Skip to main content

Scalable Formation Control of Multi-robot Chain Networks Using a PDE Abstraction

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 112 ))

Abstract

This work investigates the application of boundary control of the wave equation to achieve leader-induced formation control of a multi-robot network with a chain topology. In contrast to previous related work on controlling formations of single integrator agents, we consider a model for double integrator agents. For trajectory planning, we use the flatness based method for assigning trajectories to leader agents so that the agents’ trajectories and control inputs are computed in a decentralized way. We show how the approximation greatly simplifies the planning problem and the resulting synthesized controls are bounded and independent of the number of agents in the network. We validate our formation control approach with simulations of 100 and 1000 agents that converge to configurations on three different type of target curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bamieh, B., Jovanovic, M.R., Mitra, P., Patterson, S.: Coherence in large-scale networks: dimension-dependent limitations of local feedback. IEEE Trans. Autom. Control 57(9), 2235–2249 (2012)

    Article  MathSciNet  Google Scholar 

  2. Barooah, P., Mehta, P.G., Hespanha, J.P.: Mistuning-based control design to improve closed-loop stability margin of vehicular platoons. IEEE Trans. Autom. Control 54(9), 2100–2113 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bertozzi, A.L., Kemp, M., Marthaler, D.: Determining environmental boundaries: asynchronous communication and physical scales. In: Cooperative Control, pp. 25–42. Springer (2005)

    Google Scholar 

  4. Bliman, P.A., Ferrari-Trecate, G.: Average consensus problems in networks of agents with delayed communications. Automatica 44(8), 1985–1995 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chapman, A., Mesbahi, M.: Advection on graphs. In: Proceedings of the IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 1461–1466. IEEE (2011)

    Google Scholar 

  6. Curtain, R.F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory, vol. 21. Springer (1995)

    Google Scholar 

  7. Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res. Part B: Methodol. 29(4), 277–286 (1995)

    Article  Google Scholar 

  8. Frihauf, P., Krstic, M.: Leader-enabled deployment onto planar curves: a PDE-based approach. IEEE Trans. Autom. Control 56(8), 1791–1806 (2011)

    Article  MathSciNet  Google Scholar 

  9. Glowinski, R., Lions, J.L.: Exact and approximate controllability for distributed parameter systems. Acta Numer. 3, 269–378 (1994). doi:10.1017/S0962492900002452

    Article  MathSciNet  MATH  Google Scholar 

  10. Jovanovic, M., Bamieh, B.: On the ill-posedness of certain vehicular platoon control problems. IEEE Trans. Autom. Control 50(9), 1307–1321 (2005)

    Article  MathSciNet  Google Scholar 

  11. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the IEEE Conference on Decision and Control (CDC), vol. 3, pp. 2968–2973. IEEE (2001)

    Google Scholar 

  12. Meurer, T.: Control of Higher-Dimensional PDEs. Springer (2012)

    Google Scholar 

  13. Meurer, T., Krstic, M.: Finite-time multi-agent deployment: a nonlinear PDE motion planning approach. Automatica 47(11), 2534–2542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Micu, S.: Uniform boundary controllability of a semidiscrete 1-D wave equation with vanishing viscosity. SIAM J. Control Optim. 47(6), 2857–2885 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ogren, P., Egerstedt, M., Hu, X.: A control Lyapunov function approach to multi-agent coordination. In: Proceedings of the IEEE Conference on Decision and Control (CDC), vol. 2, pp. 1150–1155. IEEE (2001)

    Google Scholar 

  16. Pasqualetti, F., Zampieri, S., Bullo, F.: Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1(1), 40–52 (2014). doi:10.1109/TCNS.2014.2310254

    Article  MathSciNet  Google Scholar 

  17. Pimenta, L.C., Michael, N., Mesquita, R.C., Pereira, G.A., Kumar, V.: Control of swarms based on hydrodynamic models. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1948–1953. IEEE (2008)

    Google Scholar 

  18. Ren, W., Beard, R.: Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. Springer (2007)

    Google Scholar 

  19. Rouchon, P.: Motion planning, equivalence, infinite dimensional systems. Int’l. J. Appl. Math. Comput. Sci. 11, 165–188 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Sarlette, A., Sepulchre, R.: A PDE viewpoint on basic properties of coordination algorithms with symmetries. In: Proceedings of the IEEE Conference Decision and Control, held jointly with the Chinese Control Conference (CDC/CCC), pp. 5139–5144. IEEE (2009)

    Google Scholar 

  21. Sira-Ramirez, H., Agrawal, S.K.: Differentially Flat Systems, vol. 17. CRC Press (2004)

    Google Scholar 

  22. Woittennek, F.: On flatness and controllability of simple hyperbolic distributed parameter systems. In: Proceedings of the 18th IFAC World Congress, pp. 14,452–14,457. Milano, Italy (2011). doi:10.3182/20110828-6-IT-1002.02618

    Google Scholar 

  23. Yan, G., Ren, J., Lai, Y.C., Lai, C.H., Li, B.: Controlling complex networks: how much energy is needed? Phys. Rev. Lett. 108(21), 218703 (2012)

    Google Scholar 

  24. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spring Berman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Elamvazhuthi, K., Berman, S. (2016). Scalable Formation Control of Multi-robot Chain Networks Using a PDE Abstraction. In: Chong, NY., Cho, YJ. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 112 . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55879-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55879-8_25

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55877-4

  • Online ISBN: 978-4-431-55879-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics