Skip to main content

Sensing and Controlling Human Gaze in Daily Living Space for Human-Harmonized Information Environments

  • Chapter
  • First Online:
Human-Harmonized Information Technology, Volume 1

Abstract

This chapter introduces new techniques we developed for sensing and guiding human gaze non-invasively in daily living space. Such technologies are the key to realize human-harmonized information systems which can provide us various kinds of supports effectively without distracting our activities. Toward the goal of realizing non-invasive gaze sensing, we developed gaze estimation techniques, which requires very limited or no calibration effort by exploiting various cues such as spontaneous attraction of our visual attention to visual stimuli. For shifting our gaze to desired locations in a non-disturbing and natural way, we exploited two approaches for gaze control: subtle modulation of visual stimuli based on visual saliency models, and non-verbal gestures in human-robot interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    12 feature channels (intensity, 2 color opponents, 4 orientations, temporal onset and 4 directed motion energies) and 6 spatial scales, yielding \(12\times 6 = 72\) feature maps in total. In addition, 5 cascade detectors are implemented at every pixel in every feature map.

  2. 2.

    http://thediemproject.wordpress.com.

References

  1. R. Bailey, A. McNamara, N. Sudarsanam, C. Grimm, Subtle gaze direction. ACM Trans. Graph. (TOG) 28(4), 100 (2009)

    Article  Google Scholar 

  2. A. Borji, L. Itti, State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 185–207 (2013)

    Article  Google Scholar 

  3. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. M. Cerf, J. Harel, W. Einhäuser, C. Koch, Predicting human gaze using low-level saliency combined with face detection, in Advances in Neural Information Processing Systems (2008), pp. 241–248

    Google Scholar 

  5. I. Chamveha, Y. Sugano, D. Sugimura, T. Siriteerakul, T. Okabe, Y. Sato, A. Sugimoto, Head direction estimation from low resolution images with scene adaptation. Comput. Vis. Image Underst. 117(10), 1502–1511 (2013)

    Article  Google Scholar 

  6. D. Cornish, D. Dukette, The Essential 20: Twenty Components of an Excellent Health Care Team (Dorrance Publishing Co. Inc., 2010)

    Google Scholar 

  7. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in CVPR (1) (IEEE Computer Society, 2005), pp. 886–893

    Google Scholar 

  8. D. Das, M.M. Hoque, T. Onuki, Y. Kobayashi, Y. Kuno, Vision-based attention control system for socially interactive robots, in: IEEE International Symposium on Robot and Human Interactive Communication (Paris, France, 2012), pp. 496–502

    Google Scholar 

  9. D. Das, M.G. Rashed, Y. Kobayashi, Y. Kuno, Supporting human-robot interaction based on the level of visual focus of attention, in IEEE Transactions on Human-Machine Systems (Accepted for Publication)

    Google Scholar 

  10. G. Evangelopoulos, A. Zlatintsi, A. Potamianos, P. Maragos, K. Rapantzikos, G. Skoumas, Y. Avrithis, Multimodal saliency and fusion for movie summarization based on aural, visual, and textual attention. IEEE Trans. Multimedia 15(7), 1553–1568 (2013)

    Article  Google Scholar 

  11. Y. Furukawa, J. Ponce, Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  12. A.J. Glenstrup, T. Engell-Nielsen, Eye controlled media: present and future state. Ph.D. thesis, Information Psychology, University of Copenhagen, DIKU, DK-2100, Denmark, 1995

    Google Scholar 

  13. A. Hagiwara, A. Sugimoto, K. Kawamoto, Saliency-based image editing for guiding visual attention, in Proceedings of the 1st International Workshop on Pervasive Eye Tracking and Mobile Eye-Based Interaction (ACM, 2011), pp. 43–48

    Google Scholar 

  14. A. Hagiwara, A. Sugimoto, K. Kawamoto, Saliency-based image editing for guiding visual attention, in Proceedings of the 1st International Workshop on Pervasive Eye Tracking & #38; Mobile Eye-based Interaction, PETMEI ’11 (ACM, New York, 2011), pp. 43–48

