Skip to main content

Distributed Co-optimisation of Throughput for Mobile Sensor Networks

  • Conference paper
  • First Online:
Book cover Distributed Autonomous Robotic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 112 ))

  • 1925 Accesses

Abstract

We study the problems of throughput optimisation of mobile sensor networks. A network of mobile sensor nodes equipped with limited sensing and communication capabilities for connectivity maintenance and measurement of quality of communication links with the nearest neighbours is deployed to exploit and collect environmental data. Communication throughput of the multi-hop ad-hoc network of mobile sensor nodes is maximised for fast and reliable data transmission from sources to destinations. We propose a method of designing the distributed control for mobile sensor nodes for throughput optimisation in two stages: (1) position-aware optimisation and (2) communication-aware optimisation. We demonstrate effectiveness of the method through Monte-Carlo simulation based statistical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanner, H., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part I: fixed topology. In: IEEE Conference on Decision and Control, pp. 2010–2015 (2003)

    Google Scholar 

  2. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part II: dynamic topology. In: IEEE Conference On Decision And Control, pp. 2016–2021 (2003)

    Google Scholar 

  3. Kim, D.H., Wang, H., Shin, S.: Decentralized control of autonomous swarm systems using artificial potential functions: analytical design guidelines. J. Intell. Robotic Syst. 45(4), 369–394 (2006)

    Google Scholar 

  4. Ji, M., Egerstedt, M.: Distributed coordination control of multiagent systems while preserving connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007)

    Article  Google Scholar 

  5. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  6. Olfati-saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51, 401–420 (2006)

    Google Scholar 

  7. Dimarogonas, D.V., Kyriakopoulos, K.J.: Connectedness preserving distributed swarm aggregation for multiple kinematic robots. IEEE Trans. Robot. 24(5), 1213–1223 (2008)

    Article  Google Scholar 

  8. Stump, E., Jadbabaie, A., Kumar, V.: Connectivity management in mobile robot teams. In: ICRA, pp. 1525–1530 (2008)

    Google Scholar 

  9. Schwager, M., Rus, D., Slotine, J.J.: Unifying geometric, probabilistic, and potential field approaches to multi-robot deployment. Int. J. Robot. Res. 30(3), 371–383 (2011)

    Article  MATH  Google Scholar 

  10. Tu, Z., Wang, Q., Qi, H., Shen, Y.: Flocking based distributed self-deployment algorithms in mobile sensor networks. J. Parallel Distrib. Comput. 72(3), 437–449 (2012)

    Article  MATH  Google Scholar 

  11. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  12. Elkaim, G.H., Kelbley, R.J.: Extension of a lightweight formation control methodology to groups of autonomous vehicles. In: ISAIRAS. Muchen (2005)

    Google Scholar 

  13. Reif, J.H., Wang, H.: Social potential fields: A distributed behavioral control for autonomous robots. Robot. Auton. Syst. (1999)

    Google Scholar 

  14. Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton. Robots 17, 137–162 (2004)

    Article  Google Scholar 

  15. Ge, S.S., Fua, C.H.: Queues and artificial potential trenches for multi-robot formations. IEEE Trans. Robot. 21(4), 646–656 (2005)

    Google Scholar 

  16. Andrew Howard, M.J.M., Sukhatme, G.S.: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In: Proceedings of the International Symposium on Distributed Autonomous Robotic Systems, pp. 299–308 (2002)

    Google Scholar 

  17. Mikkelsen, S.B., Jespersen, R., Ngo, T.D.: Probabilistic communication based potential force for robot formations: a practical approach. In: DARS, pp. 243–253 (2010)

    Google Scholar 

  18. Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 10(4), 477–486 (2002)

    Article  Google Scholar 

  19. de Moraes, R.M., Sadjadpour, H.R., Garcia-Luna-Aceves, J.J.: Mobility-capacity-delay trade-off in wireless ad hoc networks. Ad Hoc Netw. 4(5), 607–620 (2006)

    Article  Google Scholar 

  20. Mostofi, Y.: Decentralized communication-aware motion planning in mobile networks: an information-gain approach. J. Intell. Robot. Syst. 56(1–2), 233–256 (2009)

    Article  MATH  Google Scholar 

  21. Ngo, T.D.: Linkmind: link optimization in swarming mobile sensor networks. Sensors 11(8), 8180–8202 (2011)

    Article  Google Scholar 

  22. Seol, J.Y., Kim, S.L.: Node mobility and capacity in wireless controllable ad hoc networks. Comput. Commun. 35(11), 1345–1354 (2012)

    Article  Google Scholar 

  23. Natalizio, E., Loscrì, V.: Controlled mobility in mobile sensor networks: advantages, issues and challenges. Telecommun. Syst. 52(4), 2411–2418 (2013)

    Article  Google Scholar 

  24. Ford, L., Fulkerson, D.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haenggi, M.: Analysis and design of diversity schemes for ad hoc wireless networks. IEEE J. Sel. Areas Commun. 23(1), 19–27 (2005)

    Article  Google Scholar 

  26. Liu, X., Haenggi, M.: Throughput analysis of fading sensor networks with regular and random topologies. EURASIP J. Wirel. Commun. Netw. 2005(4), 554–564 (2005)

    Article  MATH  Google Scholar 

  27. Fida, A., Iqbal, M., Ngo, T.D.: Communication—and position-aware reconfigurable route optimization in large-scale mobile sensor networks. EURASIP J. Wirel. Commun. Netw. 2014, 207 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the University Research Grant (UBD/PNC2/2/RG/1(259)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung Dung Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Ngo, T.D. (2016). Distributed Co-optimisation of Throughput for Mobile Sensor Networks. In: Chong, NY., Cho, YJ. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 112 . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55879-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55879-8_29

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55877-4

  • Online ISBN: 978-4-431-55879-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics