Skip to main content

A Broyden’s Method Based High Speed Jacobean Matrix Calculator (JMC) for Electrical Impedance Tomography (EIT)

  • Conference paper
  • First Online:
Proceedings of the Third International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 259))

  • 1537 Accesses

Abstract

Electrical Impedance Tomography (EIT) essentially needs the Jacobean matrix to reconstruct the conductivity distribution of the domain under test. A Broyden’s method based high speed Jacobean matrix (J) calculator is proposed for Electrical Impedance Tomography (EIT). The Gauss-Newton-based EIT image reconstruction algorithm repetitively calculates the Jacobian matrix (J) which needs a lot of computation time and cost. Broyden’s method based high speed Jacobean matrix calculator (JMC) makes explicit use of secant and adjoint information that can be obtained from the forward solution of the EIT. The Broyden’s method based high speed Jacobean matrix calculator (JMC) approaches reduce the computational time remarkably by approximating the system Jacobian (J) successively through low-rank updates. The performance of the JMC is studied with simulated EIT data and the results are compared with Gauss-Newton method based EIT reconstruction. Simulated results show that the Broyden’s method based image reconstruction algorithm accelerates the reconstruction speed remarkably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webster, J.G.: Electrical Impedance Tomography. Adam Hilger Series of Biomedical Engineering. Adam Hilger, New York (1990)

    Google Scholar 

  2. Bera T. K., Nagaraju J.: Switching of a sixteen electrode array for wireless EIT system using a RF-based 8-bit digital data transmission technique. In: Communications in Computer and Information Science, Part I, CCIS 269, ObCom 2011, pp. 202–211, Springer (2012)

    Google Scholar 

  3. Bera T.K.: Studies on multi frequency electrical impedance tomography (EIT) to improve the impedance imaging for biomedical applications. Ph.D. Thesis, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore

    Google Scholar 

  4. Seo, J.K., Woo, E.J.: Nonlinear Inverse Problems in Imaging, 1st edn. Wiley (2012)

    Google Scholar 

  5. Bera T.K., Nagaraju J.: A MATLAB based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J. Med. Eng. 2013, 15 (2013). Article ID 193578

    Google Scholar 

  6. Bera T.K., Nagaraju J.: Switching of the surface electrodes array in a 16-electrode EIT system using 8-bit parallel digital data. In: IEEE World Congress on Information and Communication Technologies 2011(WICT-2011), pp. 1288–1293, University of Mumbai, Mumbai (2011)

    Google Scholar 

  7. Bera, T.K., Nagaraju, J.: Studies on the thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement 47, 264–286 (2014)

    Article  Google Scholar 

  8. Bera T. K., Nagaraju J.: Electrical impedance tomography (EIT): a harmless medical imaging modality. In: Research Developments in Computer Vision and Image Processing: Methodologies and Applications, Chap. 13, pp. 224–262, IGI Global USA

    Google Scholar 

  9. Graham, B.M.: Enhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung Imaging, p. 25. Ph.D. thesis, University of Ottawa (April 2007)

    Google Scholar 

  10. Bera, T.K., Nagaraju, J.: Surface electrode switching of a 16-electrode wireless EIT system using RF-based digital data transmission scheme with 8 channel encoder/decoder ICs. Measurement 45, 541–555 (2012)

    Article  Google Scholar 

  11. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J. Electr. Bioimpedance 2, 33–47 (2011)

    Google Scholar 

  12. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J. Electr. Bioimpedance 2, 2–12 (2011)

    Google Scholar 

  13. Bera T.K., Biswas S.K., Rajan K., Nagaraju J.: Image reconstruction in electrical impedance tomography (eit) with projection error propagation-based regularization (PEPR): a practical phantom study. In: Lecture Notes in Computer Science, ADCONS 2011, vol. 7135/2012, pp. 95–105. Springer (2012)

    Google Scholar 

  14. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J., Improving the image reconstruction in electrical impedance tomography (EIT) with block matrix-based multiple regularization (BMMR): a practical phantom study. In: IEEE World Congress on Information and Communication Technologies 2011(WICT-2011), pp. 1346–1351, University of Mumbai, Mumbai (2011)

    Google Scholar 

  15. Bera T.K., Nagaraju J.: A FEM-based forward solver for studying the forward problem of electrical impedance tomography (EIT) with a practical biological phantom. In: Advance Computing Conference (IACC 2009), pp. 1375–1381. IEEE, Patiala (2009)

    Google Scholar 

  16. Reddy, J.N.: An Introduction to the Finite Element Method, 3rd edn., 2nd Reprint. TATA McGraw-Hill Pub. Co. Ltd, New York (2006)

    Google Scholar 

  17. Biswas, S.K., Rajan, K., Vasu, R.M.: Accelerated gradient based diffuse optical tomographic image reconstruction. Med. Phys. 38, 539 (2011)

    Article  Google Scholar 

  18. Bera T.K., Nagaraju, J.: Sensors for Electrical Impedance Tomography, The Measurement, Instrumentation, and Sensors Handbook, 2nd edn. In: Webster, J.G. (eds.) Chap. 61, pp. 61–1–61–30. CRC Press, Boca Raton (2014)

    Google Scholar 

  19. Bera T.K., Nagaraju, J.: A multifrequency constant current source for medical electrical impedance tomography. In: Proceedings of the IEEE International Conference on Systems in Medicine and Biology 2010, pp. 290–295. IIT Kharagpur, India 16–18 Dec (2010)

    Google Scholar 

  20. Bera T.K., Nagaraju, J.: A study of practical biological phantoms with simple instrumentation for electrical impedance tomography (EIT). In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), pp. 511–16. Singapore (2009)

    Google Scholar 

  21. Bera, T.K., Saikia, M., Nagaraju, J.: A battery-based constant current source (Bb-CCS) for biomedical applications. In: International Conference on Computing, Communication and Networking Technologies (ICCCNT 2013) Germany, 22–25 April 2013

    Google Scholar 

  22. Bera, T.K., Nagaraju, J.: A Lab VIEW based multifunction multifrequency electrical impedance tomography (MfMf-EIT) instrumentation for flexible and versatile impedance imaging. In: 15th International Conference on Electrical Bio-Impedance (ICEBI) and 14th Conference on Electrical Impedance Tomography (EIT), Germany, vol. 216, 22–25 April 2013

    Google Scholar 

  23. Bera, T.K., Nagaraju, J.: A battery based multifrequency electrical impedance tomography (BbMf-EIT) system for impedance, imaging of human anatomy. In: 15th International Conference on Electrical Bio-Impedance (ICEBI) and 14th Conference on Electrical Impedance Tomography (EIT), Germany, vol. 216, 22–25 April 2013

    Google Scholar 

  24. Yorkey, T.J.: Comparing reconstruction methods for electrical impedance tomography. Ph.D. Thesis, University of Wisconsin, Madison, 1986 (WI 53706)

    Google Scholar 

  25. Vauhkonen, M.: Electrical Impedance Tomography and Prior Information. Kuopio University Publications, Natural and Environmental Sciences (1997)

    Google Scholar 

  26. Grootveld, C.J.: Measuring and modeling of concentrated settling suspensions using electrical impedance tomography. Ph.D. Thesis, Delft University of Technology, The Netherlands, (1996)

    Google Scholar 

  27. Arridge, S.R.: Optical tomography in medical imaging. Topical Rev. Inverse Prob. 15, R41–R93 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Chan, T.F., Tai, X.C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193(1), 40–66 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jing, Lei, Liu, Shi, Zhihong, Li, Meng, Sun: An image reconstruction algorithm based on the extended Tikhonov regularization method for electrical capacitance tomography. Measurement 42(3), 368–376 (2009)

    Article  Google Scholar 

  30. Lionheart, W.R.B.: EIT reconstruction algorithms: pitfalls, Review Article, challenges. Physiol. Meas. 25, 125–142 (2004)

    Article  Google Scholar 

  31. Brandstätter, B.: Jacobian calculation for electrical impedance tomography based on the reciprocity Principle. IEEE Trans. Magn. 39(3), 1309–1312 (2003)

    Article  Google Scholar 

  32. Arridge, S.R., Schweiger, M.: A gradient-based optimisation scheme for optical tomography. Opt. Express 2, 213–226 (1998)

    Article  Google Scholar 

  33. Paulsen, K.D., Meaney, P.M., Gilman, L.C.: Alternative Breast Imaging: Four Model-Based Approaches, The Springer International Series in Engineering and Computer Science, Chapter-5, 1st edn., p. 92. Springer (2004)

    Google Scholar 

  34. Metherall P, Three dimensional electrical impedance tomography of the human thorax. Ph.D. Thesis, University of Sheffield, 1998

    Google Scholar 

  35. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  36. Broyden, C.G.: Quasi-Newton methods and their application to function minimization. Math. Comput. 21, 368 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  37. Biswas, S.K.: Experimental and theoretical studies towards the development of a direct 3-d diffuse optical tomographic Imaging system. Ph.D. Thesis, Indian Institute of Science, Bangalore, 2012

    Google Scholar 

  38. Branes, J.: An algorithm for solving nonlinear equations based on the secant method. Comput. J. 8, 66 (1965)

    Article  MathSciNet  Google Scholar 

  39. Dennis Jr, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  40. Gockenbach, M.S.: Lecture Series of MA5630-spring, 2003, Mathematical Science, Michigan Technological University, http://www.math.mtu.edu/~msgocken/ma5630spring2003/lectures/

  41. Bera, T.K., Nagaraju, J.: Studies and Evaluation of EIT Image Reconstruction in EIDORS with Simulated Boundary Data. In: International Conference on Soft Computing for Problem Solving (SocProS 2012), Institute of Engineering and Technology, JK Lakshmipat University, Jaipur 28–30 Dec 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J. (2014). A Broyden’s Method Based High Speed Jacobean Matrix Calculator (JMC) for Electrical Impedance Tomography (EIT). In: Pant, M., Deep, K., Nagar, A., Bansal, J. (eds) Proceedings of the Third International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 259. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1768-8_61

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1768-8_61

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1767-1

  • Online ISBN: 978-81-322-1768-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics