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Abstract. Consider the regression model Y = m(X)+σ(X)ε, where m = E[Y |X]
and σ2(X) = V ar[Y |X] are unknown smooth functions and the error ε (with un-
known distribution) is independent of X. The pair (X,Y ) is subject to parametric
selection bias and the response to right censoring. We construct a new estimator for
the cumulative distribution function of the error ε, and develop a bootstrap tech-
nique to select the smoothing parameter involved in the procedure. The estimator
is studied via extended simulations and applied to real unemployment data.

Keywords: Nonparametric regression, selection bias, right censoring, boot-
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1 Introduction and model

Let (X,Y ) be a bivariate random vector, where Y is the unemployment
duration of an individual and X is, for example, his age when he lost his
job. The objective is to study the relation between Y and X. In Figure 1, an
example of a scatter plot with these two variables is displayed. It comes from
the Spanish Institute for Statistics and is completely described in Section 4.
Unfortunately, this kind of data set suffers from some ’incompleteness’ (due
to sampling), as explained hereunder.

Indeed, (X,Y ) is supposed to be obtained from cross-sectional sampling
meaning that only individuals whose unemployment duration is in progress
at a fixed sampling time are observed and followed. As a result, a bias ap-
pears due to the length of Y : conditionally on X, longer durations have a
larger probability to be observed. Moreover, we assume that durations of the
followed individuals are possibly right-censored; for example, this may hap-
pen if an individual stops the follow-up or if the follow-up itself comes to an
end.
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Fig. 1. Scatter plot of unemployment data

In this context, the following general nonparametric regression model can
be assumed in most applications:

Y = m(X) + σ(X)ε, (1)

where m(X) = E[Y |X] and σ2(X) = V ar[Y |X] are unknown smooth func-
tions and ε (with zero mean, unit variance and distribution Fε) is independent
of X. This enables to define the error ε and estimate its distribution Fε(·).
Indeed, such an estimator can be very useful in the sense that it is naturally
related to the commonly used graphical procedures based on visual exami-
nation of the residuals (see Atkinson 1985). Furthermore, a complete set of
testing procedures can be based on this estimated distribution (e.g. tests for
the model (1), goodness-of-fit tests for Fε(·), m(·) and σ(·) . . .).

As explained above, the incompleteness of the data is characterized by two
phenomena: cross-sectional sampling and right censoring. We can therefore
model them by using the following variables.

1. T, the truncation variable (duration between the time point when the
individual loses his job and the sampling time) assumed to be here inde-
pendent of Y conditionally on X (usual assumption when truncated data
are present): T is observed if Y ≥ T.

2. C, the censoring variable making Y (larger or equal to T ) observable only
if Y ≤ C. (Y, T ) is assumed to be independent of C −T, conditionally on
T ≤ Y and X (assumption needed to construct conditional distribution
estimators with censored data).

Here, FT |X(y|x) = P (T ≤ y|x) is assumed to be a parametric function.
This assumption is satisfied by classical length-biased data but also by other
types of selection biases where the process that counts individuals who lose
their job can be considered as parametric. By construction, we also impose
that the support of FY |X(y|x) = P (Y ≤ y|x) is included into the support
of FT |X(y|x) and that the lower bound of the support of FT |X(y|x) is zero.
Defining Z = min(C − T, Y − T ) and ∆ = I(Y ≤ C), we therefore obtain
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a sample {(X1, T1, Z1, ∆1), . . . , (Xn, Tn, Zn, ∆n)} of independent copies of
(X,T, Z,∆) with the same distribution as (X,T, Z,∆) conditionally on Y ≥
T. Special cases of these data have been widely studied in the literature (see,
e.g., de Uña-Alvarez and Iglesias-Perez (2008) for a literature overview).

The paper is organized as follows. In the next section, we describe the
estimation procedure in detail. σ(x) are obtained Section 3 presents the re-
sults of a simulation study while Section 4 is devoted the analysis of the
unemployment data introduced hereabove.

2 Description of the method

To address the problem introduced in Section 1, we first propose to write

HX,Y (x, y) = P(X ≤ x, Y ≤ y|T ≤ Y ≤ C),

the observed joint distribution of (X,Y ), as

HX,Y (x, y) =
P(X ≤ x, Y ≤ y, T ≤ Y ≤ C)

P(T ≤ Y ≤ C)
.

We can show that

P(X ≤ x, Y ≤ y, T ≤ Y ≤ C) =∫
r≤x

∫
s≤y

∫
u≤s

(1− G(s− u|r)) dFT |X(u|r)dFY |X(s|r)dFX(r)

and that

P(T ≤ Y ≤ C) =
∫∫ ∫

u≤y
(1− G(y − u|x)) dFT |X(u|x)dFY |X(y|x)dFX(x),

where G(z|x) = P(C − T ≤ z|X = x, T ≤ Y ). That leads to

HX,Y (x, y) = (E[w(X,Y )])−1
∫
r≤x

∫
s≤y

w(r, s)dFX,Y (r, s), (2)

where the weight function is defined by

w(x, y) =
∫
t≤y

(1− G(y − t|x)) dFT |X(t|x). (3)

In particular, a similar expression can be obtained for a constant follow-up τ ,
i.e. C = T+τ where τ is a positive constant. By applying the same reasoning,
it’s easy to check that the weight w(x, y) can be written as

w(x, y) =
∫ y

0∨y−τ
dFT |X(t|x). (4)



4 Laurent, G. and Heuchenne, C.

Thanks to (2), we have

dFX,Y (x, y) =
E[w(X,Y )]
w(x, y)

dHX,Y (x, y),

leading to

Fε(e) = P
(
Y −m(X)
σ(X)

≤ e
)

=
∫∫
{(x,y): y−m(x)

σ(x) ≤e}

E[w(X,Y )]
w(x, y)

dHX,Y (x, y).

(5)
Next, we estimate the unknown quantities in (5). For G(y − t|x), we use the
Beran (1981) estimator, defined by (in the case of no ties):

Ĝ(y − t|x) = 1−
∏

Zi≤y−t
∆i=0

(
1− Wi(x, hn)∑n

j=1 I{Zj ≥ Zi}Wj(x, hn)

)
,

where

Wi(x, hn) =
K
(
x−Xi
hn

)
∑n
i=1K

(
x−Xi
hn

) ,
K is a kernel function and hn is a bandwidth sequence tending to 0 when
n→∞. We thus obtain for w(x, y)

ŵ(x, y) =
∫
t≤y

(
1− Ĝ(y − t|x)

)
dFT |X(t|x).

For m(·) and σ(·), we use

m̂(x) =

∑n
i=1

Wi(x,hn)Yi∆i
ŵ(x,Yi)∑m

i=1
Wi(x,hn)∆i
ŵ(x,Yi)

, σ̂2(x) =

∑n
i=1

Wi(x,hn)∆i(Yi−m̂(x))2

ŵ(x,Yi)∑n
i=1

Wi(x,hn)∆i
ŵ(x,Yi)

,

obtained by extending the conditional estimation methods introduced in de
Uña-Alvarez and Iglesias-Perez (2008). Consequently, the estimator of the
error distribution is

F̂ε(e) =
1
M

n∑
i=1

Ê[w(X,Y )]
ŵ(Xi, Yi)

I{ε̂i ≤ e,∆i = 1},

where

ε̂i =
Yi − m̂(Xi)
σ̂(Xi)

, M =
n∑
i=1

∆i, Ê[w(X,Y )] =

(
1
M

n∑
i=1

∆i

ŵ(Xi, Yi)

)−1

and ĤX,Y (x, y) is the bivariate empirical distribution based on pairs (Xi, Yi)
verifying Ti ≤ Yi ≤ Ci, i = 1, . . . , n.
Remark 2.1 Under some assumptions, weak convergence of F̂ε can be ob-
tained by extensions of the proofs of de Uña-Alvarez and Iglesias-Perez (2008)
and Ojeda Cabrera and Van Keilegom (2008). For more information about
that, details can be given on request to the authors.
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3 Practical implementation and simulations

3.1 Bandwidth selection procedure

We want to determine the smoothing parameter hn which minimizes

MISE = E[
∫
{F̂ε,hn(e)− Fε(e)}2de]. (6)

Considering asymptotic expansions for (6) will lead to complicated expres-
sions with too many unknown quantities. As a consequence, we develop a
bootstrap procedure. This is an extension of the method of Li and Datta
(2001) to the truncation case.

The bootstrap procedure is explained below.
For b = 1, . . . , B,

1. for i = 1, . . . , n,
Step 1. Generate X∗i,b from the distribution

F̂X(·) =
n∑
j=1

Ê[w(X,Y )]
Ê[w(X,Y )|X = ·]

I{Xj ≤ ·, ∆j = 1}

where Ê[w(X,Y )|X = ·] =

 n∑
j=1

Wj(·, gn)∆j

ŵ(·, Yj)

−1

, and where gn is a

pilot bandwidth asymptotically larger than the original hn.
Step 2. Select at random a Y ∗i,b from the distribution

F̂Y |X(·|X∗i,b) =
n∑
j=1

Ê[w(X,Y )|X = X∗i,b]
ŵ(X∗i,b, Yj)

Wj(X∗i,b, gn)I{Yj ≤ ·, ∆j = 1}.

Step 3. Draw T ∗i,b from the distribution FT |X(.|X∗i,b). If T ∗i,b > Y ∗i,b, then
reject the datum (X∗i,b, Y

∗
i,b, T

∗
i,b) and go to Step 1. Otherwise, go to Step

4.
Step 4. Select at random a (C − T )∗i,b from Ĝ(.|X∗i,b) calculated with gn
and compute C∗i,b = T ∗i,b + (C − T )∗i,b.
Step 5. Define Z∗i,b = min(Y ∗i,b−T ∗i,b, C∗i,b−T ∗i,b) and ∆∗i,b = I{Y ∗i,b ≤ C∗i,b}.

2. Compute F̂ ∗ε,hn,b with the obtained resample {(X∗i,b, T ∗i,b, Z∗i,b, ∆∗i,b) : i =
1, ..., n}

From this, the mean squared of the error distribution can be approximated
by

MISE∗ = B−1
B∑
b=1

∫
{F̂ ∗ε,hn,b(e)− F̂ε,gn(e)}2de.
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Dist. of T Dist. of C − T % Censor. MISE (∗10−3)

T ∼ Unif([0; 4]) C − T ∼ Exp(2/5) 0.37 5.5
T ∼ Unif([0; 4]) C − T ∼ Exp(2/7) 0.28 4.9

T ∼ Unif([0;X + 2]) C − T ∼ Exp(2/7) 0.29 5.0
T ∼ Unif([0;X + 2]) C − T ∼ Exp(2/5) 0.36 5.2
T ∼ 4 ∗ Beta(0.5; 1) C − T ∼ Exp(2/7) 0.34 4.2
T ∼ 4 ∗ Beta(0.5; 1) C − T ∼ Exp(2/9) 0.29 4.0
T ∼ Unif([0; 4]) C − T ∼ Exp(1/(X + 1.5)) 0.28 4.6

T ∼ 4 ∗ Beta(0.5; 1) C − T ∼ Exp(1/(X2 − 1)) 0.34 4.5

Table 1. Results for the MISE for the regression model (7)

3.2 Simulations

We study the MISE (obtained from (6) where E[·] is etimated by the av-
erage over all the samples and hn is defined by the above bootstrap proce-
dure) of the error distribution for two homoscedastic and two heteroscedastic
models. In the homoscedastic cases, we computed error distributions based
on Yi − m̂(Xi), avoiding the estimation of σ(Xi), i = 1, . . . , n. For each
model, we consider both finite and infinite supports. We chose to work with
the Epanechnikov kernel. The simulations are carried out for samples of size
n = 100, and B = 250, and the results are obtained by using 250 simulations.

In the first setting, we generate i.i.d. samples from the homoscedastic
regression model

Y = X + ε, (7)

where X has a uniform distribution on [1, 7321; 2] and ε has a uniform dis-
tribution on [−

√
3;
√

3].
Table 1 summarizes the simulation results for different distributions of T

and C−T . Clearly, the MISE decreases when the censoring percentage (third
column) decreases whatever the distributions of T and C − T . Notice that,
for the same censoring percentage, the MISE is weaker when T has a beta
distribution instead of a uniform distribution. It’s explained by the shape of
the beta distribution.

In the second setting, we consider a heteroscedastic regression model

Y = X2 +X ∗ ε, (8)

where X has a uniform distribution on [2; 2
√

3] and ε has a uniform distri-
bution on [−

√
3;
√

3].
In Table 2, when looking at a heteroscedastic instead of a homoscedastic

model, introduced variability seems to increase the MISE in a reasonable way.
The MISE increasing is not surprising because we don’t estimate σ(x) in the
homoscedastic model. If the distributions of T or C − T depend on X, the
MISE doesn’t seem to vary significantly whatever the support of ε.
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Dist. of T Dist. of C − T % Censor. MISE (∗10−3)

T ∼ Unif([0; 18]) C − T ∼ Exp(0.1) 0.34 6.9
T ∼ Unif([0; 18]) C − T ∼ Exp(0.05) 0.19 6.2

T ∼ 18 ∗ Beta(0.5; 1) C − T ∼ Exp(1/12) 0.35 6.3
T ∼ 18 ∗ Beta(0.5; 1) C − T ∼ Exp(1/15) 0.3 6.2
T ∼ Unif([0;X + 16]) C − T ∼ Exp(1/12) 0.3 6.2
T ∼ 18 ∗ Beta(0.5; 1) C − T ∼ Exp(1/(2X2 − 1)) 0.3 6.6

Table 2. Results for the MISE for the regression model (8)

Dist. of T Dist. of C − T % Censor. MISE (∗10−3)

T ∼ Exp(2) C − T ∼ Exp(0.25) 0.27 6.6
T ∼ Exp(2) C − T ∼ Exp(2/9) 0.25 6.5
T ∼ Exp(2) C − T ∼ Exp(0.2) 0.23 6.3

Table 3. Results for the MISE for the heteroscedastic regression model (9)

In the third setting, we study both the homoscedastic and heteroscedastic
models

log(Y ) = X + ε and log(Y ) = X2 +X ∗ ε, (9)

where X has a uniform distribution on [0; 1] and ε has a standard normal
distribution. In this case, Y is submitted to selection bias and right censoring
while the error distribution to estimate is here P

(
log(Y )−m(X)

σ(X) ≤ e
)

. This is
achieved by a straightforward transformation of expression (5). Results are
similar to finite supports but generally less good. To illustrate this, the Table
3 displays some results for the heteroscedastic model.

When looking at the shape of the estimations of the error distributions,
we observe that the estimations are quite good for ε-values included between
minus 1 and 1 for the homoscedastic models, whatever the support of Fε. The
loss of ε-values in the tails of the distribution is caused by the combined selec-
tion bias and right censoring processes (this loss is slightly harder for infinite
supports). Concerning the heteroscedastic models, this phenomenon is in-
creased due to local variance estimation. Finally, similar results are obtained
for other simulations, in particular when the other weight (fixed censoring
C − T ) is used.

4 Data analysis

The proposed method is illustrated on the unemployment data set introduced
in Section 1. These data result from the survey, Encuesta de Población Activa
(Labour Force Survey), of the Spanish Institute for Statistics between 1987
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Fig. 2. Representation of F̂Y |X for different values of x

and 1997. The available information consists of 1009 unemployment spells of
married women being unemployed at the time of inquiry. Sampled women
were asked to provide the date they started searching a job and their age (in
years) at this date. After, they were followed for 18 months. If they did not
find any job at the end of this period, their unemployment durations were
considered as censored. This results in a constant C−T = τ leading to weights
(4). We consider a uniform distribution for the truncation variable. This
assumption was informally checked through a graphical comparison between
the empirical truncation distribution function and the uniform model (Wang,
1991), showing a good fit.

The bootstrap approximation gives an optimal smoothing parameter of
seventy months. The estimator F̂Y |X(·|x) = F̂ε

(
·−m̂(x)
σ̂(x)

)
is displayed in Fig-

ure 2 for x = 20, 35 and 50. The 35 years old unemployed women seem to
find a job earlier in the short run and later in the long run than the 50 years
old unemployed women.
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