    Google Scholar 

  15. Y.S. Hajime Hata Hideki Koike, Visual attention guidance using image resolution control. J. Inf. Proc. Soc. Jpn. 56(4), 1142–1151 (2015)

    Google Scholar 

  16. D.W. Hansen, Q. Ji, In the eye of the beholder: a survey of models for eyes and gaze. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 478–500 (2010)

    Article  Google Scholar 

  17. J. Harel, C. Koch, P. Perona, Graph-based visual saliency, in Advances in Neural Information Processing Systems (2006), pp. 545–552

    Google Scholar 

  18. M.M. Hoque, D. Das, T. Onuki, Y. Kobayashi, Y. Kuno, An integrated approach of attention control of target human by nonverbal behaviors of robots in different viewing situations, in IROS (IEEE, 2012), pp. 1399–1406

    Google Scholar 

  19. M.M. Hoque, T. Onuki, Y. Kobayashi, Y. Kuno, Effect of robot’s gaze behaviors for attracting and controlling human attention. Adv. Robot. 27(11), 813–829 (2013)

    Article  Google Scholar 

  20. L. Itti, P. Baldi, Bayesian surprise attracts human attention. Vis. Res. 49(10), 1295–1306 (2009)

    Article  Google Scholar 

  21. L. Itti, N. Dhavale, F. Pighin, Realistic avatar eye and head animation using a neurobiological model of visual attention, in Optical Science and Technology, SPIE’s 48th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 64–78

    Google Scholar 

  22. L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  23. T. Joachims, Making large-scale svm learning practical, in Advances in Kernel Methods—Support Vector Learning (1999)

    Google Scholar 

  24. J.C. Karremans, W. Stroebe, Beyond vicary’s fantasies: the impact of subliminal priming and brand choice. J. Exp. Soc. Psychol. 792–798 (2006)

    Google Scholar 

  25. D. Kahneman, Attention and Effort (Prentice-Hall, 1973)

    Google Scholar 

  26. Y. Kim, A. Varshney, Persuading visual attention through geometry. IEEE Trans. Visual. Comput. Graph. 14(4), 772–782 (2008)

    Article  Google Scholar 

  27. H. Kobayashi, S. Kohshima, Unique morphology of the human eye and its adaptive meaning: comparative studies on external morphology of the primate eye. J. Hum. Evol. 40, 419–435 (2001)

    Article  Google Scholar 

  28. K. Liang, Y. Chahir, M. Molina, C. Tijus, F. Jouen, Appearance-based gaze tracking with spectral clustering and semi-supervised gaussian process regression, in ETSA (2013), pp. 17–23

    Google Scholar 

  29. F. Lu, T. Okabe, Y. Sugano, Y. Sato, Learning gaze biases with head motion for head pose-free gaze estimation. Image Vis. Comput. 32(3), 169–179 (2014)

    Article  Google Scholar 

  30. F. Lu, Y. Sugano, T. Okabe, Y. Sato, Adaptive linear regressionfor appearance-based gaze estimation. IEEE Trans. Pattern Anal. Mach. Intell. 10, 2033–2046 (2014)

    Article  Google Scholar 

  31. F. Martinez, A. Carbone, E. Pissaloux, Gaze estimation using local features and non-linear regression, in ICIP (2012), pp. 1961–1964

    Google Scholar 

  32. J. Nakajima, A. Kimura, A. Sugimoto, K. Kashino, Visual attention driven by auditory cues—selecting visual features in synchronization with attracting auditory events, in MultiMedia Modeling—21st International Conference, MMM 2015 (Sydney, NSW, Australia, January 5–7, 2015), Proceedings, Part II (2015), pp. 74–86

    Google Scholar 

  33. J. Nakajima, A. Sugimoto, K. Kawamoto, Incorporating audio signals into constructing a visual saliency map, in Image and Video Technology (Springer, 2014), pp. 468–480

    Google Scholar 

  34. B. Noris, K. Benmachiche, A. Billard, Calibration-free eye gaze direction detection with gaussian processes, in VISAPP (2008), pp. 611–616

    Google Scholar 

  35. T. Onuki, K. Ida, T. Ezure, T. Ishinoda, K. Sano, Y. Kobayashi, Y. Kuno, Designing robot eyes and head and their motions for gaze communication. Int. Conf. Intell. Comput. (ICIC2014) LNCS8588, 607–618 (2014)

    Google Scholar 

  36. T. Onuki, T. Ishinoda, E. Tsuburaya, Y. Miyata, Y. Kobayashi, Y. Kuno, Designing robot eyes for communicating gaze. Interact. Stud. 14(3), 451–479 (2013)

    Google Scholar 

  37. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (The MIT Press, 2006)

    Google Scholar 

  38. M. Rolf, M. Asada, Visual attention by audiovisual signal-level synchrony, in Proceedings of the 9th ACM/IEEE International Conference on Human-Robot Interaction Workshop on Attention Models in Robotics: Visual Systems for Better HRI (2014)

    Google Scholar 

  39. J. Ruesch, M. Lopes, A. Bernardino, J. Hornstein, J. Santos-Victor, R. Pfeifer, Multimodal saliency-based bottom-up attention a framework for the humanoid robot icub, in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on (IEEE, 2008), pp. 962–967

    Google Scholar 

  40. B. Schauerte, B. Kühn, K. Kroschel, R. Stiefelhagen, Multimodal saliency-based attention for object-based scene analysis, in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on (IEEE, 2011), pp. 1173–1179

    Google Scholar 

  41. B. Schauerte, R. Stiefelhagen, “wow!” bayesian surprise for salient acoustic event detection, in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on (IEEE, 2013), pp. 6402–6406

    Google Scholar 

  42. R. Stiefelhagen, J. Yang, A. Waibel, Modeling focus of attention for meeting indexing based on multiple cues. IEEE Trans. Neural Netw. 13(4), 928–938 (2002)

    Article  Google Scholar 

  43. W. Stroebe, The subtle power of hidden messages. Sci. Am. Mind 23, 46–51 (2012)

    Article  Google Scholar 

  44. Y. Sugano, Y. Matsushita, Y. Sato, Appearance-based gaze estimation using visual saliency. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 329–341 (2013)

    Article  Google Scholar 

  45. Y. Sugano, Y. Matsushita, Y. Sato, Learning-by-synthesis for appearance-based 3d gaze estimation, in Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014) (IEEE, 2014), pp. 1821–1828

    Google Scholar 

  46. K. Tan, D. Kriegman, N. Ahuja, Appearance-based eye gaze estimation, in WACV (2002), pp. 191–195

    Google Scholar 

  47. X. Tan, L. Qiao, W. Gao, J. Liu, Robust faces manifold modeling: most expressive versus most Sparse criterion, in ICCV Workshops (2010), pp. 139–146

    Google Scholar 

  48. F. Tarrés, Gtav face database, http://gps-tsc.upc.es/GTAV/ResearchAreas/UPCFaceDatabase/GTAVFaceDatabase.htm

  49. A. Wagner, J. Wright, A. Ganesh, Z. Zhou, Y. Ma, Towards a practical face recognition system: robust registration and illumination by sparse representation. CVPR 2009, 597–604 (2009)

    Google Scholar 

  50. C. Ware, Information Visulization: Perception for Design (Morgan Kaufmann Publishers Inc., San Francisco, 2004)

    Google Scholar 

  51. O. Williams, A. Blake, R. Cipolla, Sparse and semi-supervised visual mapping with the S3GP, in CVPR (2006), pp. 230–237

    Google Scholar 

  52. J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma, Robust face recognition via sparse representation. PAMI 31(2), 210–227 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this chapter was supported by CREST, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Sato, Y., Sugano, Y., Sugimoto, A., Kuno, Y., Koike, H. (2016). Sensing and Controlling Human Gaze in Daily Living Space for Human-Harmonized Information Environments. In: Nishida, T. (eds) Human-Harmonized Information Technology, Volume 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55867-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55867-5_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55865-1

  • Online ISBN: 978-4-431-55867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics