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Abstract. We study time-dependent discrete-time quantum walks on
the one-dimensional lattice. We compute the limit distribution of a two-
period quantum walk defined by two orthogonal matrices. For the sym-
metric case, the distribution is determined by one of two matrices. More-
over, limit theorems for two special cases are presented.

1 Introduction

The discrete-time quantum walk (QW) was first intensively studied by
Ambainis et al. [1]. The QW is considered as a quantum generalization
of the classical random walk. The random walker in position x ∈ Z =
{ 0,±1,±2, . . . } at time t (∈ { 0, 1, 2, . . . }) moves to x − 1 at time t + 1
with probability p, or x + 1 with probability q ( = 1 − p). In contrast,
the evolution of the quantum walker is defined by replacing p and q with
2 × 2 matrices P and Q, respectively. Note that U = P +Q is a unitary
matrix. A main difference between the classical walk and the QW is seen
on the particle spreading. Let σ(t) be the standard deviation of the walk
at time t. That is, σ(t) =

√

E(X2
t ) − E(Xt)2, where Xt is the position of

the quantum walker at time t and E(Y ) denotes the expected value of
Y . Then the classical case is a diffusive behavior, σ(t) ∼

√
t, while the

quantum case is ballistic, σ(t) ∼ t (see [1], for example).
In the context of quantum computation, the QW is applied to several
quantum algorithms. By using the quantum algorithm, we solve a prob-
lem quadratically faster than the corresponding classical algorithm. As
a well-known quantum search algorithm, Grover’s algorithm was pre-
sented. The algorithm solves the following problem: in a search space of
N vertices, one can find a marked vertex. The corresponding classical
search requires O(N) queries. However, the search needs only O(

√
N)

queries. As well as the Grover algorithm, the QW can also search a
marked vertex with a quadratic speed up, see Shenvi et al. [2]. It has
been reported that quantum walks on regular graphs (e.g., lattice, hy-
percube, complete graph) give faster searching than classical walks. The
Grover search algorithm can also be interpreted as a QW on complete
graph. Decoherence is an important concept in quantum information pro-
cessing. In fact, decoherence on QWs has been extensively investigated,
see Kendon [3], for example. However, we should note that our results
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are not related to the decoherence in QWs. Physically, Oka et al. [4]
pointed out that the Landau-Zener transition dynamics can be mapped
to a QW and showed the localization of the wave functions.
In the present paper, we consider the QW whose dynamics is determined
by a sequence of time-dependent matrices, {Ut : t = 0, 1, . . .}. Ribeiro et
al. [5] numerically showed that periodic sequence is ballistic, random
sequence is diffusive, and Fibonacci sequence is sub-ballistic. Mackay
et al. [6] and Ribeiro et al. [5] investigated some random sequences and
reported that the probability distribution of the QW converges to a bino-
mial distribution by averaging over many trials by numerical simulations.
Konno [7] proved their results by using a path counting method. By com-
paring with a position-dependent QW introduced by Wójcik et al. [8],
Bañuls et al. [9] discussed a dynamical localization of the corresponding
time-dependent QW.
In this paper, we present the weak limit theorem for the two-period
time-dependent QW whose unitary matrix Ut is an orthogonal matrix.
Our approach is based on the Fourier transform method introduced by
Grimmett et al. [10]. We think that it would be difficult to calculate the
limit distribution for the general n-period (n = 3, 4, . . .) walk. However,
we find out a class of time-dependent QWs whose limit probability dis-
tributions result in that of the usual (i.e., one-period) QW. As for the
position-dependent QW, a similar result can be found in Konno [11].
The present paper is organized as follows. In Sect. 2, we define the time-
dependent QW. Section 3 treats the two-period time-dependent QW. By
using the Fourier transform, we obtain the limit distribution. Finally, in
Sect. 4, we consider two special cases of time-dependent QWs. We show
that the limit distribution of the walk is the same as that of the usual
one.

2 Time-dependent QW

In this section we define the time-dependent QWs. Let |x〉 (x ∈ Z) be in-
finite components vector which denotes the position of the walker. Here,
x-th component of |x〉 is 1 and the other is 0. Let |ψt(x)〉 ∈ C

2 be the
amplitude of the walker in position x at time t, where C is the set of
complex numbers. The time-dependent QW at time t is expressed by

|Ψt〉 =
∑

x∈Z

|x〉 ⊗ |ψt(x)〉 . (1)

To define the time evolution of the walker, we introduce a unitary matrix

Ut =

[

at bt
ct dt

]

, (2)

where at, bt, ct, dt ∈ C and atbtctdt 6= 0 (t = 0, 1, . . .). Then Ut is divided
into Pt and Qt as follows:

Pt =

[

at bt
0 0

]

, Qt =

[

0 0
ct dt

]

. (3)



The evolution is determined by

|Ψt+1〉 =
∑

x∈Z

|x〉 ⊗ (Pt |ψt(x+ 1)〉 +Qt |ψt(x− 1)〉) . (4)

Let || |y〉 ||2 = 〈y|y〉. The probability that the quantum walker Xt is in
position x at time t, P (Xt = x), is defined by

P (Xt = x) = || |ψt(x)〉 ||2. (5)

Moreover, the Fourier transform |Ψ̂t(k)〉 (k ∈ [0, 2π)) is given by

|Ψ̂t(k)〉 =
∑

x∈Z

e−ikx |ψt(x)〉 , (6)

with i =
√
−1. By the inverse Fourier transform, we have

|ψt(x)〉 =

∫ 2π

0

dk

2π
eikx |Ψ̂t(k)〉 . (7)

The time evolution of |Ψ̂t(k)〉 is

|Ψ̂t+1(k)〉 = Ût(k) |Ψ̂t(k)〉 , (8)

where Ût(k) = R(k)Ut and R(k) =

[

eik 0
0 e−ik

]

. We should remark that

R(k) satisfies R(k1)R(k2) = R(k1 + k2) and R(k)∗ = R(−k), where ∗
denotes the conjugate transposed operator. From (8), we see that

|Ψ̂t(k)〉 = Ût−1(k)Ût−2(k) · · · Û0(k) |Ψ̂0(k)〉 . (9)

Note that, when Ut = U for any t, the walk becomes a usual one-period
walk, and |Ψ̂t(k)〉 = Û(k)t |Ψ̂0(k)〉. Then the probability distribution of
the usual walk is

P (Xt = x) =

∣

∣

∣

∣

∣

∣

∣

∣

∫ 2π

0

dk

2π
eikxÛ(k)t |Ψ̂0(k)〉

∣

∣

∣

∣

∣

∣

∣

∣

2

. (10)

In Sect. 4, we will use this relation. In the present paper, we take the
initial state as

|ψ0(x)〉 =

{

T [α, β ] (x = 0)

T [ 0, 0 ] (x 6= 0)
, (11)

where |α|2 + |β|2 = 1 and T is the transposed operator. We should note
that |Ψ̂0(k)〉 = |ψ0(0)〉.



3 Two-period QW

In this section we consider the two-period QW and calculate the limit
distribution. We assume that {Ut : t = 0, 1, . . .} is a sequence of orthog-
onal matrices with U2s = H0 and U2s+1 = H1 (s = 0, 1, . . .), where

H0 =

[

a0 b0
c0 d0

]

, H1 =

[

a1 b1
c1 d1

]

. (12)

Let

fK(x;a) =

√

1 − |a|2
π(1 − x2)

√

|a|2 − x2
I(−|a|,|a|)(x), (13)

where IA(x) = 1 if x ∈ A, IA(x) = 0 if x /∈ A. Then we obtain the
following main result of this paper:

Theorem 1.
Xt

t
⇒ Z, (14)

where ⇒ means the weak convergence (i.e., the convergence of the dis-
tribution) and Z has the density function f(x) as follows:

(i) If det(H1H0) > 0, then

f(x) = fK(x; aξ)

[

1 −
{

|α|2 − |β|2 +

(

αβ + αβ
)

b0

a0

}

x

]

, (15)

where |aξ| = min {|a0|, |a1|}.

(ii) If det(H1H0) < 0, then

f(x) = fK(x; a0a1)

[

1 −
{

|α|2 − |β|2 +

(

αβ + αβ
)

b0

a0

}

x

]

. (16)

If the two-period walk with det(H1H0) > 0 has a symmetric distribution,
then the density of Z becomes fK(x; aξ). That is, Z is determined by
either H0 or H1. Figure 1 (a) shows that the limit density of the two-
period QW for a0 = cos(π/4) and a1 = cos(π/6) is the same as that for
the usual (one-period) QW for a0, since |a0| < |a1|. Similarly, Fig. 1 (b)
shows that the limit density of the two-period QW for a0 = cos(π/4)
and a1 = cos(π/3) is equivalent to that for the usual (one-period) QW
for a1, since |a0| > |a1|.
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x

(a) a0 = cos(π/4),
a1 = cos(π/6)
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x

(b) a0 = cos(π/4),
a1 = cos(π/3)

Fig. 1. The limit density function f(x) (thick line) and the probability distribution at
time t = 500 (thin line).

Proof. Our approach is due to Grimmett et al. [10]. The Fourier trans-
form becomes

|Ψ̂2t(k)〉 =
(

Ĥ1(k)Ĥ0(k)
)t

|Ψ̂0(k)〉 , (17)

where Ĥγ(k) = R(k)Hγ (γ = 0, 1). We assume

Hγ =

[

cos θγ sin θγ
sin θγ − cos θγ

]

, (18)

with θγ 6= πn
2

(n ∈ Z) and θ0 6= θ1. For the other case, the argument
is nearly identical to this case, so we will omit it. The two eigenvalues
λj(k) (j = 0, 1) of Ĥ1(k)Ĥ0(k) are given by

λj(k) = c1c2 cos 2k + s1s2 + (−1)j i
√

1 − (c1c2 cos 2k + s1s2)2, (19)

where cγ = cos θγ , sγ = sin θγ . The eigenvector |vj(k)〉 corresponding to
λj(k) is

|vj(k)〉 =

[

s1c2e
2ik − c1s2

{

−c1c2 sin 2k + (−1)j
√

1 − (c1c2 cos 2k + s1s2)2
}

i

]

. (20)

The Fourier transform |Ψ̂0(k)〉 is expressed by normalized eigenvectors
|vj(k)〉 as follows:

|Ψ̂0(k)〉 =

1
∑

j=0

〈vj(k)|Ψ̂0(k)〉 |vj(k)〉 . (21)

Therefore we have

|Ψ̂2t(k)〉 =
(

Ĥ1(k)Ĥ0(k)
)t

|Ψ̂0(k)〉

=
1
∑

j=0

λj(k)t 〈vj(k)|Ψ̂0(k)〉 |vj(k)〉 . (22)



The r-th moment of X2t is

E((X2t)
r) =

∑

x∈Z

xrP (X2t = x)

=

∫ 2π

0

dk

2π
〈Ψ̂2t(k)|

(

Dr |Ψ̂2t(k)〉
)

=

∫ 2π

0

1
∑

j=0

(t)rλj(k)−r(Dλj(k))r
∣

∣

∣〈vj(k)|Ψ̂0(k)〉
∣

∣

∣

2

+O(tr−1), (23)

where D = i(d/dk) and (t)r = t(t − 1) × · · · × (t − r + 1). Let hj(k) =
Dλj(k)/2λj(k). Then we obtain

E((X2t/2t)
r) →

∫

Ω0

dk

2π

1
∑

j=0

hr
j (k)| 〈vj(k)|Ψ̂0(k)〉 |2 ( t→ ∞). (24)

Substituting hj(k) = x, we have

lim
t→∞

E((X2t/2t)
r) =

∫ |cξ|

−|cξ|

xr f(x) dx, (25)

where

f(x) = fK(x; cξ)

[

1 −
{

|α|2 − |β|2 +
(αβ̄ + ᾱβ)s1

c1

}

x

]

, (26)

and |cξ | = | cos θξ| = min {| cos θ0|, | cos θ1|}. Since f(x) is the limit den-
sity function, the proof is complete. ⊓⊔

4 Special cases in time-dependent QWs

In the previous section, we have obtained the limit theorem for the two-
period QW determined by two orthogonal matrices. For other two-period
case and general n-period (n ≥ 3) case, we think that it would be hard to
get the limit theorem in a similar fashion. Here we consider two special
cases in the time-dependent QWs and give the weak limit theorems.

4.1 Case 1

Let us consider the QW whose evolution is determined by the following
unitary matrix:

Ut =

[

aeiwt b
c de−iwt

]

, (27)

with a, b, c, d ∈ C. Here wt ∈ R satisfies wt+1 + wt = κ1, where κ1 ∈ R

and R is the set of real numbers. Note that κ1 does not depend on time.
In this case, wt can be written as wt = (−1)t(w0 − κ1

2
) + κ1

2
. Therefore

the period of the QW becomes two. We should remark that

[

a b
c d

]

(≡ U )

is a unitary matrix. Then we have



Theorem 2.
Xt

t
⇒ Z1, (28)

where Z1 has the density function f1(x) as follows:

f1(x) = fK(x;a)

{

1 −
(

|α|2 − |β|2 +
aαbβeiw0 + aαbβe−iw0

|a|2
)

x

}

.

(29)

Proof. The essential point of this proof is that this case results in the
usual walk. First we see that Ut can be rewritten as

Ut =

[

eiwt/2 0

0 e−iwt/2

] [

a b
c d

] [

eiwt/2 0

0 e−iwt/2

]

= R
(wt

2

)

UR
(wt

2

)

. (30)

From this, the Fourier transform |Ψ̂t(k)〉 can be computed in the follow-
ing.

|Ψ̂t(k)〉 =
{

R(k)R
(wt−1

2

)

UR
(wt−1

2

)}{

R(k)R
(wt−2

2

)

UR
(wt−2

2

)}

· · ·
{

R(k)R
(w0

2

)

UR
(w0

2

)}

|Ψ̂0(k)〉

= R
(

−wt

2

){

R
(wt

2

)

R(k)R
(wt−1

2

)

U
}

×
{

R
(wt−1

2

)

R(k)R
(wt−2

2

)

U
}

× · · · ×
{

R
(w1

2

)

R(k)R
(w0

2

)

U
}

R
(w0

2

)

|Ψ̂0(k)〉

= R
(

−wt

2

)

{R(k + κ1/2)U}tR
(w0

2

)

|Ψ̂0(k)〉 . (31)

Therefore we have

|ψt(x)〉 =

∫ 2π

0

dk

2π
eikx |Ψ̂t(k)〉 =

∫ 2π+κ1/2

κ1/2

dk

2π
ei(k−κ1/2)x |Ψ̂t(k − κ1/2)〉

= e−iκ1x/2R
(

−wt

2

)

∫ 2π+κ1/2

κ1/2

dk

2π
eikx (R(k)U)t |Ψ̂R

0 (k)〉 , (32)

where |Ψ̂R
0 (k)〉 = R

(

w0

2

)

|Ψ̂0(k − κ1/2)〉. Then the probability distribu-
tion is

P (Xt = x)

=

{

eiκ1x/2

(

∫ 2π+κ1/2

κ1/2

dk

2π
eikx (R(k)U)t |Ψ̂R

0 (k)〉
)∗

R
(wt

2

)

}

×
{

e−iκ1x/2R
(

−wt

2

)

(

∫ 2π+κ1/2

κ1/2

dk

2π
eikx (R(k)U)t |Ψ̂R

0 (k)〉
)}

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ 2π+κ1/2

κ1/2

dk

2π
eikxÛ(k)t |Ψ̂R

0 (k)〉
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

, (33)



where Û(k) = R(k)U . This implies that Case 1 can be considered as the
usual QW with the initial state |Ψ̂R

0 (k)〉 = R
(

w0

2

)

|Ψ̂0(k − κ1/2)〉 and
the unitary matrix U . Then the initial state becomes

|Ψ̂R
0 (k)〉 = T [eiw0/2α, e−iw0/2β], (34)

that is,

|ψ0(x)〉 =

{

T [eiw0/2α, e−iw0/2β] (x = 0)

T [0, 0] (x 6= 0)
. (35)

Finally, by using the result in Konno [12, 13], we can obtain the desired
limit distribution of this case. ⊓⊔

4.2 Case 2

Next we consider the QW whose dynamics is defined by the following
unitary matrix:

Ut =

[

a beiwt

ce−iwt d

]

. (36)

Here wt ∈ R satisfies wt+1 = wt + κ2, where κ2 ∈ R does not depend
on t. In this case, wt can be expressed as wt = κ2t + w0. Noting Ut =
R
(

wt

2

)

UR
(

−wt

2

)

, we get a similar weak limit theorem as Case 1:

Theorem 3.
Xt

t
⇒ Z2, (37)

where Z2 has the density function f2(x) as follows:

f2(x) = fK(x;a)

{

1 −
(

|α|2 − |β|2 +
aαbβe−iw0 + aαbβeiw0

|a|2
)

x

}

.

(38)

If wt = 2πt/n (n = 1, 2, . . .), {Ut} becomes an n-period sequence. In
particular, when n = 2 and a, b, c, d ∈ R, {Ut} is a sequence of two-
period orthogonal matrices. Then Theorem 3 is equivalent to Theorem
1 (i).

5 Conclusion and Discussion

In the final section, we draw the conclusion and discuss our two-period
walks. The main result of this paper (Theorem 1) implies that if det(H1H0)
> 0 and min {|a0|, |a1|} = |a0|, then the limit distribution of the two-
period walk is determined by H0. On the other hand, if det(H1H0) > 0
and min {|a0|, |a1|} = |a1|, or det(H1H0) < 0, then the limit distribution
is determined by both H0 and H1.
Here we discuss a physical meaning of our model. We should remark that
the time-dependent two-period QW is equivalent to a position-dependent



two-period QW if and only if the probability amplitude of the odd posi-
tion in the initial state is zero. In quantum mechanics, the Kronig-Penney
model, whose potential on a lattice is periodic, has been extensively in-
vestigated, see Kittel [14]. A derivation from the discrete-time QW to the
continuous-time QW, which is related to the Schrödinger equation, can
be obtained by Strauch [15]. Therefore, one of interesting future prob-
lems is to clarify a relation between our discrete-time two-period QW
and the Kronig-Penney model.
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