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Abstract. Linear discriminant analysis with binary response is considered when
the predictor is a functional random variableX = {Xt, t ∈ [0, T ]}, T ∈ R. Motivated
by a food industry problem, we develop a methodology to anticipate the prediction
by determining the smallest T ∗, T ∗ ≤ T , such that X∗ = {Xt, t ∈ [0, T ∗]} and
X give similar predictions. The adaptive prediction concerns the observation of a
new curve ω on [0, T ∗(ω)] instead of [0, T ] and answers to the question ”How long
should we observe ω (T ∗(ω) =?) for having the same prediction as on [0, T ] ?”. We
answer to this question by defining a conservation measure with respect to the class
the new curve is predicted.

Keywords: functional data, discriminant analysis, classification, adaptive
prediction

1 Introduction

Statistical methods for data represented by curves (or functions) have re-
ceived much interest in the last years. Random variables taking values into
an infinite dimensional function space are called functional random variables
(Ferraty and Vieu (2006)) and methods dealing with such variables define the
functional data analysis (FDA) framework (Ramsay and Silverman (1997)).
Examples of functional data can be found in several application domains such
as medicine (patient evolution over time), economics (stock-exchange data),
chemometrics (spectrometric data) and many others (for an overview, see
Ramsay and Silverman (2002)).

A well accepted model for univariate functional data is to consider it
as paths of a stochastic process X = {Xt}t∈T taking values into a Hilbert
space of real-valued functions defined over some set T . For example, if T =
[0, T ] with T ∈ R+, a second order stochastic process X = {Xt}t∈[0,T ] L2–
continuous with sample paths in L2([0, T ]) can be used as model for describing
the behavior of some quantitative parameter associated to a process observed
on a time interval of length T .
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Suppose that for each curve we have a single response variable Y . If Y is cat-
egorical we have a classification (or discrimination) problem and a regression
one if Y is numerical.

In this paper we assume that Y is a binary response and all trajectories
of X are observed continuously on [0, T ] and belong to L2([0, T ]). The main
purpose of discriminant analysis (supervised classification) is to define a dis-
criminant score Φ(X), Φ : L2([0, T ])→ R, such that the prediction of Y using
Φ(X) is as good as possible.

The linear discriminant analysis for functional data considers that

Φ(X) =
∫ T

0

Xtβ(t)dt, β ∈ L2([0, T ]),

and has been addressed by James and Hastie (2001) and Preda et al. (2007).
This problem is not new and comes back to Fisher (1924) who used the expres-
sion integral regression. It is well known that the estimation of this regression
model by least squares criterion yields to an ill-posed problem. Regularization
techniques such as principal component regression (PCR) and partial least
squares regression (PLS) have been proposed in Preda and Saporta (2005).

An estimating procedure of the functional logistic model is proposed by
Escabias et al. (2004, 2005) with environmental applications. Nonparametric
models have been proposed by Ferraty and Vieu (2003), Biau et al. (2005)
and Preda (2007). More details on nonparametric models for functional data
can be found in the recent monograph of Ferraty and Vieu (2006).

In this paper we are firstly interested to the problem of anticipated predic-
tion : find minimal T ∗, T ∗ < T , such that the predictor X observed on [0, T ∗]
gives ”similar results”’, in terms of prediction of Y , as considered on [0, T ].
By ”similar results” we mean, for example, not significantly different results
with respect to some statistical test. This problem comes naturally from the
following practical example : in Preda et al. (2007) we have developed func-
tional discriminant models to predict the quality of cookies at Danone from
curves representing the resistance of dough observed during the first 8 min-
utes of the kneading process (Lévéder et al. (2004)). The discriminant power
of the linear model is satisfactory with a misclassified rate of about 11.2%.
Then, the interest of reducing the observation time and take decision keeping
the same discriminant power is evident.

Secondly, we address the problem of the prediction of Y from X for a
new observation ω in an adaptive way. Usually, the new curve Xω is observed
on the whole interval [0, T ] and then the prediction is made using the score
Φ(Xω). Provided the existence of a good prediction model of Y from X, in
adaptive prediction we are interested to determine a time T ∗(ω) such that
the prediction of Y from the observation X on [0, T ∗ω)] is similar to the
prediction with X on [0, T ]. In other words, to observe X after T ∗(ω) will no
change the prediction.

The paper is organized as follows. In section 2 we present some basics of
the PLS approach for linear discriminant analysis with functional data. The
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anticipated and adapted prediction are introduced in Section 3. The Section 4
presents the results of the anticipated and adaptive prediction for the quality
of cookies to Danone.

2 Linear discriminant analysis on functional data. The
PLS approach

Let X = {Xt}t∈[0,T ] be a second order stochastic process L2-continuous with
sample paths in L2[0, T ] and Y a binary random variable, Y ∈ {0, 1}. Without
loss of generality we assume also that E(Xt) = 0, ∀t ∈ [0, T ]. As an extension
of the classical multivariate approach, the aim of linear discriminant analysis
(LDA) for functional data is to find linear combinations Φ(X) =

∫ T
0
Xtβ(t)dt,

β ∈ L2([0, T ]) such that the between class variance is maximized with respect
to the total variance, i.e.

max
β∈L2[0,T ]

V(E(Φ(X)|Y ))
V(Φ(X))

. (1)

Let {(xi, yi)}i=1,...,n be n observations of random variables (X,Y ) with
xi = {xi(t), t ∈ [0, T ]} and yi ∈ {0, 1}, i = 1, . . . , n. Due to infinite dimension
of the predictor, the estimation of β is in general an ill–posed problem. In
Preda and Saporta (2005) it is shown that the optimization problem (13)
is equivalent to find the regression coefficients in the linear model which
predicts Y (after a convenient encoding) by the stochastic process X under
the least-squares criterion.

Without loss of generality, let us recode Y by : 0 
√

p1
p0

and 1 −
√

p0
p1

,

where p0 = P(Y = 0) and p1 = P(Y = 1). If β is a solution of (1) then β
satisfies the Wiener-Hopf equation

E(Y Xt) =
∫ T

0

E(XtXs)β(s)ds, (2)

which is the equation giving, up to a constant, the regression coefficient func-
tion of the linear regression of Y on X = {Xt}t∈[0,T ]. Equation (14) has an
unique solution under conditions of convergence of series implying the eigen-
values and eigenvectors of the covariance operator of the process X (Saporta
(1981)). These conditions are rarely satisfied. Thus, in practice, the problem
to find β is generally an ill-posed problem. However, if the aim is to find
the discriminant variable (scores), then one can use the above relationship
between LDA and linear regression.

Using this result, there are several ways to approximate the discriminant
score Φ(X). Thus, Φ(X) can be approximate using the linear regression on
the principal components of X. The choice of principal components used for
regression is not easy and should be a trade off between the quality of the
model and the quality of the representation ofX. The PLS approach proposed
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in Preda and Saporta (2005) is an efficient alternative and provides generally
better results. It allows to approximate Φ(X) by ΦPLS(X) =

∫ T
0
βPLS(t)Xtdt

and thus, to compute for a new observation the discriminant score for further
prediction.

2.1 The PLS approximation

The PLS regression is an iterative method. Let X0,t = Xt, ∀t ∈ [0, 1] and Y0 =
Y . At step q, q ≥ 1, of the PLS regression of Y on X, we define the qth PLS
component, tq, by the eigenvector associated to the largest eigenvalue of the
operator WX

q−1W
Y
q−1, where WX

q−1, respectively WY
q−1, are the Escoufier’s

operators (Saporta (1981)) associated to X, respectively to Yq−1. The PLS
step is completed by the ordinary linear regression of Xq−1,t and Yq−1 on
tq. Let Xq,t, t ∈ [0, 1] and Yq be the random variables which represent the
residual of these regressions : Xq,t = Xq−1,t − pq(t)tq and Yq = Yq−1 − cqtq.
Then, for each q ≥ 1, {tq}q≥1 forms an orthogonal system in L2(X) and the
PLS approximation of Y by {Xt}t∈[0,T ] at step q, q ≥ 1, is given by :

ŶPLS(q) = c1t1 + · · ·+ cqtq =
∫ T

0

β̂PLS(q)(t)Xtdt. (3)

In practice, the number of PLS components used for regression is determined
by cross-validation.

2.2 Quality criterion. The ROC curve

Let denote by dT = ΦPLS(X) =
∫ T

0
βPLS(t)Xtdt the approximation for

the discriminant score given by the PLS regression on the process X =
{Xt}t∈[0,T ]. There are several criteria to evaluate the quality of the discrim-
inant model, for example the error rate for a defined threshold, the squared

correlation ration η2(dT |Y ) =
V(E(dT |Y ))

V(dT )
, the ROC curve, etc.

For a binary target Y , the ROC curve is generally accepted as the best
measure of the discriminating power of a discriminant score.

Let dT (x) be the score value for some unit x. Given a threshold r, x is
classified into Y = 1 if dT (x) > r. The true positive rate or ”sensitivity”
is P (dT > r|Y = 1) and the false positive rate or 1 − ”specificity”, P (dT >
r|Y = 0). The ROC curve gives the true positive rate as a function of the false
positive rate and is invariant under any monotonic increasing transformation
of the score. In the case of an inefficient score, both conditional distributions
of dT given Y = 1 and Y = 0 are identical and the ROC curve is the diagonal
line. In case of perfect discrimination, the ROC curve is confounded with the
edges of the unit square.

The Area Under ROC Curve or AUC, is then a global measure of dis-
crimination. It can be easily proved that AUC = P (X1 > X0), where X1 is
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a random variable distributed as d when Y = 1 and X0 is independently dis-
tributed as d for Y = 0. Taking all pairs of observations, one in each group,
AUC is thus estimated by the percentage of concordant pairs (Wilcoxon-
Mann-Whitney statistic).

3 Anticipated and adaptive prediction

3.1 Anticipated prediction

Let denote by dt the approximation for the discriminant score given by PLS
regression on the process X considered on the interval time [0, t], with t ≤ T .
The objective here is to find T ∗ < T such that the discriminant function dT∗
performs quite as well as dT .

The stochastic process {dt}t∈[0,T ] is such that :

• dt = Y − εt, where Y is recoded by 0 
√

p1
p0

and 1 −
√

p0
p1

. E(dt) = 0.

• E(εt, ds) = 0, ∀s ≤ t,
• E(dtds) = E(dsY ) =

√
p0p1(E(ds|Y = 0)− E(ds|Y = 1)), ∀s ≤ t.

Once a quality measure Qs is defined, a solution could be to define T ∗

as the smallest value of s such that Qs is not significantly different from
QT . Since Qs and QT are dependent random variables, we will use a non
parametric paired comparison test.

We will use in the following the AUC criterion for defining the quality of
the discriminant model.

Since the distribution of AUC is not known, we will test the equality
of AUC(s) with AUC(T), by using booststrap methodology: we resample M
times the data, according to a stratified scheme in order to keep invariant the
number of observations of each group. Let AUCm(s) and AUCm(T ) be the
resampled values of AUC for m = 1 to M , and δm their difference. Testing
if AUC(s) = AUC(T ) is performed by using a paired t-test, or a Wilcoxon
paired test, on the M values δm.

3.2 Adaptive prediction

Let Ω = {ω1, . . . , ωn}, n ≥ 1, be a training sample and {(x1, y1), . . . , (xn, yn)}
be the observation of (X,Y ) on Ω, X being considered on [0, T ]. Let also
suppose that one has a good discriminant score dT for the prediction of Y by
{X}t∈[0,T ] with respect to some criterion (misclassified rate, AUC, R2, etc).

Let now consider a new data ω.
By adaptive prediction for ω we understand to find the smallest time

T ∗ = T ∗(ω) such that the prediction of Y (ω) on [0, T ∗] is similar to that
on [0, T ]. Let observe that T ∗ is here a random variable, whereas in the
anticipated approach T ∗ is a constant.
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Let h be the step of a convenient discretisation of [0, T ] and suppose
that for ω the process X is observed until the time t, t < T . It is clear
that the decision to continue the observation X(ω) at t + h or to stop it
(T ∗ = t) depends on the similarity of X(ω) with x1, . . . , xn with respect to
the prediction of Y . We define this similarity at the time t in the following
way :

Let dt be a discriminant score for Y using only the observation inter-
val [0, t] and denote by Ŷt(ω) and Ŷt,i, i = 1, . . . , n the predictions for ω,
respectively Ω, with respect to dt.

Denote by

Ωω(t) = {ωi ∈ Ω|Ŷt(ω) = Ŷt,i} and Ωω(t) = Ω −Ωω(t)

the class of elements having the same prediction as ω, respectively its com-
plement with respect to Ω.

Let

p0|Ωω(t) =

∣∣∣{ω′ ∈ Ω|ŶT (ω′) = 0} ∩Ωω(t)}
∣∣∣

|Ωω(t)|
(4)

be the observed rate of elements in Ωω(t) predicted in the class Y = 0 at
the time T. Similarly, let p1|Ωω(t), p0|Ωω(t)and p1|Ωω(t). Obviously,

p0|Ωω(t) + p1|Ωω(t) = 1 and p0|Ωω(t) + p1|Ωω(t) = 1.

Let define CΩω(t) = max{p0|Ωω(t), p1|Ωω(t)} and CΩω(t) = max{p0|Ωω(t), p1|Ωω(t)}
the conservation rate of prediction group at the time t with respect to the
time T for the elements of Ωω(t), respectively of Ωω(t). As a global measure
of conservation we consider

CΩ(ω, t) = min{CΩω(t), CΩω(t)}. (5)

For each t ∈ [0, T ], CΩ(ω, t) is such that 0.5 ≤ CΩ(ω, t) ≤ 1 and CΩ(ω, T ) = 1.
Given a confidence conservation threshold γ ∈ (0, 1), e.g. γ = 0.90, we

define the following rule :
Adaptive prediction rule for ω and t :

(1) if CΩ(ω, t) ≥ γ then the observation of X for ω on the time interval
[0, t] is sufficient for the prediction of Y (ω). Ŷ (ω) is then the same as the
prediction at time T of the subgroup of Ωω(t) corresponding to CΩω(t).

(2) if CΩ(ω, t) < γ then the observation process of X for ω should continue
after t. Put t = t+ h and repeat the adaptive prediction procedure.

Then, T ∗(ω) is the smallest t such that the condition (1) of the adaptive
prediction rule is satisfied.

An important role in the proposed adaptive prediction methodology is
the observation of the discriminant score process dt, t ≥ 0 for the new data
ω. We propose two approaches to define dt(ω).
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(M1) by completion : Use a functional regression model with functional re-
sponse as in Preda and Saporta (2005) or Lian (2007) and predict X(ω)
on [t, T ]. Then, by completion one obtains a trajectory X(ω) on [0, T ] for
which the score dT (ω) provides a prediction for Y . Put dt(ω) = dT (ω).

(M2) sequential : Construct the discriminant score dt progressively for each
time t and predict Y using dt.

The first approach uses two regression models : one for the completion
step, which is sequently performed for each t, and a second one for discrimina-
tion. The discrimination model concerns the training sample Ω for which X
is considered on the whole interval [0, T ]. The second approach, M2, involves
the estimation of several discriminant models, one for each considered time
t. However, our intuition is that the error associated to M1 is greater than
that given by M2 since the first approach cumulates errors from both models.
Moreover, even for t close to T , the prediction error given by the regression
model used in the completion step of the trajectories in the training sam-
ple (PRESS) could be important and thus misleading for the discrimination
step. For these reasons, we used the sequential approach in our application
on kneading data.

4 Application

We use the anticipated approach for kneading data from Danone. The qual-
ity (Y ) of cookies produced by a set of 90 flours for which one knows the
dough resistance (X) during the first 480 seconds of the kneading process is
evaluated. One obtains 50 flours yielding to good quality of cookies and 40
to a bad one. Because of large local variation, the curves are smoothed using
cubic B-spline basis. Figure 1 shows the set of the 90 flours before and after
smoothing.

Fig. 1. Good (black) and bad (red) flours. Left : original data. Right : smoothed
data

We use for prediction the smoothed curves that we consider as sample
paths of a stochastic process {Xt}t∈[0,480]. Considering Y ∈ {Bad,Good},
the PLS approach for discrimination of Y from {Xt}t∈[0,480] Preda et al.
(2007) yields to a misclassification rate of about 11.2%. For a signification
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level of 5% and using the AUC criterion, the anticipated approach provides
T ∗ = 186.

Thus, the predictive power of the dough curves for the cookies quality
is resumed by the first 186 seconds of the kneading process. In the next
paragraph we extend the anticipated prediction methodology by adapting
the optimal time T ∗ to each new trajectory given its incoming measurements,
in that sense that observation of the trajectory after the time T ∗ does not
change the prediction of Y .

Adaptive prediction 25 new flours have been tested for adaptive prediction.
These flours were classified by Danone as being of quality ”adjustable”, some-
where between ”good” and ”bad”. 12 of these flours are predicted by the PLS
discriminant analysis using the interval time [0, 480] into the ”good” class.
Using as training sample Ω the set of the 90 flours considered in the antici-
pated prediction approach, we perform for each one the adaptive prediction
starting from t = 100.

Fig. 2. Left : new flour ω. Right : CΩ(ω, t), t ∈ [100, 480], γ = 0.90.

In Figure 3 (left), we present one of these flours (ω) which was observed
on the whole interval [0, 480]. The conservation rate evolution CΩ(ω, t) is
presented in Figure 3 (right) t ∈ [100, 480]. For a conservation rate threshold
γ = 0.90, the adaptive prediction rule provides T ∗(ω) = 220 and predicts ω
in the ”good” class of flours.

The empirical cumulative distribution function of T ∗ obtained with the
25 flours is presented in Figure 4. Notice that there are 5 time points which
are earlier than the optimal time for anticipated prediction (T ∗ = 186). 10
flours are predicted in the ”good” class.

5 Conclusions

In this paper we addressed the problem of the prediction of a binary re-
sponse Y using as predictor data of functional type represented by paths
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Fig. 3. Empirical cumulative distribution function of T ∗ (in red, the time point
t=186).

of a continuous–time stochastic process {Xt}t∈[0,T ]. We faced the problem
by means of the PLS approach for which forecasting the binary response is
drawn as ’anticipated prediction’ from the process {Xt}t∈[0,T∗] with T ∗ < T .
Under the hypothesis of existence of an acceptable prediction model, we in-
vestigated the possibility of reducing the length of the observation period
without loss of the quality prediction. We provided methodologies for an-
ticipated and adaptive prediction for preserving the global quality model as
well as the quality prediction of individual curves. An example is provided
on kneading data from Danone.
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