Skip to main content

Prototype Design of Robotic Surgical Instrument for Minimally Invasive Robot Surgery

  • Conference paper

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 3))

Abstract

This paper presents the prototype design of the robotic surgical instrument for minimally invasive surgery robot. For high reliability and stiffness characteristics of the instrument, it has been designed on the basis of 3-DOF (degrees of freedom) parallel robot mechanism with three identical PSR (Prismatic-Spherical-Revolute)- serial chains. Further, for the forceps grasp and axial rotational motions, it has one additional center leg. With this mechanical structure, 4-DOF motions of forceps, i.e., forceps grasp motion, 2-DOF wrist orientation, and 1-DOF axial rotation, are possible. Further, the capability of pure axial rotation of the proposed instrument forceps may enable more dexterous surgery compared to the other surgical instruments. Detailed description of the proposed me chanism is given and performance of the prototype compared to the other robotic instruments are discussed in this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guthart, G.S., Salisbury, J.K.: The Intuitive telesurgery system: Overview and application. In: IEEE International Conference on Robotics and Automation, San Francisco, CA, pp. 618–621 (2000)

    Google Scholar 

  2. Tadano, K., Kawashima, K.: Development of 4-DOFs forceps with force sensing using pneumatic servo system. In: IEEE International Conference on Robotics and Automation, Orlando, FL, pp. 2250–2255 (2006)

    Google Scholar 

  3. Hamid, S.A., Simaan, N.: Design and Synthesis of Wire-Actuated Universal-Joint Wrists for Surgical Applications. In: IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 1807–1813 (2009)

    Google Scholar 

  4. Seibold, U., Kubler, B., Hirzinger, G.: Prototype of instrument for minimally invasive surgery with 6-axis force sensing capability. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 498–503 (2005)

    Google Scholar 

  5. Minor, M., Mukherjee, R.: A dexterous manipulator for minimally invasive surgery. In: IEEE International Conference on Robotics and Automation, Detroit, Michigan, pp. 2057–2064 (1999)

    Google Scholar 

  6. Arata, J., Mitsuishi, M., Warisawa, S., Tanaka, K., Yoshizawa, T., Hashizume, M.: Development of a dexterous minimally-invasive surgical system with augmented force feedback capability. In: IEEE/RSJ, International Conference on Intelligent Robots and Systems, pp. 3738–3743 (2005)

    Google Scholar 

  7. Berkelman, P., Ma, J.: A Compact Modular Teleoperated Robotic System for Laparoscopic Surgery. The International Journal of Robotics Research 28, 1198–1215 (2009)

    Article  Google Scholar 

  8. Van Meer, F., Giraud, A., Esteve, D., Dollat, X.: A disposable plastic compact wrist for smart minimally invasive surgical tools. In: IEEE/RSJ, International Conference on Intelligent Robots and Systems, pp. 919–924 (2005)

    Google Scholar 

  9. Yamashita, H., Kim, D., Hata, N., Dohi, T.: Multi-slider linkage mechanism for endoscopic forceps manipulator. In: IEEE/RSJ, International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, pp. 2577–2582 (2003)

    Google Scholar 

  10. Yamashita, H., Matsumiya, K., Masamune, K., Liao, H., Chiba, T., Dohi, T.: Two-DOFs bending forceps manipulator of 3.5-mm diameter for intrauterine fetus surgery: feasibility evaluation. International Journal of Computer Assisted Radiology and Surgery 1 (2006)

    Google Scholar 

  11. Dario, P., Paggetti, C., Troisfontaine, N., Papa, E., Ciucci, T., Carrozza, M.C., Marcacci, M.: A miniature steerable end-effector for application in an integrated system for computer-assisted arthroscopy. In: IEEE International Conference on Robotics and Automation, pp. 1573–1579 (1997)

    Google Scholar 

  12. Merlet, J.P.: Optimal design for the micro parallel robot MIPS. In: IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1149–1154 (2002)

    Google Scholar 

  13. Reboulet, C., Durand-Leguay, S.: Optimal design of redundant parallel mechanism for endoscopic surgery. In: IEEE/RSJ, International Conference on Intelligent Robots and Systems, pp. 1432–1437 (1999)

    Google Scholar 

  14. Tsai, M.-S., Shiau, T.-N., Tsai, Y.-J., Chang, T.-H.: Direct kinematic analysis of a 3-PRS parallel mechanism. Mechanism and Machine Theory 38, 71–83 (2003)

    Article  MATH  Google Scholar 

  15. Li, Y., Xu, Q.: Kinematic analysis of a 3-PRS parallel manipulator. Robotics and Computer-Integrated Manufacturing 23, 395–408 (2007)

    Article  Google Scholar 

  16. Carretero, J.A., Podhorodeski, R.P., Nahon, M.A., Gosselin, C.M.: Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator. Journal of Mechanical Design 122, 17–24 (2000)

    Article  Google Scholar 

  17. Pond, G., Carretero, J.A.: Quantitative dexterous workspace comparison of parallel manipulators. Mechanism and Machine Theory 42, 1388–1400 (2007)

    Article  MATH  Google Scholar 

  18. Pond, G., Carretero, J.A.: Formulating Jacobian matrices for the dexterity analysis of parallel manipulators. Mechanism and Machine Theory 41, 1505–1519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, K.M., Shah, D.K.: Kinematic Analysis of a Three-Degrees-of-Freedom In-Parallel Actuated Manipulator. IEEE Transactions on Robotics and Automation 4, 354–360 (1988)

    Article  Google Scholar 

  20. Sokolov, A., Xirouchakis, P.: Kinematics of a 3-DOF parallel manipulator with an R-P-S joint structure. Robotica 23, 207–217 (2005)

    Article  Google Scholar 

  21. Gallardo, J., Orozco, H., Rico, J.M.: Kinematics of 3-RPS parallel manipulators by means of screw theory. International Journal of Advanced Manufacturing Technology 36, 598–605 (2008)

    Article  Google Scholar 

  22. Madhani, A.J., Niemeyer, G., Salisbury, J.K.: The Black Falcon: A Teleporated Surgical Instrument for Minimally Invasive Surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 936–944 (1998)

    Google Scholar 

  23. Peirs, J., Brussel, H.V., Reynaerts, D., Gersem, G.D.: A Flexible Distal Tip with Two Degrees of Freedom for Enhanced Dexterity in Endoscopic Robot Surgery. In: The 13th Micromechanics Europe Workshop, pp. 271–274 (2002)

    Google Scholar 

  24. Simaan, N., Taylor, R., Flint, P.: A Dexterous System for Laryngeal Surgery, Multi-Backbone Bending Snake-like Slaves for Teleoperated Dexterous Surgical Tool Manipulation. In: The IEEE International Conference on Robotics and Automation, pp. 351–357 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Tokyo

About this paper

Cite this paper

Hong, M.B., Jo, YH. (2012). Prototype Design of Robotic Surgical Instrument for Minimally Invasive Robot Surgery. In: Dohi, T., Liao, H. (eds) Computer Aided Surgery. Proceedings in Information and Communications Technology, vol 3. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54094-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54094-6_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54093-9

  • Online ISBN: 978-4-431-54094-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics