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1 Introduction

For nearly a decade, an exponentially growing amount otmleic multimedia in-
formation has become widely available, e.g. on CD-ROM, anltiternet and in
digital libraries. Information retrieval (IR) [29] aims farovide effective and effi-
cient methods of representing, managing, retrieving asglaying such informa-
tion. Increasingly typical for electronic documents isithHeypermediacharacter:
(1) they are composed of objects of various media (e.g.itesige); (2) they can be
classified into groups (e.g. in an image object peter is ifledsa sailor); (3) they
may be organised into a logical structure (e.g. a chapteitasdctions) or a seman-
tic structure (e.g. objects created by the same authorsndedltogether); and (4)
relationships may exist between objects (e.g., spatiatemgboral relationships in
images and videos, respectively). Hypermedia retriewplires sophisticated docu-
ment representations and querying facilities [4] that gmipe the purely text-based
(term-based) representation and querying of classical IR.

The need for a conceptual model for representing and ré@tgevypermedia
documents has been pointed out by many (e.g. [11,18,19})inStance, [21,6]
propose new IR models specifically designed for hypermestigeral. All aim at
obtaining a flexible conceptual data model that is generaligh to capture the
needs for any digitally available data in hypermedia docuiseas well as support-
ing end-users in their information seeking activities. @eeed consensus is that
such a model must provide faontent-basedjuerying,fact-basedquerying and
consider thestructureof documents. Content-based querying refers to the content



of objects. For example, a query on videos about sailingshisad content-based
query. Fact-based querying refers to the facts about abjEor example, a query
like who was the last captain of the sailing ship Cutty Sark fact-based query.
Content of objects can be viewed lasowledge of (contained in) objectshereas
facts about objects can be viewedlamwledge about objecf&5]. The structure
refers to the way hypermedia documents are organised. Bon@e, a hypermedia
repository may consist of documents such as a journal, éaettigred into several
articles. Hypermedia retrieval requires to determine thgt pntry in the structure.
To perform such retrievals, the knowledge of an object mastigmentedvith that
of its structurally related objects [25].

For representing and retrieving knowledge of objects, Kedge about objects
such that the structure of objects is taken into account,aveldped a model for hy-
permedia retrieval based ®OOL, aProbabilistic Object-Oriented four-valued
Logic. POOL combines elements of probability theory, objeceoiéd modelling,
and four-valued logic into one framework that meets the irequents of intelligent
hypermedia retrievaProbability theory captures the intrinsic uncertainty of knowl-
edge and provides an estimation of the probability of raleeafor ranking hyper-
media documents [2]pbject-orientedmodelling makes the the representation of
hypermedia documents adaptable to many application anehbissaintegration into
database system technology possible [1]; fua-valued logiacaptures incomplete
and inconsistent knowledge necessary for representingliedge augmented from
contradictory and unknown knowledge sources [26].

The outline of this paper is as follows. Section 2 describesconcept otom-
plex objectswhich allows us to consider the different views associatét hy-
permedia documents. Section 3 presents in detaildhesentatiorof hypermedia
documents in POOL. Particular attention is paid to the nmlodgbf content, fact
and structure. Section 4 describes how queries are exgras§#OL. Section 5
concentrates on the concept of knowledge augmentatiotioS8e& demonstrates
the applicability of POOL in a hypermedia environment. Wadade in Section 7.

2 Complex objects

We consider hypermedia documents as objects with a cofféetg,and a structure.
We refer to these objects asmplex objectsince they contain knowledge and they
are composed of objects. Figure 1 shows an example of a cerobject. The tree
reflects the aggregated structure of the complex object.tfiibk lines mean that
object doc1 consists of object secl and object sec2. Olgettis further structured
into object tab1 and object picl. Object secl is referredgstthasupercontextvith
respect to tabl and picl, whereas tabl and picl are referasbstibcontextsvith
respect to secl. The dashed lines connect objects to theesldsey belong to. For
example, object docl is a document, objects secl and ses2datiens, object tabl
is a table and object picl is a picture. The ellipses indiatitéutes that characterise
objects. For example, a document has an author and a title.



Fig. 1. A complex object
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The abstraction level of complex objects provides a uniffsamework for rep-
resenting hypermedia documents and lead us to base POOle abjict-oriented
modelling framework, where objects are characterised byr feature valuesA
feature corresponds to a method, referred to as attrithaeyields a value with re-
spect to the object. This value can be a reference to andbfestothus, an attribute
can define a relationship between two objects. For exantpeatithor of a docu-
ment is a feature of the document object, and the author bisjéte corresponding
feature value.

