Skip to main content

Information Processing with Structured Chemical Excitable Medium

  • Conference paper
Natural Computing

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 1))

Abstract

It is well known that an excitable medium can be used for information processing with pulses of excitation. In such medium messages can be coded or in the number of pulses or in the sequences of times separating subsequent excitations. Information is processed as the result of two major effects: interactions between pulses and interactions between a pulse and the environment. The properties of excitable medium provide us with a number of features remaining those characterizing biological information processing. For example, pulses of excitation appear as the result of an external stimulus and they can propagate in a homogeneous medium with a constant velocity and a stationary shape dissipating medium energy.

In the paper we focus our attention on a quite specific type of nonhomogeneous medium that has intentionally introduced geometrical structure of regions characterized by different excitability levels. Considering numerical simulations based on simple reaction-diffusion models and experiments with Bielousov-Zhabotinsky reaction we show that in information processing applications the geometry plays equally important role as the dynamics of the medium. A chemical realization of simple information processing devices like logical gates or memory cells are presented. Combining these devices as building blocks we can perform complex signal processing operations like, for example, excitation counting. We also demonstrate that a structured excitable medium can perform sensing functions because it is able to determine a distance separating observer from the source or sense the rate of changes in excitability level. Talking about the perspectives we present ideas for programming information processing medium with excitation pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feynman, R.P., Allen, R.W., Heywould, T.: Feynman Lectures on Computation. Perseus Books, New York (2000)

    Google Scholar 

  2. Calude, C.S., Paun, G.: Computing with cells and atoms. Taylor and Francis, London (2002)

    Google Scholar 

  3. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  4. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers. Elsevier Science, UK (2005)

    Google Scholar 

  5. Kapral, R., Showalter, K.: Chemical Waves and Patterns. Kluwer Academic, Dordrecht (1995)

    Google Scholar 

  6. Kuhnert, L., Agladze, K.I., Krinsky, V.I.: Image processing using light-sensitive chemical waves. Nature 337, 244–247 (1989)

    Article  Google Scholar 

  7. Rambidi, N.G., Maximychev, A.V.: Towards a Biomolecular Computer. Information Processing Capabilities of Biomolecular Nonlinear Dynamic Media. BioSystems 41, 195–211 (1997)

    Article  Google Scholar 

  8. Szymanski, J.: Private information (2008)

    Google Scholar 

  9. Kawczynski, A.L., Legawiec, B.: Two-dimensional model of a reaction-diffusion system as a typewriter. Phys. Rev. E 64, 056202(1-4) (2001)

    Google Scholar 

  10. Kawczynski, A.L., Legawiec, B.: A two-dimensional model of reaction-diffusion system as a generator of Old Hebrew letters. Pol. J. Chem. 78, 733–739 (2004)

    Google Scholar 

  11. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    MATH  Google Scholar 

  12. Mikhailov, A.S., Showalter, K.: Control of waves, patterns and turbulence in chemical systems. Phys. Rep. 425, 79–194 (2006)

    Article  MathSciNet  Google Scholar 

  13. Krischer, K., Eiswirth, M., Ertl, G.J.: Oscillatory CO oxidation on Pt(110): modelling of temporal self-organization. J.Chem. Phys. 96, 9161–9172 (1992)

    Article  Google Scholar 

  14. Gorecki, J., Kawczynski, A.L.: Molecular dynamics simulations of a thermochemical system in bistable and excitable regimes. J. Phys. Chem. 100, 19371–19379 (1996)

    Article  Google Scholar 

  15. Steinbock, O., Toth, A., Showalter, K.: Navigating complex labyrinths - optimal paths from chemical waves. Science 267, 868–871 (1995)

    Article  Google Scholar 

  16. Toth, A., Showalter, K.: Logic gates in excitable media. J. Chem. Phys. 103, 2058–2066 (1995)

    Article  Google Scholar 

  17. Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)

    Article  Google Scholar 

  18. Gaspar, V., Bazsa, G., Beck, M.T.: The influence of visible light on the Belousov–Zhabotinskii oscillating reactions applying different catalysts. Z. Phys. Chem(Leipzig) 264, 43–48 (1983)

    Google Scholar 

  19. Krug, H.J., Pohlmann, L., Kuhnert, L.: Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov–Zhabotinskii systems. J. Phys. Chem. 94, 4862–4866 (1990)

    Article  Google Scholar 

  20. Amemiya, T., Ohmori, T., Yamaguchi, T.: An Oregonator-class model for photoinduced Behavior in the Ru(bpy)\(_{3}^{2+}\)–Catalyzed Belousov–Zhabotinsky reaction. J. Phys. Chem. A. 104, 336–344 (2000)

    Article  Google Scholar 

  21. Motoike, I., Yoshikawa, K.: Information Operations with an Excitable Field. Phys. Rev. E 59, 5354–5360 (1999)

    Article  Google Scholar 

  22. Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. J. Phys. Chem. A 107, 1664–1669 (2003)

    Article  Google Scholar 

  23. Gorecka, J., Gorecki, J.: Multiargument logical operations performed with excitable chemical medium. J. Chem. Phys. 124, 084101 (2006)

    Article  Google Scholar 

  24. Haken, H.: Brain Dynamics. Springer Series in Synergetics. Springer, Berlin (2002)

    MATH  Google Scholar 

  25. Agladze, K., Aliev, R.R., Yamaguchi, T., Yoshikawa, K.: Chemical diode. J. Phys. Chem. 100, 13895–13897 (1996)

    Article  Google Scholar 

  26. Sielewiesiuk, J., Gorecki, J.: Chemical impulses in the perpendicular junction of two channels. Acta Phys. Pol. B 32, 1589–1603 (2001)

    Google Scholar 

  27. Sielewiesiuk, J., Gorecki, J.: Logical functions of a cross junction of excitable chemical media. J. Phys. Chem. A 105, 8189–8195 (2001)

    Article  Google Scholar 

  28. Dolnik, M., Finkeova, I., Schreiber, I., Marek, M.: Dynamics of forced excitable and oscillatory chemical-reaction systems. J. Phys. Chem. 93, 2764–2774 (1989); Finkeova, I., Dolnik, M., Hrudka, B., Marek, M.: Excitable chemical reaction systems in a continuous stirred tank reactor. J. Phys. Chem. 94, 4110–4115 (1990); Dolnik, M., Marek, M.: Phase excitation curves in the model of forced excitable reaction system. J. Phys. Chem. 95, 7267–7272 (1991); Dolnik, M., Marek, M., Epstein, I.R.: Resonances in periodically forced excitable systems. J. Phys. Chem. 96, 3218–3224 (1992)

    Google Scholar 

  29. Suzuki, K., Yoshinobu, T., Iwasaki, H.: Unidirectional propagation of chemical waves through microgaps between zones with different excitability. J. Phys. Chem. A 104, 6602–6608 (2000)

    Article  Google Scholar 

  30. Sielewiesiuk, J., Gorecki, J.: On complex transformations of chemical signals passing through a passive barrier. Phys. Rev. E 66, 016212 (2002); Sielewiesiuk, J., Gorecki, J.: Passive barrier as a transformer of chemical signal frequency. J. Phys. Chem. A 106, 4068–4076 (2002)

    Article  Google Scholar 

  31. Taylor, A.F., Armstrong, G.R., Goodchild, N., Scott, S.K.: Propagation of chemical waves across inexcitable gaps. Phys. Chem. Chem. Phys. 5, 3928–3932 (2003)

    Article  Google Scholar 

  32. Armstrong, G.R., Taylor, A.F., Scott, S.K., Gaspar, V.: Modelling wave propagation across a series of gaps. Phys. Chem. Chem. Phys. 6, 4677–4681 (2004)

    Article  Google Scholar 

  33. Gorecki, J., Gorecka, J.N., Yoshikawa, K., Igarashi, Y., Nagahara, H.: Sensing the distance to a source of periodic oscillations in a nonlinear chemical medium with the output information coded in frequency of excitation pulses. Phys. Rev. E 72, 046201 (2005)

    Article  Google Scholar 

  34. Tanaka, M., Nagahara, H., Kitahata, H., Krinsky, V., Agladze, K., Yoshikawa, K.: Survival versus collapse: Abrupt drop of excitability kills the traveling pulse, while gradual change results in adaptation. Phys. Rev. E 76, 016205 (2007)

    Article  Google Scholar 

  35. Lázár, A., Noszticzius, Z., Försterling, H.-D., Nagy-Ungvárai, Z.: Chemical pulses in modified membranes I. Developing the technique. Physica D 84, 112–119 (1995); Volford, A., Simon, P.L., Farkas, H., Noszticzius, Z.: Rotating chemical waves: theory and experiments. Physica A 274, 30–49 (1999)

    Article  Google Scholar 

  36. Nagai, Y., Gonzalez, H., Shrier, A., Glass, L.: Paroxysmal Starting and Stopping of Circulatong Pulses in Excitable Media. Phys. Rev. Lett. 84, 4248–4251 (2000)

    Article  Google Scholar 

  37. Noszticzuis, Z., Horsthemke, W., McCormick, W.D., Swinney, H.L., Tam, W.Y.: Sustained chemical pulses in an annular gel reactor: a chemical pinwheel. Nature 329, 619–620 (1987)

    Article  Google Scholar 

  38. Motoike, I.N., Yoshikawa, K., Iguchi, Y., Nakata, S.: Real–Time Memory on an Excitable Field. Phys. Rev. E 63, 036220 (2001)

    Article  Google Scholar 

  39. Gorecki, J., Gorecka, J.N.: On mathematical description of information processing in chemical systems. In: Mathematical Approach to Nonlinear Phenomena; Modeling, Analysis and Simulations, GAKUTO International Series, Mathematical Sciences and Applications, vol. 23, pp. 73–90 (2005) ISBN 4762504327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Tokyo

About this paper

Cite this paper

Gorecki, J., Gorecka, J.N., Igarashi, Y., Yoshikawa, K. (2009). Information Processing with Structured Chemical Excitable Medium. In: Suzuki, Y., Hagiya, M., Umeo, H., Adamatzky, A. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88981-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-88981-6_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-88980-9

  • Online ISBN: 978-4-431-88981-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics