retrieval requires sophisticated docu-
ment representations and querying facilities [4] that go beyond the purely text-based
(term-based) representation and querying of classical IR.

The need for a conceptual model for representing and retrieving hypermedia
documents has been pointed out by many (e.g. [11,18,19]). For instance, [21,6]
propose new IR models specifically designed for hypermedia retrieval. All aim at
obtaining a flexible conceptual data model that is general enough to capture the
needs for any digitally available data in hypermedia documents, as well as support-
ing end-users in their information seeking activities. Oneagreed consensus is that
such a model must provide forcontent-basedquerying,fact-basedquerying and
consider thestructureof documents. Content-based querying refers to the content



of objects. For example, a query on videos about sailing boats is a content-based
query. Fact-based querying refers to the facts about objects. For example, a query
like who was the last captain of the sailing ship Cutty Sark isa fact-based query.
Content of objects can be viewed asknowledge of (contained in) objects, whereas
facts about objects can be viewed asknowledge about objects[25]. The structure
refers to the way hypermedia documents are organised. For example, a hypermedia
repository may consist of documents such as a journal, each structured into several
articles. Hypermedia retrieval requires to determine the best entry in the structure.
To perform such retrievals, the knowledge of an object must beaugmentedwith that
of its structurally related objects [25].

For representing and retrieving knowledge of objects, knowledge about objects
such that the structure of objects is taken into account, we developed a model for hy-
permedia retrieval based onPOOL, aProbabilistic Object-Oriented four-valued
Logic. POOL combines elements of probability theory, object-oriented modelling,
and four-valued logic into one framework that meets the requirements of intelligent
hypermedia retrieval.Probability theory captures the intrinsic uncertainty of knowl-
edge and provides an estimation of the probability of relevance for ranking hyper-
media documents [2];object-orientedmodelling makes the the representation of
hypermedia documents adaptable to many application areas and its integration into
database system technology possible [1]; andfour-valued logiccaptures incomplete
and inconsistent knowledge necessary for representing knowledge augmented from
contradictory and unknown knowledge sources [26].

The outline of this paper is as follows. Section 2 describes the concept ofcom-
plex objects, which allows us to consider the different views associatedwith hy-
permedia documents. Section 3 presents in detail therepresentationof hypermedia
documents in POOL. Particular attention is paid to the modelling of content, fact
and structure. Section 4 describes how queries are expressed in POOL. Section 5
concentrates on the concept of knowledge augmentation. Section 6 demonstrates
the applicability of POOL in a hypermedia environment. We conclude in Section 7.

2 Complex objects

We consider hypermedia documents as objects with a content,facts and a structure.
We refer to these objects ascomplex objectssince they contain knowledge and they
are composed of objects. Figure 1 shows an example of a complex object. The tree
reflects the aggregated structure of the complex object. Thethick lines mean that
object doc1 consists of object sec1 and object sec2. Object sec1 is further structured
into object tab1 and object pic1. Object sec1 is referred to as thesupercontextwith
respect to tab1 and pic1, whereas tab1 and pic1 are referred to assubcontextswith
respect to sec1. The dashed lines connect objects to the classes they belong to. For
example, object doc1 is a document, objects sec1 and sec2 aresections, object tab1
is a table and object pic1 is a picture. The ellipses indicateattributes that characterise
objects. For example, a document has an author and a title.



Fig. 1. A complex object
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The abstraction level of complex objects provides a uniformframework for rep-
resenting hypermedia documents and lead us to base POOL on the object-oriented
modelling framework, where objects are characterised by their feature values. A
feature corresponds to a method, referred to as attribute, that yields a value with re-
spect to the object. This value can be a reference to another object, thus, an attribute
can define a relationship between two objects. For example, the author of a docu-
ment is a feature of the document object, and the author object is the corresponding
feature value.

Object-oriented modelling has specific features such asaggregationandclassi-
ficationthat are modelled orthogonally to otherattributes. In principle, two special
attributespart of andinstanceof could be used to describe the aggregated structure
of an object and group instances of object types into classes, respectively. These fea-
tures are common to all objects, whereas the other attributes are object-dependent.
The common approach in object-oriented modelling is to use orthogonal modelling
concepts foraggregation, classification, andattributes(see [15,23]), which is also
the approach followed in POOL.

POOL combines the object-oriented modelling with the classical information
retrieval data model (e.g. set or bag of terms), with a probabilistic representation
of uncertainty inherent to IR. The object-oriented nature of POOL was motivated
by F-Logic [16], which combines object-oriented principles with logical rules. The
semantics of POOL is based on the semantic structure of modallogics [14]. This
allows for a context-dependent interpretation of knowledge augmentation, which is
necessary for modelling the structure of hypermedia documents. The uncertainty



of knowledge is modelled with a probabilistic-extended semantics [9]. Retrieval
functions are implemented as inference processes based on the logical approach
to IR [30,31,8,27,7,22], which computes the probability that a document implies a
query. Finally, the evaluation of POOL is based on a translation of POOL to the
probabilistic relational algebra (PRA) described in [13].

3 Representing complex objects

This section describes the representation of complex objects with POOL. First, we
describe the modelling of document views in hypermedia documents (Section 3.1),
then inheritance with respect to aggregation, classes and attributes (Section 3.2). We
continue with the modelling of semantic knowledge in thesauri and heterogeneous
information sources (Section 3.3). We finish with the representation of inconsis-
tent and incomplete knowledge (Section 3.4), and the representation of uncertainty
(Section 3.5).

3.1 Document views

In hypermedia document retrieval, we distinguish different views on documents (see
[20,12,6]): content, logical and layout views. In POOL, thecontent of an object is
described by true propositions where a proposition is a term, a classification, or
an attribute value assignment. Term propositions correspond to the classical IR ap-
proach for representing content. Object-oriented modelling concepts, such as classi-
fication, attributes and aggregation, are used for representing the logical and layout
view. We describe through examples how these three views aremodelled in POOL.
The full syntax of POOL is given in Appendix A.

We use terms, classifications, and attribute values to represent thecontent view
of an object. Consider the following example:

doc1[ sailing % term
sailor(peter) % classification
giulia.brother(francesco) ] % attribute value

The term clause states that the word “sailing” is contained in document doc1. The
classification clause expresses that the object peter belongs to the class sailor (pe-
ter is a sailor). The attribute clause expresses a relationship between two objects:
francesco is the brother of giulia. These propositions are defined within thecontext
of object doc1.

We use aggregation, classification, and attribute values for representing thelog-
ical view(the logical structure) of an object. Consider the following example:

doc1[ title1[] sec1[] ] % aggregation
section(sec1) % classification
sec1.version(1.0) % attribute value



The first clauseopensthe context of object doc1: the structure of doc1 is reflected.
Object doc1 consists of two objects: title1 and sec1. When performing hypermedia
retrieval, the knowledge in doc1 must beaugmentedwith that of objects title1 and
sec1. That is, we are not just concerned with determining whether doc1 is relevant
to a query, but whether theaugmented context, denoted doc1(title1,sec1) is relevant
to the query. We want to capture the logical structure of complex objects for rank-
ing them according to their estimated relevance. Knowledgeaugmentation, a key
concept of POOL, is discussed in detail in Section 5.

We can use an attribute for representing the logical structure. For example,
D.section(S) expresses that S is a section of D. Such a modelling makes explicit that
the knowledge about “which sections belong to which objects” is general knowledge
about the collection, which can then be queried.

In the above example, object sec1 is a section which has a version attribute
whose value is 1.0. Here, we model the classification and attribute knowledge about
the object sec1 outside the context of doc1, i. e. the knowledge is available at global
level, not in the context of doc1. This approach allows us to distinguish knowledge
about the classification and attributes of components of objects from the content
knowledge of an object.

POOL makes it possible to distinguish between a component and an attribute
value of an object. For example, the title of a document can beboth an attribute and a
component. It is an attribute in the sense that it characterises a document. It is a com-
ponent in the sense that it is a part of the document. A similarconsideration holds
for the author of a document and the author specification in a document. Often, it is
not reasonable to consider such a component as a retrievabledocument part on its
own. As attribute, we would store the title as the text string“doc1.title(“sailing”)”. In
term-based IR, this difference between attributes and content is often not made ex-
plicit. For example, the author specification is treated as content and the information
whether the document is writtenbyor aboutthe author is lost in the representation.

An example to model thelayout viewof a hypermedia document in POOL is the
following:

page1[figure1[]]
page(page1)
page1.textfraction(0.1)

Similarly to the logical view, the object page1 contains theobject figure1. The text
fraction of object page1 is 0.1.

These first three views, content, logical, and layout view, were identified in [12].
With regard to hypermedia document retrieval, we consider three additional views:
the hypermedia view, the spatial view and the temporal view.Thehypermedia view
relates to the fact that hypermedia documents can be connected via links, e.g. a
bibliographic reference, a web anchor. The relationship “doc1.link(doc2)” expresses
that document doc1 is linked to document doc2. In this representation “link” is an
attribute, not an object. Another modelling alternative isto consider links as objects:



link1.source(doc1)
link1.destination(doc2)
bibref(link1)
link1[ anchor_from[] anchor_to[] text[] ]

Here, link1 is an object with a source and a destination, is classified as a biblio-
graphic reference, and consists of two anchors (from and to)and a text entity. A third
modelling alternative is to apply the aggregation construct doc1[doc2[]]. However,
the aggregation construct means that doc2 is a part of doc1, implying a tree struc-
ture between doc1 and doc2, not a graph, the latter being usually the case in the
hypermedia view.

The spatial viewis important in image retrieval, where we want to consider
spatial relationships between image parts and connect image parts to “real” world
objects. Consider the following example:

image1[ p1[] p2[] ]
p1.includes(p2)
p1.isa(cage) p2.represents(tweety)
polygon(p1) p1.point(100,200) p1.point(200,200)

The image image1 includes the parts p1 and p2, where part p1 isa cage and p2
represents tweety. The “include” attribute defines a spatial relationship between the
image parts, the “isa” attribute defines a relationship between an image part and a
concept (class) of the real world, and the “represents” attribute defines a relationship
between an image part and an object of the real world. We can also describe image
parts. Here, part p1 is a polygon with several points.

The temporal viewof documents composed of data streams such as speech and
video is modelled with rules (the syntax of rules is given in Appendix A). Consider
the following example:

video1[ p1[] p2[] ]
p1.before(p2)
X.before(Z) :- X.before(Y) & Y.before(Z)

Here the “before” attribute describe that part p1 is shown before part p2. The rule
defines the transitive closure over the attribute “before”,specifying all parts that are
before all others in a stream video for instance.

3.2 Inheritance

Inheritanceis a key concept in object-oriented modelling expressing generalisation
and specification. Hypermedia retrieval requires two typesof inheritance, which are
expressed with rules in POOL. The first type of inheritance iswith respect to the
object classes and their attributes: objects can be groupedinto classes and attribute
values. Consider the following example:

document(D) :- picture(D)
D.publisher(springer-verlag) :- fqas_paper(D)



The first rule expresses that every picture is a document. Thesecond rule specifies
the publisher of all “fqas” papers.

The second type of inheritance is with respect to the aggregation: a subcontext
can inherit attribute values from its supercontext and viceversa. Consider the fol-
lowing example of a rule which implements a downward propagation of the author
attribute:

S.author(A) :- D[S[]] & section(S) & D.author(A)

It expresses that object A is an author of object S if S is part of D, S is a section, and
A is author of D. Upward propagation is expressed via the following rule:

D.author(A) :- D[S[]] & section(S) & S.author(A)

The rule models that object A is an author of object D if S is part of D, S is a section,
and A is author of S. In the two examples, the expression D[S[]] reflects the logical
structure of the hypermedia document.

3.3 Semantic knowledge

The intelligent retrieval of hypermedia documents must capture the fact that dif-
ferent concepts (e.g. terms) may be semantically related. This is why thesauri are
often used for instance to perform query expansion (a query construction process
that aims at bridging the gap between the query terms and the terms used to index
documents [2]). Consider the following example:

D[transport] :- D[bus & train & plane] & document(D)
D[politician(X)] :- D[president(X)] & document(D)

The first rule states that the proposition “transport” is true in a document D if the
propositions “bus”, “train”, and “plane” are true in D. The second rule expresses
that the object X is classified as “politician” if it is classified as “president”. These
rules apply within the boundaries of a context represented by “D[ � � �]”. A rule such
as “politician(X) :- president(X)” corresponds to the general knowledge that every
president is a politician.

A hypermedia document may be composed of document components from het-
erogeneous information sources. These document components may be in different
databases, each with their own schemata, written in different languages, annotated
using different ontologies. The retrieval of such documents requires that objects,
names, attributes from different sources are mapped onto each other. For instance
the rule “D.autor(A) :- D.author(A)” maps English to Germanattribute names. Such
mapping is a crucial issue for the Semantic Web integration,where domain knowl-
edges are represented by different ontologies, which then need to be mapped onto
each other to allow for knowledge exchange.



3.4 Inconsistency and incompleteness

POOL provides the possibility of specifying four truth values: true, false, incon-
sistent, andunknown[26]. The truth valueunknownallows for an independent as-
signment of true and false values to propositions. Instead of using a closed-world
assumption, which would assume a term to be false in a contextif it is not assigned,
we can useunknownas additional truth value totrue and false. This open-world
assumption is more reasonable in IR, since the assignment ofterms is by nature in-
complete and it would be not appropriate to assume false for all terms not assigned
explicitly. The truth valueinconsistentallows for combining contradictory knowl-
edge of subcontexts. Although some propositions may becomeinconsistent as the
result of the augmentation, we can do reasonable inference among the consistent
propositions.

3.5 Uncertainty

A major concern in IR is the incorporation of the intrinsic uncertainty of knowledge.
POOL addresses two dimensions of uncertainty: (1) uncertainty of the content rep-
resentation and (2) uncertainty that a supercontext accesses its subcontexts. The
uncertainty of the content representation is expressed through probability values
assigned to the four truth valuestrue, false, inconsistent, andunknownof a propo-
sition. These are represented in a weight list in front of theproposition, where the
different values are separated by “/”.

sailing % 1.0/0.0/0.0/0.0 sailing
0.9 boats % 0.9/0.0/0.0/0.1 boats
0.4/0.3 peter % 0.4/0.3/0.0/0.3 peter
0.4/0.3/0.2 paul % 0.4/0.3/0.2/0.1 paul

where probabilities fortrue, false, inconsistentandunknownsum up to 1. A missing
weight is interpreted as the probability of

�
�

�
for the truth valuetrue (e. g. sailing).

If probabilities fortrue (e. g. 0.9 boats),true andfalse(e. g. 0.4/0.3 peter), ortrue
and false and inconsistent(e. g. 0.4/0.3/0.2 paul) are explicitly defined, then the
remainder to

�
�

�
is assumed to be the probability ofunknown.

The uncertain access reflects the influence of a subcontext onthe knowledge of
an augmented context. Consider the following example:

d1[ 0.9 s1[ 0.8 sailing ]
0.7 s2[ 0.6 sailing ] ]

The weight
�

�� is interpreted as the probability that s1 determines the knowledge
(content) of d1’s augmented context d1(s1,s2).

4 Querying complex objects

In the previous section, we described the representation ofcomplex objects. The
present section concentrates on the novel query facilitieswe gain from this repre-



sentation. A detailed description of the querying facilities can be found in [17] and
[28], and the full syntax of queries is given in Appendix A.

4.1 Content-oriented Querying

Content-orientedquerying refers to thecontentof documents. For example, a query
on videos about sailing boats is a content-oriented query. We distinguish three types
of content-oriented queries: terms, classifications, and attributes, each of which are
illustrated in the example below.

?- D[sailing]
?- D[sailor(peter)]
?- D[peter.friend(mary)]

The first query searches for all documents D which are about sailing, i. e. the term
proposition “sailing” is true in document D. The second query searches for all docu-
ments D, in which peter is a sailor, i. e. the classification proposition “sailor(peter)”
is true in document D. The third query searches for all documents D, in which peter
is a friend of mary, i. e. the attribute proposition “peter.friend(mary)” is true in doc-
ument D. In contrast to classical purely term-oriented approaches for representing
content, we can ask for classification and attribute knowledge on objects.

Content-oriented retrieval also takes takes into account the logical structure of
complex objects. Consider the following object d that consists of two sections s1
and s2:

d[ s1[sailing boats]
s2[ocean boats] ]

The query “?-D[sailing]” retrieves both s1 and d. Context s1is retrieved, since sail-
ing describes the content of s1, whereas context d is retrieved, since the augmented
content knowledge of d contains the “sailing” proposition.Consider now the query
“?- D[ocean & sailing]”. The conjunction “ocean & sailing” is true in the augmented
context d(s1,s2). This is because “ocean” is true in d(s1,s2), since it is true in s2, and
“sailing” is true in d(s1,s2), since it is true in s1. No leaf context on its own satisfies
the query, only the augmented context d(s1,s2) satisfies thequery.

When the representation is uncertain, the retrieved objects become ranked ac-
cording to how well they satisfy a query. Consider the following example:

d[ 0.5 s1[ 0.8 sailing ]
0.5 s2[ 0.6 sailing ] ]

The query “?-D[sailing]” retrieves three contexts:

0.8 s1
0.6 s2
0.58 d(s1,s2)



The subcontexts are retrieved with the probabilities of sailing. The augmented con-
text d(s1,s2) is retrieved with a probability of

�
��� which is the summation of three

probabilities: the probability that sailing is true if bothsubcontexts are accessed
(
�

�� � � �� � �� �� � � �� � �
�� � � �

� � �
�� � � �

�� 	 �
��
) plus the probability that sailing

is true if only s1 is accessed (
�

�� � � �� � � �� 	 �
��) plus the probability that sailing

is true if only s2 is accessed (
�

�� � � �� � � �� 	 �
�

��) (see Section 5 and [25] for the
semantics of the probability computation).

With hypermedia data, a special form of content-based querying requires at-
tention: queries that refer torelationshipsbetween objects. For instance, in image
retrieval, particular attention must be paid to spatial relationships. To formulate a
query on spatial relationships, predicate logic is used. Consider the following for-
mulation of the query:

?- D[X.isa(femme) & Y.isa(homme) & X.right_of(Y)]

The formal notation expresses that the user is seeking all documents D in which an
object X exists that is a “femme” (French for woman), and in which an object Y ex-
ists that is an “homme” (French for man), and in which X is right of Y. Formulating
the above query expression directly is a task for expert users. Figure 2 corresponds
to a graphical user interface that supports “semi-expert” users in formulating such a
query. We can display the possible attributes (all possibleattributes are listed in the
window above the logical formulation) and we automaticallyadd a corresponding
entry into the specification of the query.

Fig. 2. Content-based query with relationships [17]



4.2 Factual Querying

Fact-basedquerying refers to thefactsabout documents. For example, a query like
who was the last captain of the sailing ship Cutty Sark is a fact-based query. A fac-
tual query searches for all documents that belong to a specific class or have specific
attribute values. In the following example, the first query searches for all document
images, whereas the second query searches for all documentsof author peter.

?- image(D)
?- D.author(peter)

In content-oriented querying, we are looking for formulae true in documents;
in factual querying, we are looking for formulae true in the database (i.e. over the
collection). In factual querying, the document itself is used as a parameter of a
predicate (i. e. a class or an attribute predicate). We queryamong the knowledge
about the collection.

We can directly ask for facts known in documents instead of performing first a
content-oriented search and extracting the facts afterwards. Consider the following
program:

doc1[sailor(peter)]
?- sailor(X)

The database contains object doc1. The factual query is searching for all sailors. The
answer “peter” will be returned if the knowledge about the collection is augmented
by the knowledge contained in doc1. The knowledge augmentation is not only with
respect to terms, but also with respect to classification andattributes.

4.3 Vague Querying

It is important to allow for vague attribute values for fact-based querying. A typi-
cal example is the specification of author names. Often, it isnecessary to consider
different spellings of a name. For example, “maier”, “mayer”, “meier” are three
possible spelling of the same German name. Assume a predicate “soundexcode”
that associates a code with a name (m600 is the soundexcode for the above three
names). We can define a predicate soundex as follows:

X.soundex(Y) :- X.soundex_code(Code) & Y.soundex_code(Code)

The pairs (X,Y) are objects that are associated with the samesoundex code. We call
“soundexcode” a vague predicate since it selects a group of objects for one attribute
value. We use the predicate soundex for formulating the vague query that searches
for all documents of authors that have a name sounding like maier.

?- D.author(X) & X.soundex(maier)



Fig. 3. Fact query and vague predicate [17]

Vague predicates are predicates that select a set of objects. This selection is an
uncertain process (see [25] for how this uncertainty is represented). Figure 3 shows
an example of a fact-based query and a vague predicate. Relevant documents should
be those written from 1994 by authors whose name sounds like “perlis”.

Factual queries and vague predicates play a crucial role in hypermedia retrieval.
Non-text objects such as images and video have attribute values (also called fea-
tures) such as colour, contour, size, and length, upon whichmost “content-based”
image retrieval approaches are based (e.g., the QBIC system[10]). We can deduce
or extend the content description of images from their attribute values. For exam-
ple, a typical news clip lasts about 30 seconds, and a typicallandscape picture has
a certain distribution of colours, contours, and textures.With vague predicates, we
can represent similar objects. For example, p1.colour(p2)means that two pictures
are similar in colour distribution.

5 Knowledge Augmentation

Knowledge augmentation is a key concept of POOL. It allows taking into account
the logical structure of hypermedia documents for estimating the relevance of docu-
ment parts. Let a document d1 be composed of two objects, s1 and s2. The relevance
of s1 and s2 is estimated on their respective knowledge (i.e.term, classification and
attribute propositions true within their context). The relevance of the supercontext
d1 is based on the knowledge in d1 itself and the knowledge contained in its subcon-
texts s1 and s2, i.e. the knowledge in the augmented context d1(s1,s2). The knowl-



edge of an augmented context is defined as the combination of the knowledge of the
supercontext and its subcontexts.

For a appropriate combination regarding inconsistent and incomplete knowl-
edge, POOL has four truth valuestrue, false, inconsistentandunknown(see Section
3.4). Consider the following example:

d1[ s1[ peter.friend(mary) ]
s2[ not peter.friend(mary) sailor(peter) ] ]

Subcontext s1 knows that peter is a friend of mary; subcontext s2 states the op-
posite. The example makes evident that the combination of the subcontexts s1 and
s2 leads to inconsistent knowledge regarding the proposition “peter.friend(mary)”,
since we have evidence for true from s1 and false from s2. In the augmented context
d1(s1,s2), “peter.friend(mary)” is inconsistent. In s1, no truth value for the propo-
sition “sailor(peter)” is specified; the knowledge is incomplete. In the augmented
context d1(s1,s2), the proposition “sailor(peter)” is true since the proposition is un-
known in s1 and true in s2.

For uncertain content as well as uncertain access, considerthe following exam-
ple:

d1[ 0.9 s1[ 0.8 sailing ]
0.7 s2[ 0.6 sailing ] ]

We want to derive the probability that the proposition “sailing” is true within the
augmented context d1(s1,s2). We consider an augmented context as a set of possi-
ble worlds [3], where a world represents a possible aggregation of the augmented
context.

Figure 4 shows a graphical illustration of the augmentationof d1. The two cir-
cles represent the subcontexts s1 and s2; they divide the context d1 into four parts: a
part where both subcontexts are considered (the intersection), a part where only s1 is
considered (left part of the left circle), a part where only s2 is considered (right part
of the right circle), and a part where no subcontext is considered (outside the cir-
cles). Each part can be seen as a set of possible worlds where aworld represents the
supercontext augmented with either both subcontexts, one,or no subcontext. The
two dashed lines divide each circle in the parts corresponding to the truth values
of the propositions. The parts are sets of possible worlds, in which the correspond-
ing truth value of a proposition holds. Above the dashed lines, we find the worlds
where sailing is true, and below the dashed lines we find the worlds where sailing is
unknown. The truth values are shown above the context names.

The probability of a truth value of a proposition is defined asthe sum over
the probabilities of the possible worlds, where the proposition has the truth value
(see [24]). For example, consider nine possible worlds� � �

� � �

� � � in Table 1, one
world for each part depicted in Figure 4. The truth value assignment follows the
open-world assumption; i.e., in Figure 4 the proposition “sailing” is unknownin the
worlds where it is nottrue. In the worlds� � �

� � �

� � � both s1 and s2 are considered;
the worlds of both subcontexts are reached by the supercontext d. In worlds�� and



Fig. 4. Knowledge augmentation: context d1(s1,s2) [25]
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0.9*0.3*0.8

� � , only s1 is considered. The same holds for s2 with respect to worlds� � and� � .
In world �� , no subcontext is considered (denoted d1()). From world� �, d1 reaches
the worlds in which s1 and s2 assign the truth valuetrue to the proposition sailing.
From world� � , d1 reaches the worlds in which s1 assignstrue and s2 assignsun-
known. Similarly for � � and�� . From worlds�� and� � , d reaches worlds where
the worlds where sailing istrue. Similarly for� � and� � andunknown. From world
�� , no world of a subcontext is accessed. In each world, d1 contributesunknownto
the augmented truth value. Table 1 shows the truth values of the supercontexts (we
omit the truth valueunknownassociated with d1). By considering truth values as the
setstrue=

���
, false=

�� �
, inconsistent=

�� � � �
andunknown=

��
, the union of the

truth values defines the truth value within the augmented context d1(s1,s2).
We sum over the probabilities of the worlds, where sailing has a specific truth

value. Thus, we obtain:

d1(s1,s2)[ 0.8376/0/0/0.1624 sailing ]

Within the augmented context d1(s1,s2), sailing is true with a probability of
�

��
��,
and sailing is unknown with a probability of

�
�

����. The probability distribution
over the worlds used in this example is based on two independence assumptions:
subcontexts affect independently the knowledge of an augmented context; and truth
values of propositions in different contexts are independent events [25].

Consider now the following example:

d1[ 0.9 s1[ 0.8/0.2 sailing ]
0.7 s2[ 0.6/0.4 sailing ] ]



Table 1. Knowledge augmentation: open-world assumption

World Probability Truth value of sailing

� � � �� � � �� � � �� � � �� true = true � true
� � � �� � � �� � � �� � � �	 true = true � unknown
� � � �� � � �� � � �
 � � �� true = unknown� true
�� � �� � � �� � � �
 � � �	 unknown=unknown�unknown
� � � �� � � �
 � � �� true
�� � �� � � �
 � � �
 unknown
� � � �� � � �� � � �� true
�� � �� � � �� � � �	 unknown
�� � �� � � �
 unknown

We have evidence for true and false, which leads to an inconsistency in d1(s1,s2).
Consider the set of possible worlds of Table 2.

Table 2. Knowledge augmentation: negative knowledge

World Probability Truth value of sailing

� � � �� � � �� � � �� � � �� true = true � true
� � � �� � � �� � � �� � � �	 inconsistent= true � false
� � � �� � � �� � � �
 � � �� inconsistent= false� true
�� � �� � � �� � � �
 � � �	 false= false� false
� � � �� � � �
 � � �� true
�� � �� � � �
 � � �
 false
� � � �� � � �� � � �� true
�� � �� � � �� � � �	 false
�� � �� � � �
 unknown

The worlds� � and� � assign now the truth valueinconsistentto the proposition
sailing. We therefore obtain:

d1(s1,s2)[ 0.5604/0.1324/0.2772/0.03 sailing ]

Knowledge augmentation is also used to determine the knowledge associated
with virtual contexts. Virtual contexts are aggregated contexts that contain only se-
lected subcontexts. They allow for searching the smallest contexts where a query
formula holds. Consider the following example:

d1[ s1[ 1/0 sailing ]
s2[ 0/1 sailing ]
s3[ 1/0 boats ] ]



Supercontext d1 consists of the three subcontexts s1, s2, and s3. The virtual aug-
mented context d1(s1,s3) contains only the subcontexts s1 and s3. It is “virtual”
because in the original structure, d1 is composed of s1, s2 and s3. For the virtual
context d1(s1,s3), we obtain “d1(s1,s3)[ sailing & boats ]”. The conjunction “sail-
ing & boats” is true in the virtual context d1(s1,s3). In the virtual context d1(s1,s3),
“sailing” is true, because s1 gives evidence for true and s3 gives evidence for un-
known. In the real context d1(s1,s2,s3), “sailing” is inconsistent, because s1 gives
evidence for true and s2 gives evidence for false. Thus, a query for “sailing” would
not retrieve d1(s1,s2,s3), but could retrieve d1(s1,s3).

A virtual context is an augmented context. The probabilities of facts in an aug-
mented context such as d1(s1,s2) consider four possible aggregations of d1(s1,s2):
d1(s1 and s2), d1(s1 and not s2), d1(s2 and not s1), d1(). If the augmented context
is virtual, a selection of some subcontexts is first performed, then the concept of
knowledge augmentation is applied.

6 A hypermedia Collection

To demonstrate the use POOL in a hypermedia environment, we built a hypermedia
collection consisting of text, images, and videos. This demonstration shows the uni-
form manipulation of the representations of documents thatvary in their media type,
structure and available indexing information. The prototype demonstration system
works with the following collections:

IRIS: A collection of 1200 colour pictures in TIFF format. This collection has
been built for developing automatic semantical indexing methods (see [5]). The
indexing algorithm is trained for landscape pictures and the collection contains
typical landscape as well as other pictures.

PARIS: A collection of 650 black and white pictures in GIF format. The purpose
of this collection is the evaluation of retrieval models that enable a richer query
formulation than just keywords. The images of the collection show motives of
Paris in the early years of the 20th century. In particular, the logical structure of
the images and relationships between objects are represented in the document
index, which has been created manually.

WDR: A collection of 200 Video news clips of the German TV broadcast station
WDR. This collection has been set up for working with a rich semantical index
where the events and persons occurring in the news are identified. Events and
persons are classified and attribute values are specified.

We translated the indexing information into POOL. Figure 5 shows some retrieved
documents for the following query:

retrieve(D) :- D[hiver]
retrieve(D) :- D[prinz]
retrieve(D) :- D[snow]
retrieve(D) :- D[X.right_of(Y) & femme(X) & homme(Y)]



We search for all documents that are about “hiver” (French for winter), or are about
a prince (in German!), or about snow (in English), or show a woman right of a man
(partly French!).

Fig. 5. The hypermedia result [17]

The window in the upper left corner summarises the query formulation of the
content description, the factual description, and global query parameters such as
open-world or closed-world assumption. In the query formulation, the context name
“Search-Obj” reflects the objects searched for. Within the context of the object, each
line contains a conjunction that has to be true in the retrieved objects. In the lower
left corner, a video with Prince Charles is played. We see winter pictures, pictures
of snow, and pictures with women right of men. The centre of the pictures shows
the query construction window.

The query formulation contains English, French, and Germanpredicates. The
IRIS collection is indexed in English, Paris in French, and WDR in German. We
incorporate rules such as the following for mapping the languages:

D[prince] :- D[prinz]
D[woman(X)] :- D[femme(X)]



The rules assure that we retrieve documents of each collection independently of the
language used for the predicates in the actual query formulation.

The WDR collection contains structured objects. Up to 11 video clips form the
augmented context of a day. The clips are indexed separately. Querying for a news
event yields video clips and days as objects in the retrievalresult. If a news is re-
ported in several clips, then the day object that contain theclips can be ranked higher
in the result list than the single clips. Starting from a day object, the user can browse
the clips broadcasted during that day. Figure 6 shows the retrieved clips. The result
attributes “TITEL”, “DAUER”, etc. are listed for each video.

Fig. 6. Video result [28]

The application of POOL with the described collection show the expressiveness
of POOL for representing and retrieving hypermedia documents.

7 Conclusion

This paper describes a model for the representation and retrieval of hyppermedia
documents. The model is based on POOL, a Probabilsistic Object-oriented Four-
valued Logic. POOL supports the representation of hypermedia objects with respect
to their content, aggregation, classification, attributes, thus allowing for content-
based querying and fact-based querying, as well as taking into account the structure
of hypermedia objects for providing a relevance-based ranking of hypermedia doc-
uments.
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A Syntax of POOL

program ::= clause� clause ’;’ program
clause ::= fact� context� query � rule
fact ::= proposition� NOT proposition� prob-list proposition
proposition ::= term� classification� relationship
term ::= NAME �STRING
classification ::= NAME ’(’ constant ’)’
relationship ::= NAME ’.’ NAME ’(’ constant ’)’
constant ::= NAME�STRING �NUMBER
prob-list ::= prob� prob ’/’ prob
prob ::= NUMBER
context ::= NAME ’[’ program ’]’ �NAME ’[’ ’]’ �

prob NAME ’[’ program ’]’ � prob NAME ’[’ ’]’
query ::= ’?-’ subgoal-list
subgoal-list ::= subgoal� subgoal ’&’ subgoal-list
subgoal ::= fact-subgoal� context-subgoal
fact-subgoal ::= atom�NOT atom
atom ::= term�

NAME ’(’ parameter ’)’ �
NAME ’.’ NAME ’(’ parameter ’)’ �
VAR ’.’ NAME ’(’ parameter ’)’
COND ’(’ parameter ’,’ parameter ’)’

context-subgoal ::= VAR ’[’ subgoal-list ’]’�VAR ’[’ ’]’
parameter ::= VAR� constant
rule ::= goal ’:-’ subgoal-list
goal ::= fact-goal� context-goal
fact-goal ::= atom�NOT atom
context-goal ::= VAR ’[’ fact-goal ’]’
NAME ::= [a-z][a-zA-Z0-9 ]*
STRING ::= ’”’.*’”’
NUMBER ::= [0-9]+(�.[0-9]*)?
VAR ::= [A-Z][a-zA-Z0-9 ]*
NOT ::= ’not’ � ’NOT’
COND ::= ’=’ � ’==’ � ’!=’ � ’��’ � ’ �	

’ � ’ �	
’ � ’�’ � ’�’ � ’=� ’ � ’! � ’