Object-oriented modelling has specific features sudgggegationandclassi-
ficationthat are modelled orthogonally to othegttributes In principle, two special
attributespart_of andinstanceof could be used to describe the aggregated structure
of an object and group instances of object types into classggectively. These fea-
tures are common to all objects, whereas the other attstare object-dependent.
The common approach in object-oriented modelling is to udegonal modelling
concepts foraggregation classification andattributes(see [15,23]), which is also
the approach followed in POOL.

POOL combines the object-oriented modelling with the étdsnformation
retrieval data model (e.g. set or bag of terms), with a priistib representation
of uncertainty inherent to IR. The object-oriented natr®©OL was motivated
by F-Logic [16], which combines object-oriented princpleith logical rules. The
semantics of POOL is based on the semantic structure of nhogiak [14]. This
allows for a context-dependent interpretation of knowkedggmentation, which is
necessary for modelling the structure of hypermedia docuwsnd he uncertainty



of knowledge is modelled with a probabilistic-extended astits [9]. Retrieval
functions are implemented as inference processes basdukdodical approach
to IR [30,31,8,27,7,22], which computes the probabilitstth document implies a
query. Finally, the evaluation of POOL is based on a traimslabf POOL to the
probabilistic relational algebra (PRA) described in [13].

3 Representing complex objects

This section describes the representation of complex tshyeith POOL. First, we
describe the modelling of document views in hypermedia damts (Section 3.1),
then inheritance with respect to aggregation, classesttitaliées (Section 3.2). We
continue with the modelling of semantic knowledge in thesand heterogeneous
information sources (Section 3.3). We finish with the repngation of inconsis-
tent and incomplete knowledge (Section 3.4), and the reptation of uncertainty
(Section 3.5).

3.1 Document views

In hypermedia document retrieval, we distinguish différgéews on documents (see
[20,12,6]): content, logical and layout views. In POOL, ttantent of an object is
described by true propositions where a proposition is a tarmlassification, or
an attribute value assignment. Term propositions cormes$pmthe classical IR ap-
proach for representing content. Object-oriented matgtioncepts, such as classi-
fication, attributes and aggregation, are used for reptieggtie logical and layout
view. We describe through examples how these three viewsadelled in POOL.
The full syntax of POOL is given in Appendix A.

We use terms, classifications, and attribute values to septehecontent view
of an object. Consider the following example:

docl[ sailing % term
sai | or (peter) % cl assification
giulia.brother(francesco) | % attribute val ue

The term clause states that the word “sailing” is contaimedidcument docl. The
classification clause expresses that the object peter diekorthe class sailor (pe-
ter is a sailor). The attribute clause expresses a reldtipritween two objects:
francesco is the brother of giulia. These propositions afsdd within thecontext
of object doc1.

We use aggregation, classification, and attribute valueeforesenting thiog-
ical view(the logical structure) of an object. Consider the follogvdxample:

docl[ titlel[] secl[] ] % aggregation
section(secl) % cl assification
secl.version(1.0) % attribute val ue



The first claus®@pensthe context of object docl: the structure of docl is reflected
Object docl consists of two objects: titlel and secl. Whefopring hypermedia
retrieval, the knowledge in doc1l must Begmentedvith that of objects titlel and
secl. That is, we are not just concerned with determininghéredocl is relevant
to a query, but whether treugmented contextienoted docl(titlel,secl) is relevant
to the query. We want to capture the logical structure of dempbjects for rank-
ing them according to their estimated relevance. Knowlelggmentation, a key
concept of POOL, is discussed in detail in Section 5.

We can use an attribute for representing the logical stractior example,
D.section(S) expresses that S is a section of D. Such a ntuglaibkes explicit that
the knowledge about “which sections belong to which objastgeneral knowledge
about the collection, which can then be queried.

In the above example, object secl is a section which has #@wmeasiribute
whose value is 1.0. Here, we model the classification anidbatiér knowledge about
the object secl outside the context of docl, i. e. the knaydéslavailable at global
level, not in the context of docl. This approach allows usistirtjuish knowledge
about the classification and attributes of components oéaibjfrom the content
knowledge of an object.

POOL makes it possible to distinguish between a componehtanattribute
value of an object. For example, the title of a document caoiiean attribute and a
component. Itis an attribute in the sense that it charagea document. Itis a com-
ponent in the sense that it is a part of the document. A simdasideration holds
for the author of a document and the author specification iocaichent. Often, it is
not reasonable to consider such a component as a retriedadlenent part on its
own. As attribute, we would store the title as the text stfohar1.title(“sailing”)”. In
term-based IR, this difference between attributes andetdiig often not made ex-
plicit. For example, the author specification is treatedaagent and the information
whether the document is writtdsy or aboutthe author is lost in the representation.

An example to model thiayout viewof a hypermedia document in POOL is the
following:

pagel[figurell[]]

page(pagel)
pagel.textfraction(0.1)

Similarly to the logical view, the object pagel contains dhgect figurel. The text
fraction of object pagelis 0.1.

These first three views, content, logical, and layout viearendentified in [12].
With regard to hypermedia document retrieval, we consicieret additional views:
the hypermedia view, the spatial view and the temporal vidve hypermedia view
relates to the fact that hypermedia documents can be cathed links, e.g. a
bibliographic reference, a web anchor. The relationshgeldlink(doc2)” expresses
that document doc1 is linked to document doc2. In this repradion “link” is an
attribute, not an object. Another modelling alternativioisonsider links as objects:



i nk1. source(docl)

I'inkl. destination(doc2)

bi bref (i nk1)

linkl[ anchor _froni] anchor _to[] text[] ]

Here, linkl1 is an object with a source and a destination,assified as a biblio-
graphic reference, and consists of two anchors (from arahit i text entity. A third
modelling alternative is to apply the aggregation constdoc1[doc2[]]. However,
the aggregation construct means that doc2 is a part of dogilying a tree struc-
ture between docl and doc2, not a graph, the latter beindlyi¢hia case in the
hypermedia view.
The spatial viewis important in image retrieval, where we want to consider

spatial relationships between image parts and connecteipags to “real” world
objects. Consider the following example:

imagel[ pl[] p2[] ]

pl.incl udes(p2)

pl.isa(cage) p2.represents(tweety)

pol ygon(pl) pl.point(100,200) pl.point(200,200)

The image imagel includes the parts pl and p2, where part aktage and p2
represents tweety. The “include” attribute defines a spegiationship between the
image parts, the “isa” attribute defines a relationship ketwan image part and a
concept (class) of the real world, and the “representshatie defines a relationship
between an image part and an object of the real world. We candalscribe image
parts. Here, part pl is a polygon with several points.

Thetemporal viewof documents composed of data streams such as speech and
video is modelled with rules (the syntax of rules is given jpp&ndix A). Consider
the following example:

videol[ pl[] p2[] ]
pl. before(p2)
X. before(z) :- X before(Y) & Y.before(2)

Here the “before” attribute describe that part p1 is showioteepart p2. The rule
defines the transitive closure over the attribute “befogpgcifying all parts that are
before all others in a stream video for instance.

3.2 Inheritance

Inheritanceis a key concept in object-oriented modelling expressimgegaisation
and specification. Hypermedia retrieval requires two tygfésheritance, which are
expressed with rules in POOL. The first type of inheritanceith respect to the
object classes and their attributes: objects can be gronpedlasses and attribute
values. Consider the following example:

docunent (D) :- picture(D)
D. publ i sher (springer-verlag) :- fgas_paper (D)



The first rule expresses that every picture is a documents&bend rule specifies
the publisher of all “fqas” papers.

The second type of inheritance is with respect to the agtjrega subcontext
can inherit attribute values from its supercontext and vieesa. Consider the fol-
lowing example of a rule which implements a downward progiagaf the author
attribute:

S.author(A) :- D[S[]] & section(S) & D.author(A)

It expresses that object A is an author of object S if S is pfdDt, & is a section, and
Ais author of D. Upward propagation is expressed via the¥alhg rule:

D.author(A) :- D9[]] & section(S) & S. author(A)

The rule models that object A is an author of object D if S i p&D, S is a section,
and A is author of S. In the two examples, the expression Df8flects the logical
structure of the hypermedia document.

3.3 Semantic knowledge

The intelligent retrieval of hypermedia documents musttweagpthe fact that dif-
ferent concepts (e.g. terms) may be semantically relateis. i$ why thesauri are
often used for instance to perform query expansion (a quemngteuction process
that aims at bridging the gap between the query terms anctthestused to index
documents [2]). Consider the following example:

Ditransport] :- Dlbus & train & plane] & docunent (D)
Dl politician(X)] :- D[president(X)] & docunent (D)

The first rule states that the proposition “transport” it a document D if the
propositions “bus”, “train”, and “plane” are true in D. Thec®nd rule expresses
that the object X is classified as “politician” if it is clafied as “president”. These
rules apply within the boundaries of a context represenyeb. . .]”. A rule such
as “politician(X) :- president(X)” corresponds to the gead&knowledge that every
president is a politician.

A hypermedia document may be composed of document compofrent het-
erogeneous information sources. These document comomayt be in different
databases, each with their own schemata, written in diftdeanguages, annotated
using different ontologies. The retrieval of such docursaefuires that objects,
names, attributes from different sources are mapped oo @her. For instance
the rule “D.autor(A) :- D.author(A)” maps English to Germetitribute names. Such
mapping is a crucial issue for the Semantic Web integratidtrgre domain knowl-
edges are represented by different ontologies, which tkeed to be mapped onto
each other to allow for knowledge exchange.



3.4 Inconsistency and incompleteness

POOL provides the possibility of specifying four truth vafatrue, falsg incon-
sistent andunknown[26]. The truth valuainknownallows for an independent as-
signment of true and false values to propositions. Instéacsing a closed-world
assumption, which would assume a term to be false in a coififeig not assigned,
we can usainknownas additional truth value torue andfalse This open-world
assumption is more reasonable in IR, since the assignméetro$ is by nature in-
complete and it would be not appropriate to assume falsdlfterens not assigned
explicitly. The truth valuanconsistentallows for combining contradictory knowl-
edge of subcontexts. Although some propositions may bedoocoasistent as the
result of the augmentation, we can do reasonable inferemocs@ the consistent
propositions.

3.5 Uncertainty

A major concernin IR is the incorporation of the intrinsiccentainty of knowledge.
POOL addresses two dimensions of uncertainty: (1) unceytaf the content rep-
resentation and (2) uncertainty that a supercontext agsdts subcontexts. The
uncertainty of the content representation is expresseazligfir probability values
assigned to the four truth valuésie, false inconsistentandunknownof a propo-
sition. These are represented in a weight list in front ofgheposition, where the
different values are separated by “/”.

sailing % 1.0/0.0/0.0/0.0 sailing
0.9 boats % 0.9/0.0/0.0/0.1 boats
0.4/0.3 peter % 0.4/0.3/0.0/0. 3 peter
0.4/0.3/0.2 paul % 0.4/0.3/0.2/0.1 paul

where probabilities fotrue, falsg inconsistenandunknowrsum up to 1. A missing
weight is interpreted as the probability b for the truth valudrue (e. g. sailing).
If probabilities fortrue (e. g. 0.9 boats}rue andfalse(e. g. 0.4/0.3 peter), drue
andfalse andinconsistent(e. g. 0.4/0.3/0.2 paul) are explicitly defined, then the
remainder tal.0 is assumed to be the probability fiknown

The uncertain access reflects the influence of a subcontekedmowledge of
an augmented context. Consider the following example:

dl] 0.9 s1[ 0.8 sailing ]
0.7 s2[ 0.6 sailing ] ]

The weight0.9 is interpreted as the probability that s1 determines theMeuige
(content) of d1's augmented context d1(s1,s2).

4 Querying complex objects

In the previous section, we described the representatiaomiplex objects. The
present section concentrates on the novel query facilitegain from this repre-



sentation. A detailed description of the querying fa@htcan be found in [17] and
[28], and the full syntax of queries is given in Appendix A.

4.1 Content-oriented Querying

Content-orientedjuerying refers to theontentof documents. For example, a query
on videos about sailing boats is a content-oriented quegydidtinguish three types
of content-oriented queries: terms, classifications, dinihates, each of which are
illustrated in the example below.

?- Dl sailing]
?- D[ sailor(peter)]
?- Dpeter.friend(mary)]

The first query searches for all documents D which are abdlingad. e. the term
proposition “sailing” is true in document D. The second querarches for all docu-
ments D, in which peter is a sailor, i. e. the classificatioopsition “sailor(peter)”
is true in document D. The third query searches for all doats®, in which peter
is a friend of mary, i. e. the attribute proposition “peteefid(mary)”is true in doc-
ument D. In contrast to classical purely term-oriented apphes for representing
content, we can ask for classification and attribute knogdesh objects.

Content-oriented retrieval also takes takes into accdwntdgical structure of
complex objects. Consider the following object d that cstssof two sections s1
and s2:

d[ sl[sailing boats]
s2[ ocean boats] ]

The query “?-DJ[sailing]” retrieves both s1 and d. Contexisstietrieved, since sail-
ing describes the content of s1, whereas context d is rettiesince the augmented
content knowledge of d contains the “sailing” propositi@oensider now the query
“?- D[ocean & sailing]”. The conjunction “ocean & sailings true in the augmented
contextd(s1,s2). This is because “ocean” is true in d(31sgfe it is true in s2, and
“sailing” is true in d(s1,s2), since itis true in s1. No leahtext on its own satisfies
the query, only the augmented context d(s1,s2) satisfieguibey.

When the representation is uncertain, the retrieved abjgetome ranked ac-
cording to how well they satisfy a query. Consider the follogvexample:

dl 0.5 s1[ 0.8 sailing ]
0.5 s2[ 0.6 sailing ] ]

The query “?-D[sailing]” retrieves three contexts:

0.8 s1
0.6 s2
0.58 d(s1,s?2)



The subcontexts are retrieved with the probabilities dfregi The augmented con-
text d(s1,s2) is retrieved with a probability @58 which is the summation of three
probabilities: the probability that sailing is true if botlubcontexts are accessed
(0.5-0.5-(0.8-0.6+0.8-0.4 4+ 0.2-0.4) = 0.23) plus the probability that sailing
is true if only s1 is accesse@.f - 0.8 - 0.5 = 0.2) plus the probability that sailing
is true if only s2 is accesse@.p - 0.6 - 0.5 = 0.15) (see Section 5 and [25] for the
semantics of the probability computation).

With hypermedia data, a special form of content-based gugmequires at-
tention: queries that refer t@lationshipsbetween objects. For instance, in image
retrieval, particular attention must be paid to spatiahtiehships. To formulate a
query on spatial relationships, predicate logic is usedsiter the following for-
mulation of the query:

D X.isa(feme) & Y.isa(homre) & X right_of (Y)]

The formal notation expresses that the user is seeking ellrdents D in which an
object X exists that is a “femme” (French for woman), and irickkan object Y ex-
ists that is an “homme” (French for man), and in which X is tighY. Formulating
the above query expression directly is a task for expertsugégure 2 corresponds
to a graphical user interface that supports “semi-expes¢tsiin formulating such a
query. We can display the possible attributes (all possititébutes are listed in the
window above the logical formulation) and we automaticaltid a corresponding
entry into the specification of the query.

?-

Fig. 2. Content-based query with relationships [17]
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4.2 Factual Querying

Fact-basedjuerying refers to théactsabout documents. For example, a query like
who was the last captain of the sailing ship Cutty Sark is &llased query. A fac-
tual query searches for all documents that belong to a spetifs or have specific
attribute values. In the following example, the first quesgirehes for all document
images, whereas the second query searches for all docuofentshor peter.

?- inmage(D)
?- D. aut hor ( peter)

In content-oriented querying, we are looking for formulagetin documents;
in factual querying, we are looking for formulae true in theabase (i.e. over the
collection). In factual querying, the document itself iedsas a parameter of a
predicate (i. e. a class or an attribute predicate). We gaergng the knowledge
about the collection.

We can directly ask for facts known in documents instead diopming first a
content-oriented search and extracting the facts aftelsv&@onsider the following
program:

docl[sail or(peter)]
?- sailor(X)

The database contains object docl. The factual query istsagrfor all sailors. The
answer “peter” will be returned if the knowledge about théemtion is augmented
by the knowledge contained in docl. The knowledge augmentatnot only with
respect to terms, but also with respect to classificationadinidbutes.

4.3 Vague Querying

It is important to allow for vague attribute values for fdzised querying. A typi-
cal example is the specification of author names. Often,rieisessary to consider
different spellings of a name. For example, “maier”, “mdyémeier” are three
possible spelling of the same German name. Assume a predamindexcode”
that associates a code with a name (m600 is the soucwld for the above three

names). We can define a predicate soundex as follows:
X. soundex(Y) :- X soundex_code(Code) & Y.soundex_code( Code)

The pairs (X,Y) are objects that are associated with the samedex code. We call
“soundexcode” a vague predicate since it selects a group of objectsiattribute
value. We use the predicate soundex for formulating the @agiery that searches
for all documents of authors that have a name sounding likemrma

?- D.author(X) & X soundex(naier)



Fig. 3. Fact query and vague predicate [17]
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Vague predicates are predicates that select a set of abjdissselection is an
uncertain process (see [25] for how this uncertainty isespnted). Figure 3 shows
an example of a fact-based query and a vague predicate gRetbwycuments should
be those written from 1994 by authors whose name soundspiéeis”.

Factual queries and vague predicates play a crucial rolgparimedia retrieval.
Non-text objects such as images and video have attributeesdhlso called fea-
tures) such as colour, contour, size, and length, upon whia$t “content-based”
image retrieval approaches are based (e.g., the QBIC sy&@inWe can deduce
or extend the content description of images from theirlaitg values. For exam-
ple, a typical news clip lasts about 30 seconds, and a tyfaindscape picture has
a certain distribution of colours, contours, and textuvegh vague predicates, we
can represent similar objects. For example, pl.colounfp@gns that two pictures
are similar in colour distribution.

5 Knowledge Augmentation

Knowledge augmentation is a key concept of POOL. It allovkinginto account
the logical structure of hypermedia documents for estinggfie relevance of docu-
ment parts. Let a document d1 be composed of two objectssd2aihe relevance
of s1 and s2 is estimated on their respective knowledgeére, classification and
attribute propositions true within their context). Theesglnce of the supercontext
dlis based on the knowledge in d1 itself and the knowledg&awed in its subcon-
texts s1 and s2, i.e. the knowledge in the augmented contést $2). The knowl-



edge of an augmented context is defined as the combinatibe &fibwledge of the
supercontext and its subcontexts.

For a appropriate combination regarding inconsistent asdmplete knowl-
edge, POOL has four truth valuege, falsg inconsistenandunknown(see Section
3.4). Consider the following example:

di[ si1[ peter.friend(mary) ]
s2[ not peter.friend(nmary) sailor(peter) ] ]

Subcontext s1 knows that peter is a friend of mary; subcors@states the op-
posite. The example makes evident that the combinationeo$tifbcontexts s1 and
s2 leads to inconsistent knowledge regarding the proposipeter.friend(mary)”,
since we have evidence for true from s1 and false from s2 diatlymented context
di(sl,s2), “peter.friend(mary)” is inconsistent. In sa,truth value for the propo-
sition “sailor(peter)” is specified; the knowledge is inqalete. In the augmented
context d1(s1,s2), the proposition “sailor(peter)” isetgince the proposition is un-
known in s1 and true in s2.

For uncertain content as well as uncertain access, cornbieléollowing exam-

ple:

di[ 0.9 s1[ 0.8 sailing ]
0.7 s2[ 0.6 sailing ] ]

We want to derive the probability that the proposition “sgjl is true within the
augmented context d1(s1,s2). We consider an augmentegkt@sta set of possi-
ble worlds [3], where a world represents a possible aggi@yaf the augmented
context.

Figure 4 shows a graphical illustration of the augmentatibdl. The two cir-
cles represent the subcontexts s1 and s2; they divide thextali into four parts: a
part where both subcontexts are considered (the inteos@cti part where only s1is
considered (left part of the left circle), a part where orflysconsidered (right part
of the right circle), and a part where no subcontext is carsid (outside the cir-
cles). Each part can be seen as a set of possible worlds wienddarepresents the
supercontext augmented with either both subcontexts,mneo subcontext. The
two dashed lines divide each circle in the parts correspantti the truth values
of the propositions. The parts are sets of possible wonidahich the correspond-
ing truth value of a proposition holds. Above the dashedslinee find the worlds
where sailing is true, and below the dashed lines we find thiglwavhere sailing is
unknown. The truth values are shown above the context names.

The probability of a truth value of a proposition is definedtlas sum over
the probabilities of the possible worlds, where the propmsihas the truth value
(see [24]). For example, consider nine possible wodlgs. . . , wg In Table 1, one
world for each part depicted in Figure 4. The truth value grssient follows the
open-world assumption; i.e., in Figure 4 the propositiaalisg” is unknownn the
worlds where it is notrue. In the worldsw, .. . ,w4 both s1 and s2 are considered;
the worlds of both subcontexts are reached by the supesdahti worldsws; and



Fig. 4. Knowledge augmentation: context d1(s1,s2) [25]
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wg, only sl is considered. The same holds for s2 with respecbtignw, andws.
In world wg, Nno subcontextis considered (denoted d1()). From worldd1 reaches
the worlds in which s1 and s2 assign the truth vatue to the proposition sailing.
From worldw-, d1 reaches the worlds in which s1 assign® and s2 assignsn-
known Similarly for ws andw,. From worldsws andwy, d reaches worlds where
the worlds where sailing isue. Similarly for wg andwg andunknown From world
wg, No world of a subcontext is accessed. In each world, d1 iboésunknowrto
the augmented truth value. Table 1 shows the truth valudseasupercontexts (we
omit the truth valueinknowrassociated with d1). By considering truth values as the
setstrue= {t}, false= { f}, inconsistent {¢, f} andunknowr {}, the union of the
truth values defines the truth value within the augmentedsstid1(s1,s2).

We sum over the probabilities of the worlds, where sailing Aapecific truth
value. Thus, we obtain:

di(s1,s2)[ 0.8376/0/0/0.1624 sailing ]

Within the augmented context d1(s1,s2), sailing is trué wiprobability 0f0.8376,
and sailing is unknown with a probability ©®1624. The probability distribution
over the worlds used in this example is based on two indeperdassumptions:
subcontexts affect independently the knowledge of an antgdecontext; and truth
values of propositions in different contexts are indepandeents [25].

Consider now the following example:

di[ 0.9 si1[ 0.8/0.2 sailing ]
0.7 s2[ 0.6/0.4 sailing ] ]



Table 1. Knowledge augmentation: open-world assumption

World Probability Truth value of sailing

w1 09-0.7-0.8-0.6 true=trueu true
w2 0.9-0.7-0.8-0.4 true=trueU unknown
w3 0.9-0.7-0.2-0.6 true=unknownJ true

wy 0.9-0.7-0.2-0.4 unknowrrunknownuunknown
ws 09-0.3-0.8 true

We 09-0.3-0.2 unknown

wry 0.7-0.1-0.6 true

ws 0.7-0.1-04 unknown

wg 0.1-0.3 unknown

We have evidence for true and false, which leads to an instamsiy in d1(s1,s2).
Consider the set of possible worlds of Table 2.

Table 2. Knowledge augmentation: negative knowledge

World Probability Truth value of sailing

w1 0.9-0.7-0.8-0.6 true=trueu true

w2 0.9-0.7-0.8-0.4 inconsistent trueU false
w3 0.9-0.7-0.2-0.6 inconsistent falseU true
wa 0.9-0.7-0.2-0.4 false=falseU false

ws 09-0.3-0.8 true

we 09-0.3-0.2 false

wry 0.7-0.1-0.6 true

wg 0.7-0.1-0.4 false

wy 0.1-0.3 unknown

The worldsw, andws assign now the truth valuieconsistento the proposition
sailing. We therefore obtain:

d1(s1,s2)[ 0.5604/0.1324/0.2772/0.03 sailing ]

Knowledge augmentation is also used to determine the kmlgel@ssociated
with virtual contexts Virtual contexts are aggregated contexts that contaip s
lected subcontexts. They allow for searching the smallestexts where a query
formula holds. Consider the following example:

dl] s1[ 1/0 sailing ]
s2[ 0/1 sailing ]
s3[ 1/0 boats ] ]



Supercontext d1 consists of the three subcontexts s1, d%3arThe virtual aug-
mented context d1(s1,s3) contains only the subcontext®id1sa. It is “virtual”
because in the original structure, d1 is composed of s1, dZanFor the virtual
context d1(s1,s3), we obtain “d1(s1,s3)[ sailing & boatsTfie conjunction “sail-
ing & boats” is true in the virtual context d1(s1,s3). In thgwal context d1(s1,s3),
“sailing” is true, because sl gives evidence for true andig&sgevidence for un-
known. In the real context d1(s1,s2,s3), “sailing” is insistent, because sl gives
evidence for true and s2 gives evidence for false. Thus, sydae“sailing” would
not retrieve d1(s1,s2,s3), but could retrieve d1(s1,s3).

A virtual context is an augmented context. The probabditiéfacts in an aug-
mented context such as d1(s1,s2) consider four possiblegatipns of d1(s1,s2):
d1(sl and s2), d1(sl and not s2), d1(s2 and not s1), d1(e Hulgmented context
is virtual, a selection of some subcontexts is first perfatniben the concept of
knowledge augmentation is applied.

6 A hypermedia Collection

To demonstrate the use POOL in a hypermedia environmentyitathypermedia
collection consisting of text, images, and videos. This destration shows the uni-
form manipulation of the representations of documentsutigtin their media type,
structure and available indexing information. The propetglemonstration system
works with the following collections:

IRIS: A collection of 1200 colour pictures in TIFF format. This altion has
been built for developing automatic semantical indexinghods (see [5]). The
indexing algorithm is trained for landscape pictures amddabllection contains
typical landscape as well as other pictures.

PARIS: A collection of 650 black and white pictures in GIF format.eThurpose
of this collection is the evaluation of retrieval modelstteaable a richer query
formulation than just keywords. The images of the colletgbhow motives of
Paris in the early years of the 20th century. In particuke,logical structure of
the images and relationships between objects are repeesgnthe document
index, which has been created manually.

WDR: A collection of 200 Video news clips of the German TV broadcdation
WDR. This collection has been set up for working with a richnaetical index
where the events and persons occurring in the news arefiddnttvents and
persons are classified and attribute values are specified.

We translated the indexing information into POOL. Figuréhbvgs some retrieved
documents for the following query:

retrieve(D) :- D[ hiver]
retrieve(D) :- D[prinz]
retrieve(D) :- D[snhow]

retrieve(D) D X.right_of(Y) & ferme(X) & homme(Y)]



We search for all documents that are about “hiver” (Frenchvater), or are about
a prince (in German!), or about snow (in English), or show anao right of a man
(partly French!).

Fig. 5. The hypermedia result [17]
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The window in the upper left corner summarises the query @daitron of the
content description, the factual description, and glohedry parameters such as
open-world or closed-world assumption. In the query fortioh, the context name
“Search-Obj" reflects the objects searched for. Within thretext of the object, each
line contains a conjunction that has to be true in the reddesbjects. In the lower
left corner, a video with Prince Charles is played. We sedexipictures, pictures
of snow, and pictures with women right of men. The centre efjlctures shows
the query construction window.

The query formulation contains English, French, and Gerpradicates. The
IRIS collection is indexed in English, Paris in French, an®R/in German. We
incorporate rules such as the following for mapping the leggs:

D prince] :- D[prinz]
Dl worman(X)] :- D[ femre(X)]



The rules assure that we retrieve documents of each colfeictiependently of the
language used for the predicates in the actual query fotionla

The WDR collection contains structured objects. Up to 1%widlips form the
augmented context of a day. The clips are indexed separ@erying for a news
event yields video clips and days as objects in the retrimallt. If a news is re-
ported in several clips, then the day object that contaiclibe can be ranked higher
in the result list than the single clips. Starting from a dbjeot, the user can browse
the clips broadcasted during that day. Figure 6 shows thieved clips. The result
attributes “TITEL", “DAUER”, etc. are listed for each video

Fig. 6. Video result [28]
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The application of POOL with the described collection shbe/éxpressiveness
of POOL for representing and retrieving hypermedia documen

7 Conclusion

This paper describes a model for the representation andvatof hyppermedia
documents. The model is based on POOL, a Probabilsisticc®bjented Four-

valued Logic. POOL supports the representation of hypeiarmgects with respect
to their content, aggregation, classification, attributbss allowing for content-
based querying and fact-based querying, as well as takiogotount the structure
of hypermedia objects for providing a relevance-basedingnéf hypermedia doc-
uments.
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A Syntax of POOL

program ::= clauséclause ;' program
clause ::= fact context| query| rule
fact ::= propositior] NOT proposition| prob-list proposition
proposition ::= ternj classification relationship
term ::= NAME | STRING
classification  ::= NAME '(’ constant ")’
relationship == NAME ' NAME '(’ constant ")’
constant ::= NAME STRING| NUMBER
prob-list ::= prob| prob /" prob
prob ;= NUMBER
context ;= NAME T program ] | NAME T |
prob NAME [’ program ']’ | prob NAME [ ']’
query ::="?-" subgoal-list
subgoal-list ::= subgodlsubgoal ‘&’ subgoal-list
subgoal ::= fact-subgodkontext-subgoal
fact-subgoal  ::= atorhNOT atom
atom 1= term

NAME ’(’ parameter ')’ |

NAME '’ NAME '(' parameter’)’ |

VAR ' NAME '(’ parameter ')’

COND (' parameter ', parameter’)’
context-subgoal ::= VAR [’ subgoal-list ]| VAR " T

parameter ::= VAR constant

rule ::= goal -’ subgoal-list
goal ::= fact-goa| context-goal
fact-goal ::= aton} NOT atom
context-goal = VAR T fact-goal T
NAME .= [a-z][a-zA-Z0-9]*
STRING = e

NUMBER := [0-9]+(\.[0-9]%)?

VAR = [A-Z][a-zA-Z0-9 ]*
NOT :="not’ | 'NOT’

COND =R I S > <= > < e TS



