Skip to main content

Design of True Random One-Time Pads in DNA XOR Cryptosystem

  • Conference paper
Natural Computing

Abstract

We present a new model to realize true random one-time pad (OTP) encryption using DNA self-assembly. OTP is an unbreakable cryptosystem if the pad (random key) is truly random, never reused, and kept secret. Mathematical algorithms can generate pseudo-random numbers only. “True” random numbers can be generated from a physical process such as thermal noise. In this work, we propose a new tile-colony algorithm that can utilize the DNA hybridization process as an effective source for the random key construction, and discuss the error tolerance of this method. Our results indicate that the molecular computation using DNA motifs will provide promising OTP applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley & Sons. Inc., Chichester (1996)

    MATH  Google Scholar 

  2. Cameron, P.J.: Notes on cryptography (2003), http://www.maths.qmw.ac.uk/~pjc/notes/crypt.pdf

  3. Adleman, L.M., Rothemund, P.W.K., Soweis, S., Winfree, E.: On Applying Molecular Computation to the data encryption standard. Journal of Computational Biology 6, 53–63 (1999)

    Article  Google Scholar 

  4. Leier, L., Richter, C., Banzhaf, W., Rauhe, H.: Cryptography with DNA binary strands. Biosystems 57, 13–22 (2000)

    Article  Google Scholar 

  5. Chen, J.: A DNA-Based, Biomolecular Cryptography Design. In: 2003 IEEE International Symposium on Circuits and Systems, vol. 3, pp. 822–825 (2003)

    Google Scholar 

  6. Gehani, A., LaBean, T., Reif, J.: DNA-Based Cryptography. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 167–188. Springer, Heidelberg (2003)

    Google Scholar 

  7. Hirabayashi, M., Kojima, H., Oiwa, K.: Effective Algorithm to Encrypt Information Based on Self-Assembly of DNA Tiles. In: Nucleic Acids Symposium Series (53), pp. 79–80 (2009)

    Google Scholar 

  8. Chen, Z., Xu, J.: One-Time-Pads Encryption in the Tile Assembly Model. In: Kearney, D. (ed.) Third International Conference on Bio-Inspired Computing: Theories and Applications. IEEE BICTA 2008, pp. 23–29 (2008)

    Google Scholar 

  9. Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical Computation Using Algorithmic Self-Assembly of DNA Triple-Crossover Molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  10. LaBean, T.H., Winfree, E., Reif, J.H.: Experimental Progress in Computation by Self-Assembly of DNA Tilings. In: DIMACS 5th International Meeting on DNA Based Computers, vol. 5, pp. 121–138 (1999), http://www.cs.duke.edu/~thl/papers/progress.DNA5.pdf

  11. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, H.J., Seeman, N.C.: The Construction, Analysis, Ligation and Self-Assembly of DNA Triple Crossover Complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)

    Article  Google Scholar 

  12. Fu, T.-J., Seeman, N.C.: DNA Double-Crossover Molecules. Biochemistry 32, 3211–3220 (1993)

    Article  Google Scholar 

  13. Kufer, S.K., Puchner, E.M., Gummp, H., Liedl, T., Gaub, H.E.: Single-Molecule Cut-and-Paste Surface Assembly. Science 319, 594–596 (2008)

    Article  Google Scholar 

  14. Tanaka, K., Okamoto, A., Saito, I.: Public-Key System Using DNA as a One-Way Function for Key Distribution. Biosystems 81, 25–29 (2005)

    Article  Google Scholar 

  15. Clelland, C.T., Risca, V., Bancroft, C.: Hiding Messages in DNA Microdots. Nature 399, 533–534 (1999)

    Article  Google Scholar 

  16. Chakraborty, B., Jonoska, N., Seeman, N.C.: Programmable Transducer by DNA Self-Assembly. In: Geol, A., Simmel, F.C., Sosik, P. (eds.) Fourteenth International Meeting on DNA Computing, pp. 98–99 (2008)

    Google Scholar 

  17. Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A Robust DNA Mechanical Devices Controlled by Hybridization Topology. Nature 415, 62–65 (2002)

    Article  Google Scholar 

  18. Jonoska, N., Liao, S., Seeman, N.C.: Transducers with Programmable Input by DNA Self-Assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 219–240. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Tokyo

About this paper

Cite this paper

Hirabayashi, M., Kojima, H., Oiwa, K. (2010). Design of True Random One-Time Pads in DNA XOR Cryptosystem. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53868-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53868-4_20

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53867-7

  • Online ISBN: 978-4-431-53868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics