Skip to main content

Orientational Selectivity is Retained in Zero-Crossings Obtained Via Stochastic Resonance

  • Conference paper
  • First Online:
  • 1660 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 202))

Abstract

Computational theory of visual information processing suggest that the initial stages information processing consists of in part representation of zero crossing in the visual scene filtered through a suitable second order differential operator (centre-surround receptive field). These zero crossings often correspond to sharp intensity changes in the visual scene and are rich in information. We report here our investigation, through simulation study, on the role of zero crossings in orientational selectivity measurement. We show that the perceptive contrast sensitivity of zero-crossing of sub-threshold noise contaminated grating image exhibit stochastic resonance. We also show that the contrast sensitivity of test grating, in the presence of a masking grating, decreases with the increase of masking contrast. The qualitative nature of the contrast sensitivity variations are in agreement with the results of various phychophysical experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Douglass, J. K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance, Nature, 365,337-340 (1993).

    Google Scholar 

  • Levin, J. E., Miller, J. P.: Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance, Nature, 380, 165-168 (1996).

    Google Scholar 

  • Chiou-Tan, F.Y., Magee, K.N., Robinson, L.R., Nelson, M.R., Tuel, S.S., Krouskop, T.A., Moss, F.: Enhancement of Subthreshold Sensory Nerve Action Potentials During Muscle Tension Mediated Noise. Intern. J. Bifurc. Chaos, 7, 1389. (1996).

    Google Scholar 

  • Collins, J. J., Imhoff, T. T., Grigg, P.: Noise-enhanced tactile sensation. Nature, 383, 770. (1996).

    Google Scholar 

  • Kitajo, K., Nozaki, D., Ward, L.M., Yamamoto, Y.: Behavioral Stochastic Resonance within the Human Brain. Phys.Rev. Lett. 90, 218103 (2003).

    Google Scholar 

  • Mori, T., Kai, S.: Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves, Phys. Rev. Lett. 88, 218101 (2002).

    Google Scholar 

  • Simonotto, E., Riani, M., Seife, C., Roberts, M., Twitty, J., Moss, F.: Visual Perception of Stochastic Resonance. Phys. Rev. Lett. 78, 1186-1189 (1997).

    Google Scholar 

  • Goris, R. L. T., Zaenen, P., Wagemans, J.: Some observations on contrast detection in noise. Journal of Vision 8(9):4, 1-15 (2008).

    Google Scholar 

  • Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W H Freeman and Company, New York (1982).

    Google Scholar 

  • Marr, D., Hildreth, E.: Theory of Edge Detection. Proc. R. Soc. Lond. Series B, Biological Sciences. 207. 187-217 (1980).

    Google Scholar 

  • Marr, D., Ullman, S., Poggio, T.: Bandpass channels, Zero crossings, and early visual Information processing. J. Opt. Soc. Am., 69(6), 914-916 (1979).

    Google Scholar 

  • Marr, D., Ullman, S.: Directional selectivity and its use in early visual processing. Proc. Soc. Lond. B 211, 151-180 (1981).

    Google Scholar 

  • Licklider, J. C. R., Pollack, I.: Effects of differentiation, integration and infinite peak clipping upon the intelligibility of speech. J. Acoust. Soc. Amer., 20, 42-51 (1948).

    Google Scholar 

  • Curtis, S. R., Oppenheim, A. V., Lim, J. S.: Reconstruction of two-dimensional signals from threshold crossings. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ‘85, 10, 1057 – 1060 (1985).

    Google Scholar 

  • Campbell, F. W. and Kulikowski, J. J. : Orientational selectivity of the human visual system. J. Physiol. (1966), 187, 437-445 (1966).

    Google Scholar 

  • Marr, D., Poggio, T., Ullman, S. J.: Opt. Soc. Am. 70: 868-70 (1979).

    Google Scholar 

  • Ullman, S.: Artificial Intelligence and The Brain: Computational Studies of the Visual System. Ann. Rev. Neuroscience, 9, 1-26 (1986).

    Google Scholar 

  • Sarkar, S., Ghosh, K., Bhaumik, K.: Proceedings of the 3rd Indian International Conference on Artificial Intelligence, Pune, India, December (2007), ISBN 978-0-9727412-2-4.

    Google Scholar 

  • Mach, E. (1868). On the physiological effects of spatially distributed light stimuli. Translated in F Ratliff, “Mach Bands: Quantitative Studies on Neural Networks in the Retina,” Holden-Day, Sanfrancisco, 299-306, (1965).

    Google Scholar 

  • Mead, C.: Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1639-1636 (1990).

    Google Scholar 

  • Koenderink, J. J. : The Structure of Images. Biological Cybernetics, 50, 363–370 (1984).

    Google Scholar 

  • Lindeberg, T. : Scale-Space Theory: A Basic Tool for Analyzing Structures at Different Scales. Journal of Applied Statistics 21 (2), 224–270 (1994).

    Google Scholar 

  • Yuille, A. L., and Poggio, T.A.: Scaling Theorems for Zero Crossings. IEEE Trans. Pattern Analysis & Machine Intelligence, PAMI-8(1), 15–25 (1986).

    Google Scholar 

  • Young, R. A.: The Gaussian derivative model for spatial vision: I. Retinal mechanisms. Spatial Vision2 (4), 273–293 (1987).

    Google Scholar 

  • Young, R. A., Lesperance, R. M., and Meyer, W. W.: The Gaussian Derivative model for spatial-temporal vision: I. Cortical model. Spatial Vision 14 (3-4), 261–319 (2001).

    Google Scholar 

  • Gingl, Z., Kiss, L. B., Moss, F.: Non-Dynamical Stochastic Resonance: Theory and Experiments with White and Arbitrarily Colored Noise. Europhys.Lett.29 (3), 191-196 (1995).

    Google Scholar 

  • Gingl, Z., Kiss, L., Moss, F.: Nuovo Cimento D, 17, 795 (1995).

    Google Scholar 

  • Campbell, F. W., Robson, J. G.: Application of Fourier analysis to the visibility of grating, J. Physiol. 197, 551-566 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajanta Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this paper

Cite this paper

Kundu, A., Sarkar, S. (2013). Orientational Selectivity is Retained in Zero-Crossings Obtained Via Stochastic Resonance. In: Bansal, J., Singh, P., Deep, K., Pant, M., Nagar, A. (eds) Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). Advances in Intelligent Systems and Computing, vol 202. Springer, India. https://doi.org/10.1007/978-81-322-1041-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1041-2_17

  • Published:

  • Publisher Name: Springer, India

  • Print ISBN: 978-81-322-1040-5

  • Online ISBN: 978-81-322-1041-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics