Springer Tracts in Advanced Robotics Volume 77

Editors: Bruno Siciliano · Oussama Khatib

Self-Organizing Robots

Professor Bruno Siciliano, Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy, E-mail: siciliano@unina.it

Professor Oussama Khatib, Artificial Intelligence Laboratory, Department of Computer Science, Stanford University, Stanford, CA 94305-9010, USA, E-mail: khatib@cs.stanford.edu

Authors

Prof. Satoshi Murata Tohoku University Department of Bioengineering and Robotics Graduate School of Engineering 6-6-1 Aoba-yama, Sendai 980-8579 Japan E-mail: murata@molbot.mech.tohoku.ac.jp Dr. Haruhisa Kurokawa National Institute of Advanced Industrial Science and Technology (AIST) Intelligent Systems Institute Field Robotics Research Group 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 Japan E-mail: kurokawa-h@aist.go.jp

Additional material to this book can be downloaded from http://extra.springer.com

ISBN 978-4-431-54054-0

e-ISBN 978-4-431-54055-7

DOI 10.1007/978-4-431-54055-7

Springer Tracts in Advanced Robotics ISSN 1610-7438

Library of Congress Control Number: 2011942597

© Satoshi Murata and Haruhisa Kurokawa 2012

Original Japanese edition Jikososhiki Kikai System no Sekkeiron By Satoshi Murata and Haruhisa Kurokawa Copyright © 2009 by Satoshi Murata and Haruhisa Kurokawa Published by Ohmsha, Ltd. 3-1 Kanda Nishikicho, Chiyodaku, Tokyo 101-8460, Japan

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typeset by Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

543210

springer.com

Editorial Advisory Board

Oliver Brock, TU Berlin, Germany Herman Bruyninckx, KU Leuven, Belgium Raja Chatila, LAAS, France Henrik Christensen, Georgia Tech, USA Peter Corke, Queensland Univ. Technology, Australia Paolo Dario, Scuola S. Anna Pisa, Italy Rüdiger Dillmann, Univ. Karlsruhe, Germany Ken Goldberg, UC Berkeley, USA John Hollerbach, Univ. Utah, USA Makoto Kaneko, Osaka Univ., Japan Lydia Kavraki, Rice Univ., USA Vijay Kumar, Univ. Pennsylvania, USA Sukhan Lee, Sungkyunkwan Univ., Korea Frank Park, Seoul National Univ., Korea Tim Salcudean, Univ. British Columbia, Canada Roland Siegwart, ETH Zurich, Switzerland Gaurav Sukhatme, Univ. Southern California, USA Sebastian Thrun, Stanford Univ., USA Yangsheng Xu, Chinese Univ. Hong Kong, PRC Shin'ichi Yuta, Tsukuba Univ., Japan

STAR (Springer Tracts in Advanced Robotics) has been promoted under the auspices of EURON (European Robotics Research Network)

Foreword

Robotics is undergoing a major transformation in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into human environments and vigorously engaged in its new challenges. Interacting with, assisting, serving, and exploring with humans, the emerging robots will increasingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the research community the latest advances in the robotics field on the basis of their significance and quality. Through a wide and timely dissemination of critical research developments in robotics, our objective with this series is to promote more exchanges and collaborations among the researchers in the community and contribute to further advancements in this rapidly growing field.

The monograph by Satoshi Murata and Haruhisa Kurokawa is an English translation from a recently appeared book in Japanese on self-organizing mechanical systems. This is a relatively new area of research focusing on the realization of machines and robots, made to have a certain structure and functions, which are indeed capable to adapt to unexpected situations, such as a misuse or a break-down, and ultimately reorganize themselves. As such, the book has a wide interest for scholars in the area of autonomous distributed systems, modular design and biologically-inspired robotics.

Rich in examples and case studies, deep in the discussion of various issues in the implementation and instrumentation of self-organizing mechanical systems, this volume ambitiously aims at inspiring the designers of the next generation of robots. A very fine addition to the STAR series!

Naples, Italy August 2011 Bruno Siciliano STAR Editor

Preface*

The notion of *self-organization* has recently been used in a variety of areas. It refers to the phenomenon in which an entity produces its own organization or structure by itself, just as biological organisms do. For example, seeds sown in the ground will sprout and leaves will grow. Then flowers will bloom, fruit will form, and finally seeds are reproduced. By simply putting the seed into the ground, it spontaneously *becomes* these things without any outside guidance. What an intriguing and fascinating process! What, then, about machines? There has never been a machine that developed by itself from a seed. Machines are built from many parts in factories using external forces. Instructions are given from the outside for each step of assembly. In short, machines are *made* to have a certain structure.

These days, the machines we need in our everyday life have become more and more complicated. It now has become difficult to grasp every detail of these machines, and every detail of the mechanisms at work. Moreover, when those machines break down or are used in unexpected manners, the behavior of the machines can become unpredictable or in fact completely useless. In situations like this, one might hope that the machine would somehow adapt to the situation by reorganizing itself. This is where the notion of *self-organizing* mechanical systems comes in. It means changing from machines that are *made* to have a certain structure and functions, to those that *become* reorganized in a desired way.

Engineers have been learning from biology for a very long time. The drawing of flying machines by Leonardo da Vinci shows that research fields such as biomechanics and biomimetics have their origins back at least to that time. However, in order to create a machine that *becomes* properly organized, it is not sufficient to copy the appearance or the superficial mechanisms of biological organisms. It is necessary to understand the architecture and mechanisms behind the organisms that enable them to function. The theme of this book is to examine the feasibility of creating such artificial systems, namely *self-organizing robots*, the title of this book, within the limitations of current mechanical engineering. We have to consider how to construct such robots, and have to find possible applications for them. Robotics in general has many different aspects such as dynamics, fabrication, control, electronic implementation, and software. In this book, in addition to

^{*} This book is an English translation of "Jiko-soshiki kikai sisutemu no sekkeiron (Designing self-organizing mechanical systems)" published in 2009 by Ohm-sha, Japan. Translation and publication were supported by Grant-in-Aid for Publication of Scientific Research Result (No. 226006) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

these items, a robot is viewed as an autonomous distributed system. Taking this viewpoint, what needs to be considered to create robots that possess the capability of self-organization is discussed in detail.

Here is an outline of the chapters: Chapter 1 describes the philosophy of design of self-organizing mechanical systems. The discussion here may seem a little abstract but it contains a simple introduction to the notion of autonomous distributed systems, which forms the basis of the concept of self-organization and selforganizing mechanical systems. Chapter 2 considers some examples of selforganization at various levels of hierarchy in biological systems, which is our source of inspiration when we design self-organizing machines and robots. Chapter 3 presents a history of the research related to self-organizing mechanical systems. Instead of providing a complete history, we present several selected topics suitable for grasping the flow of research in this area. Chapter 4 explains some mathematics and methodology necessary for understanding theoretical background to use selforganization phenomena. Chapter 5 demonstrates the feasibility of building a selforganizing machines by introducing an actual machine that is able to assemble itself and repair itself, which is one of the achievements of our own research. Chapter 6 discusses some examples of self-organizing robots which are known as modular robots, and gives several case studies. The reader will see that a variety of robots are being developed based on many different approaches. Chapter 7 and 8 primarily explain M-TRAN, one of the most advanced self-organizing robots at this time, which can create its own shape and robotic motion. Chapter 9 addresses various issues in the implementation and instrumentation of self-organizing robots, suggesting ideas to solve them. Chapter 10 discusses the future of self-organizing robots, especially molecular-level self-organizing robots.

It is not required to have advanced knowledge of mathematics to read this book. The knowledge that science-oriented undergraduates has will suffice. The assumed readers of this book are students in the existing robotics discipline, including areas such as mechanics, control, electronics, and computer science, and also researchers who wish to look into the area of robotics, or who are working in other areas and have interest in applications of self-organization phenomena.

This book can be read in different ways: who wish to learn the basic concept should start from Chapter 1. Those interested in the fundamentals of self-organizing mechanical systems and robots but not the philosophical arguments may start from Chapter 5 and then continue onto Chapter 6, and so be able to grasp the overall trends in this area and the current research activities. Those interested in developing actual robots are recommended to read Chapters 7 through 9, while referring to Chapter 4 as needed if the reader encounters unfamiliar mathematics.

Here, we would like to explain the background of this book. The authors were researchers in an institute formerly called the Mechanical Engineering Laboratory (MEL) of the Agency of Industrial Science and Technology of the Ministry of

Extra materials that compliment this book, such as movies of experiments, are available at a web page. These materials can be accessed through http://extras.springer.com/ and by searching with this book's ISBN (please make sure you enter the full ISBN number, including hyphens).

International Trade and Industry, Japan. (Kurokawa is currently affiliated with the National Institute of Advanced Industrial Science and Technology, AIST, into which MEL was incorporated, whereas Murata's current affiliation is Tohoku University.) In MEL, there was a research group on fault-tolerance at the beginning of the 1980s. The group members included Kurokawa, Toshio Fukuda (now at Nagoya University), and Shigeru Kokaji, who was substantially the leader of all the research discussed in this book. This group was one of the birthplaces of self-organizing robots in Japan, as evidenced by Fukuda's pioneering self-organizing robot CEBOT in later years. When Murata joined MEL in 1987, Kokaji had just completed his innovative distributed machine called Fractal Machine. At that time, Kokaji was engaged in constructing parallel computers and had assembled entirely by himself a parallel computer system consisting of 64 microprocessors. This computer gave Kokaji the idea for the Fractal Machine. This machine was a system thoroughly based on the principle of distributed systems and provided in many ways the model for the research that followed.

In the following years, the Synergetics Research Group was founded with Kokaji as the leader. The group was eventually recognized as one of the official research groups of MEL, and new members Kohji Tomita, Eiichi Yoshida, and Akiya Kamimura joined this group one after another. The authors would like to emphasize that many of the results presented in this book are the achievements of all the members of our group.

The authors received much help from people outside the group, including the late Kazuo Tanie at Metropolitan University of Tokyo, and Toshio Fukuda at Nagoya University, who gave us encouragement and valuable advice from time to time. We thank Kohji Ito at Ritsumeikan University that the authors could meet various researchers including the late Hideo Yuasa at Tokyo University, Kazuo Hosokawa at RIKEN, and Akio Ishiguro at Tohoku University.

We also must thank colleagues overseas, including Gregory Chirikjian at Johns Hopkins University, and Daniela Rus at MIT. The authors also had various extremely constructive research interactions, such as exchange of graduate students, with Henrik Lund at the Technical University of Denmark, Rolf Pfeifer at the University of Zurich, Wei-Min Shen at the University of Southern California, and Mark Yim at the University of Pennsylvania. Many of the photographs and diagrams that appear in this book are shown thanks to the generosity of these people.

The authors are very grateful to Motoko Takenishi of Ohmsha, Ltd. who helped us to write the Japanese version of this book, and Kazuhiko Ogawa and his colleagues at NBT Corporation for their work of translation. If it had not been for their help, this book would not have been completed.

The research described in this book has been supported almost continuously by various kinds of funding, including the special funding of the Mechanical Engineering Laboratory, the funding of the former Science and Technology Agency for

basic research, the NEDO Project for Robot Development, and Grants-in-Aid for Scientific Research of MEXT. The authors would like to take this opportunity to express their gratitude to all those responsible for the funding.

Lastly, the authors strongly hope that this book will help students and researchers to understand ways of thinking about self-organizing robots, and that some of the readers will be inspired to create the next generation of these mechanical systems.

July 2011

Satoshi Murata Haruhisa Kurokawa

Contents

1	Desi	igning b	by Self-Organization	1
	1.1	Reduc	ctionist Design and Its Limits	1
		1.1.1	Components of Mechanical Systems	2
		1.1.2	Reductionist Design Theory of Mechanical Systems	3
		1.1.3	Modeling and Optimization	5
		1.1.4	Problems with Reductionist Design	6
	1.2	Distril	buted Autonomous Systems and Self-Organization	6
		1.2.1	From Reductionism to Self-Organization	7
		1.2.2	Distributed Autonomous Systems and Theory of Design	
			by Self-Organization	8
		1.2.3	Advantages of Self-Organizing Mechanical Systems	11
			1.2.3.1 Flexibility	11
			1.2.3.2 Scalability	12
			1.2.3.3 Fault-Tolerance	12
			1.2.3.4 Problems Caused by the Involvement of Humans	13
	1.3	Types	of Self-Organizing Mechanical Systems	14
		1.3.1	Systems and Their Components	14
		1.3.2	The Complexity, the Number of Components, and the	
			Complexity of Connections	15
	Refe	rences		17
2	Self	-Organi	ization of Biological Systems	19
	2.1	Hierar	rchy in Biological System	19
	2.2	Nucle	ic Acids: Formation of Double Helices by Hybridization	22
	2.3	Protei	n Folding	23
	2.4	Centra	al Dogma	24
	2.5	Biolog	gical Development: Assembly at the Level of Cells	25
	2.6	Biolog	gical Self-repair	29
		2.6.1	Reconstruction	30
		2.6.2	Physiological Regeneration	30
		2.6.3	Compensatory Regeneration	31
		2.6.4	Wound Healing	31
		2.6.5	True Regeneration	31
	2.7	Self-C	Organization of a Group of Individuals	32
		2.7.1	Cellular Slime Molds	33

		2.7.2	Social Insects	33
		2.7.3	Herds of Animals	34
	Refe	erences.		35
3	Hist	tory of S	Self-Organizing Machines	37
	3.1	Work	by von Neumann	
		3.1.1	Von Neumann's Two Ouestions	
		3.1.2	Von Neumann's Self-reproducing Automata	
		3.1.3	Universal Automata: The Kinetic Model	41
		3.1.4	Universal Automata: The Cellular Model	42
	3.2	Work	by Penrose	45
	3.3 Mathematical Models of Self-reproduction			48
		3.3.1	Langton's Self-reproducing Loop	49
		3.3.2	Graph Automata	
	3.4	Physic	cal Models of Self-reproduction	
		3.4.1	Magnet System by Hosokawa	
		3.4.2	Mechatronic Self-assembling System by Klavins	55
		3.4.3	Self-reproducing System by Griffith	
	Refe	erences.	1 0,7 5	
4	Bas	ics in M	[athematics and Distributed Algorithms	59
	4.1	Distri	buted System and Components	
	4.2	Diffus	sion	61
		4.2.1	Diffusion Equations	61
		4.2.2	Gradient Field	63
		4.2.3	Pattern Formation by Reaction-Diffusion System	63
	4.3	Cellul	ar Automata	69
		4.3.1	Field of Diffusion	69
		4.3.2	Flow Field	71
		4.3.3	Game of Life	
	4.4	Distri	buted Algorithms	72
		4.4.1	Leader Election	73
		4.4.2	Spanning Tree Construction Problem	
		4.4.3	Exclusion Control	74
		4.4.4	Deadlock	74
		4.4.5	Reliability	74
	Refe	erences.		75
5	Arti	ificial S	elf-assembly and Self-repair	77
-	5.1	Metho	ods for Self-assembly and Self-repair: Homogenous System	1
		Appro	pach	77
	5.2	Hardy	vare for Two Dimensional Units	
	5.3	Preco	nditions for Self-assembly Algorithms	83
		5.3.1	Unit Identifier	
		5.3.2	Method and Range of Communication	83
		5.3.3	Spatio-temporal Symmetry Breaking	84
			1 1 7 7 0	

	5.4	Algori	thm (I) for	Self-assembly	85
		5.4.1	Descripti	on of the Target Configuration	85
			5.4.1.1	Connection Type	86
			5.4.1.2	Distance between Connection Types	87
			5.4.1.3	Description of the Target Configuration Using	5
				Connection Types	87
		5.4.2	Strategy	for Self-assembly	
			5.4.2.1	Difference Measure	
			5.4.2.2	Movable Type	89
			5.4.2.3	Diffusion Field	90
			5.4.2.4	Activation Criteria	90
		5.4.3	Simulatio	ons and Experiments	91
	5.5	Algorithm (II) for Staged Self-assembly and Self-repair			
		5.5.1	Logical 7	Type and Description Matrix	94
		5.5.2	Onion M	ethod	94
		5.5.3	Simulatio	on of Self-assembly (Algorithm II)	97
		5.5.4	Simulatio	on of Self-repair (Algorithm (II))	
			5.5.4.1	Detection of the Loss	
			5.5.4.2	Retrogression Signal	
			5.5.4.3	Retrogression of the Stage	
	5.6	Cellula	r Automa	ta Model	
	Refe	rences			
6	Prot	totypes of	of Self-Or	ganizing Robots	
	6.1	Classe	s of Modu	lar Robots	
	6.2	Lattice	-Type and	Chain-Type	
	6.3	Constr	aints in Ha	ardware Design for Lattice-Type Modules	107
		6.3.1	Limited S	Space for Design	107
		6.3.2	Symmetr	ч Ту	
		6.3.3	Degrees	of Freedom for Mobility	
		6.3.4	Connecto	ors (Connection Mechanisms)	
		6.3.5	Actuators	S	
	6.4	Prototy	pes of Mo	odular Robots	110
		6.4.1	CEBOT		110
		6.4.2	Truss-Ty	pe: Fractal Machine	
		6.4.3	Truss-Ty	pe: TETROBOT	114
		6.4.4	Lattice-T	Vpe: Metamorphic Robot	115
		6.4.5	Lattice-T	Sype : Crystalline	
		6.4.6	Lattice-T	Sype: Micro Modules	
		6.4.7	Lattice-T	vpe: CHOBIE	
		648	Lattice-T	ype: Three Dimensional Universal Connection	1
		0.1.0	System	spe. Thee Differsional Chiversal Connection	117
		649	Lattice-T	vne: Molecule	120
		6 4 10	Lunice 1		101
		6410	Lattice-T	vne: ATRON	1/1
		6.4.10 6.4.11	Lattice-T	ype: ATRON	121
		6.4.10 6.4.11 6.4.12	Lattice-T Lattice-T	ype: ATRON ype: Molecube ype: PolyPod and PolyBot	121 123 124

		6.4.13	Chain-T	ype: CONRO and Superbot	125
		6.4.14	Lattice	-Type: Catom	126
		6.4.15	Amorp	hous-Type: SlimeBot	127
	6.5	Hybrid	Type Co	mbining Lattice and Chain	128
	Refe	erences		-	129
7	Rob	otic Met	tamorpho)sis	131
	7.1	System	Design		131
		7.1.1	M-TRAI	N Module	131
			7.1.1.1	Shape and Function	131
			7.1.1.2	Characteristics of the Shape	134
		7.1.2	Basic M	otions	134
			7.1.2.1	Motions on the Ideal Plane	134
			7.1.2.2	Constraints	136
		7.1.3	Polarity.		137
		7.1.4	Universa	al Assembly and Self-reconfiguration	138
	7.2	Plannir	ng Metam	orphosis Procedure	139
		7.2.1	Search for	or Metamorphosis Procedures	140
			7.2.1.1	Reconfigurability	140
			7.2.1.2	Exhaustive Search	140
			7.2.1.3	Heuristics	141
		7.2.2	Metamor	rphosis between Mobile Robot Configurations	141
			7.2.2.1	Parallel Quadruped Form	141
			7.2.2.2	Other Metamorphoses	144
	7.3	Distrib	uted Meta	amorphosis	144
		7.3.1	Distribut	ted System and Grouping	144
		7.3.2	Meta-mo	odules Simulating Virtual Modules	146
		7.3.3	Regular	Structures	148
			7.3.3.1	Type-I Linear Regular Form	150
			7.3.3.2	Type-II Linear Regular Form	151
			7.3.3.3	Planar Regular Form	151
			7.3.3.4	Three Dimensional Regular Forms	151
			7.3.3.5	Cluster Flow	151
		7.3.4	Motions	of Planar Regular Structures	155
			7.3.4.1	Basic Motions	155
			7.3.4.2	Tile Model	156
			7.3.4.3	Cellular Automaton	159
		7.3.5	Distribut	ted Metamorphosis by the Cellular Automaton	
			Model		160
			7.3.5.1	Cluster Flow on Planar Structure	160
			7.3.5.2	Collision Avoidance, Deadlock Avoidance, and	
				Global Consensus	162
			7.3.5.3	Porous Structure	165
	7.4	Variou	s Metamo	orphoses	166
		7.4.1	Generati	on of Robots from Regular Structures	166

		7.4.2	Docking	and Merging	166
		7.4.3	Self-repl	ication	168
	7.5	M-TR	AN Colon	у	169
	Refe	rences		-	170
8	Self	-Organi	ization of 1	Motion	
	8.1	Robot	Motion Co	ontrol	173
		8.1.1	Manipula	ator End Point Control	173
		8.1.2	Legged V	Walking Robots	175
		8.1.3	Whole B	ody Locomotion	179
			8.1.3.1	Rolling Motion	179
			8.1.3.2	Crawler	179
			8.1.3.3	Traveling Wave on a Serial Link	
			8.1.3.4	Motions of Snakes and Fish	
			8.1.3.5	Combinations of Traveling Waves	
		8.1.4	Design o	f Motion Control Systems	
		8.1.5	Distribut	ed Motion Control of Modular Robots	
	8.2	Coupl	ed Oscillat	ors	
		8.2.1	Synchron	nization by Diffusion	
		8.2.2	Entrainm	nent	
		8.2.3	How to I	ntroduce Phase Offsets	191
	8.3	Motio	n Control V	Using Coupled Oscillators	193
		8.3.1	Connecti	on with Physical Systems	193
		8.3.2	Global E	ntrainment	194
		8.3.3	Neural C	Oscillator	195
	8.4	Genet	ic Algorith	m	197
	8.5	Motio	n Control o	of the M-TRAN Robots	199
		8.5.1	CPG Cor	ntrol System	199
		8.5.2	Fitness a	nd Dynamics Simulation	200
		8.5.3	GA Opti	mization	201
		8.5.4	Optimiza	tion Results and Playback Experiment	203
		8.5.5	Real Tin	ne CPG Control	203
		8.5.6	Issues of	CPG Control	
	8.6	Remai	·k		
	Refe	rences.			
9	Har	dware a	and Softwa	are	211
	9.1	Hardw	/are		211
		9.1.1	Structure	e and Mechanism	211
		9.1.2	Connecti	on Mechanism	214
			9.1.2.1	Magnetic Connection Mechanism	
			9.1.2.2	Mechanical Connection Mechanism	217
		9.1.3	Circuitry	·	
			9.1.3.1	Multiple CPU System	
			9.1.3.2	Communication between Modules	221
			9.1.3.3	Power	

		9.1.4	Optional Modules	223
	9.2	Software		
		9.2.1	M-TRAN Simulator	223
		9.2.2	Onboard Program	225
		9.2.3	Program for Centralized Metamorphoses	225
			9.2.3.1 Transformation Procedure Data and Master-Slave	e
			Control	225
			9.2.3.2 Configuration Recognition and Role	
			Assignment	226
			9.2.3.3 Symmetric Conversion	228
		9.2.4	Program for Distributed Metamorphosis	230
	9.3	Errors	and Reliability	230
		9.3.1	Dimension Error	231
		9.3.2	Structural Deformation	231
		9.3.3	Dealing with Errors	232
	Refe	rences	-	233
10	The	e Future	e of Self-Organizing Robots	235
10	Th 10.1	e Future Challe	e of Self-Organizing Robots	235 235
10	Th 10.1	e Future Challe 10.1.1	e of Self-Organizing Robots enges for Self-Organizing Robots Module Size	235 235 235
10	Th 10.1	e Future Challe 10.1.1 10.1.2	e of Self-Organizing Robots enges for Self-Organizing Robots Module Size Number of Modules	235 235 235 236
10	Th 10.1	e Future Challe 10.1.1 10.1.2 10.1.3	e of Self-Organizing Robots enges for Self-Organizing Robots Module Size Number of Modules Choice between Self-reconfiguration and Self-assembly	235 235 235 236 236
10	The 10.1	e Future Challe 10.1.1 10.1.2 10.1.3 From N	e of Self-Organizing Robots enges for Self-Organizing Robots Module Size Number of Modules Choice between Self-reconfiguration and Self-assembly Mechatronics to Molecular Machines	235 235 236 236 236 237
10	The 10.1	e Future Challe 10.1.1 10.1.2 10.1.3 From M 10.2.1	e of Self-Organizing Robots enges for Self-Organizing Robots Module Size Number of Modules Choice between Self-reconfiguration and Self-assembly Mechatronics to Molecular Machines Molecular Machines Based on DNA Nanotechnology	235 235 235 236 236 237 238
10	Th 10.1 10.2	Future Challe 10.1.1 10.1.2 10.1.3 From M 10.2.1 10.2.2	e of Self-Organizing Robots enges for Self-Organizing Robots Module Size Number of Modules Choice between Self-reconfiguration and Self-assembly Mechatronics to Molecular Machines Molecular Machines Based on DNA Nanotechnology Self-assembly in DNA Nanostructures	235 235 236 236 236 237 238 238 239
10	Th 10.1 10.2	Future Challe 10.1.1 10.1.2 10.1.3 From M 10.2.1 10.2.2 10.2.3	e of Self-Organizing Robots enges for Self-Organizing Robots Module Size Number of Modules Choice between Self-reconfiguration and Self-assembly Mechatronics to Molecular Machines Molecular Machines Based on DNA Nanotechnology Self-assembly in DNA Nanostructures DNA Logic Gates	235 235 236 236 236 237 238 239 241
10	Th (10.1)	e Future Challe 10.1.1 10.1.2 10.1.3 From N 10.2.1 10.2.2 10.2.3 10.2.4	e of Self-Organizing Robots Module Size Number of Modules Choice between Self-reconfiguration and Self-assembly Mechatronics to Molecular Machines Molecular Machines Based on DNA Nanotechnology Self-assembly in DNA Nanostructures DNA Logic Gates DNA Sensors and DNA Actuators	235 235 236 236 236 236 237 238 239 241 241
10	The 10.1 10.2	e Future Challe 10.1.1 10.1.2 10.1.3 From N 10.2.1 10.2.2 10.2.3 10.2.4 From N	e of Self-Organizing Robots enges for Self-Organizing Robots Module Size Number of Modules Choice between Self-reconfiguration and Self-assembly Mechatronics to Molecular Machines Molecular Machines Based on DNA Nanotechnology Self-assembly in DNA Nanostructures DNA Logic Gates DNA Sensors and DNA Actuators Nanotechnology to Molecular Robotics	235 235 236 236 236 237 238 239 241 241 242
10	Th 10.1 10.2 10.3 10.4	e Future Challe 10.1.1 10.1.2 10.1.3 From N 10.2.1 10.2.2 10.2.3 10.2.4 From N Emerge	e of Self-Organizing Robots enges for Self-Organizing Robots Module Size Number of Modules Choice between Self-reconfiguration and Self-assembly Mechatronics to Molecular Machines Molecular Machines Based on DNA Nanotechnology Self-assembly in DNA Nanostructures DNA Logic Gates DNA Sensors and DNA Actuators Nanotechnology to Molecular Robotics ence of Hierarchy: The Ultimate Problem	235 235 236 236 236 237 238 239 241 241 241 242 245
10	Th 10.1 10.2 10.3 10.4 Refer	e Future Challe 10.1.1 10.1.2 10.1.3 From N 10.2.1 10.2.2 10.2.3 10.2.4 From N Emerge rences	e of Self-Organizing Robots Module Size	235 235 236 236 236 237 238 239 241 241 241 242 245 246
10	The 10.1 10.2 10.3 10.4 Refer	e Future Challe 10.1.1 10.1.2 10.1.3 From N 10.2.1 10.2.2 10.2.3 10.2.4 From N Emergorences	e of Self-Organizing Robots Module Size	235 235 236 236 236 237 238 239 241 241 242 245 246