Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 258))

Abstract

The paper presents an overview of parameter estimation of three phase induction motor using different techniques. The techniques mainly described in the paper are conventional techniques and soft computing techniques. The soft computing techniques considered in the paper are fuzzy system, artificial neural network (ANN), Neuro-Fuzzy, genetic algorithms (GA) and particle swarm optimization (PSO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holtz J., Quan J.: Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification. In:Proceedings of the IEEE-IAS Annual Meeting, pp. 2614–2621 (2001)

    Google Scholar 

  2. Ribeiro, L.A. de S., Jacobina, C.B., Lima, A.M.N., Oliveira A.C.: Parameter sensitivity of MRAC models employed in ifo controlled ac motor drive. IEEE Trans. Ind. Electron. 44, 536–545 (1997)

    Google Scholar 

  3. Ponci F., Cristaldi L., Faifer M., Lazzaroni M.: Innovative approach to early fault detection for induction motors. In: Proceedings of the IEEE SDEMPED, pp. 283–288 (2007)

    Google Scholar 

  4. Benbouzid M.: A review of induction motors signature analysis as a medium for faults detection. IEEE Trans. Ind. Electron. 47(5), 984–993 (2000)

    Google Scholar 

  5. Barrera, P.M. de la, Bossio, G.R., Garcia, G.O., Solsona, J.A.: Stator core fault diagnosis for induction motors based on parameters adaptation. In: Proceedings of the IEEE SDEMPED, pp. 1–6 (2009)

    Google Scholar 

  6. Vélez-Reyes, M, Minami, K., Verghese, G.C.: Recursive speed and parameter estimation for induction machines. In: Proceedings of the IEEE-IAS Annual Meeting, pp. 607–611 (1989)

    Google Scholar 

  7. Stephan, J., Bodson, M., Chiasson, J.: Real-time estimation of the parameters and fluxes of induction motors. IEEE Trans. Ind. Appl. 30, 746–759 (1994)

    Google Scholar 

  8. Bose B.K., Simoes M.G., Crecelius D., Rajashekara K., Martin R.: Speed sensorless hybrid vector controlled induction motor drive. In: Proceedings of the IEEE-IAS Annual Meeting, pp. 137–143 (1995)

    Google Scholar 

  9. Cava, M.L., Picardi, C., Ranieri, F.: Application of the extended Kalman filter to parameter and state estimation of induction motors. Int. J. Model. Simul. 9(3), 85–89 (1989)

    Google Scholar 

  10. Atkinson, D.J., Acarney, P., Finch, J.: Observers for induction motor state and parameter estimation. IEEE Trans. Ind. Appl. 27(6), 1119–1127 (1991)

    Google Scholar 

  11. Wade, S., Dunnigan, M., Williams, B.: A new method of rotor resistance estimation for vector-controlled induction machines. IEEE Trans. Ind. Electron. 44(2), 247–257 (1997)

    Google Scholar 

  12. Levi E.: Impact of iron loss on behaviour of vector controlled induction machines. IEEE Trans. Ind. Applicat. 31, 1287–1296 (1995)

    Google Scholar 

  13. Globevnik, M.: Induction motor parameters measurement at standstill. In: Proceedings of the IEEE Industry Electronics Society Annual Meeting, pp. 280–285 (1998)

    Google Scholar 

  14. Ruff, M., Grotstollen H.: Identification of the saturated mutual inductance of an asynchronous motor at standstill by recursive least squares algorithm. In: Proceedings of the European Conference Power Electronics Applications vol. 5, pp. 103–108 (1993)

    Google Scholar 

  15. Moon, S.I., Keyhani, A.: Estimation of induction machine parameters from standstill time-domain data. IEEE Trans. Ind. Appl. 30, 1606–1615 (1994)

    Google Scholar 

  16. Consoli, A., Fortuna L., Gallo A.: Induction motor identification by a microcomputer-based structure. IEEE Trans. Ind. Electron. IE-34, 422–428 (1987)

    Google Scholar 

  17. Bünte A., Grotstollen H.: Offline parameter identification of an inverter- fed induction motor at standstill. In: Proceedings of the European Conference Power Electronics Applications, pp. 3.492–3.496 (1995)

    Google Scholar 

  18. Kwon, W.H., Lee, C.H., Youn, K.S., Cho, G.H.: Measurement of rotor time constant taking into account magnetizing flux in the induction motor. In: Proceedings of IEEE Industry Applications Society Annual Meeting, pp. 88–92 (1994)

    Google Scholar 

  19. Borgard, D.E., Olsson, G., Lorenz, R.D.: Accuracy issues for parameter estimation of field oriented induction machine drives. IEEE Trans. Ind. Applicat. 31, 795–801 (1995)

    Google Scholar 

  20. Bertoluzzo, M., Buja, G.S., Menis, R.: Inverter voltage drop-free recursive least-squares parameter identification of a PWM inverter-fed induction motor at standstill. In: Proceedings of the IEEE International Symposium on Industry Electronics, pp. 649–654 (1997)

    Google Scholar 

  21. Matsuo, T., Lipo, T.A.: A rotor parameter identification scheme for vector controlled induction motor drives”, IEEE Trans. Ind. Applicat. IA-21, 624–632 (1985)

    Google Scholar 

  22. Loron, L., Laliberté, G.: Application of the extended Kalman filter to parameters estimation of induction motors. In: Proceedings of the European Conference Power Electronics Applications, vol. 5, pp. 85–90 (1993)

    Google Scholar 

  23. Zai, C., Marco, C., Lipo, T.: An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives. IEEE Trans. Ind. Appl. 28(6), 96–104 (1992)

    Google Scholar 

  24. Finch, J.W., Atkinson, D.J., Acarnley, P.P.: Full-order estimator for induction motor states and parameters. Proc. IEEE Power Appl. 145(3), 169–179 (1998)

    Article  Google Scholar 

  25. Kataoka, T., Toda, S., Sato, Y.: On-line estimation of induction motor parameters by extended Kalman filter. In: Proceedings of the European Conference Power Electronics Applications vol. 4, pp. 325–329 (1993)

    Google Scholar 

  26. Krishnan, R., Pillay, P.: Sensitivity analysis and comparison of parameter compensation schemes in vector controlled induction motor drives. In: Proceedings of IEEE Industrial Applications Society Annual Meeting, pp. 155–161 (1986)

    Google Scholar 

  27. Toliyat, H., Arefeen M.S., Rahman, K.M., Ehsani, M.: Rotor time constant updating scheme for a rotor flux oriented induction motor drive. IEEE Trans. Power Electron. 14, 850–857 (1999)

    Google Scholar 

  28. Akin E., Ertan H. B., and Uctug M. Y., (1994), “A method for stator resistance measurement suitable for vector control”, Proc. IEEE Ind. Electron. Soc. Annu. Meeting, pp. 2122-–2126

    Google Scholar 

  29. Umanand, L., Bhat, S.: Online estimation of stator resistance of an induction motor for speed control applications. IEE Proc. Electr. Power Appl. 142, 97–103 (1995)

    Google Scholar 

  30. Yassine, Koubaa: Recursive identification of induction motor parameters. Simul. Model. Pract. Theory 12(2004), 363–381 (2004)

    Google Scholar 

  31. Saravana Kumar, R., Vinoth Kumar, K., Ray, K.K.: Fuzzy Logic based fault detection in induction machines using Lab view. IJCSNS Int. J. Comput. Sci. Netw. Secur. 9(9), 226–243 (2009)

    Google Scholar 

  32. Toliyat, H.A., Levi, E., Raina, M.: A review of RFO induction motor parameter estimation techniques. IEEE Trans. Energy Convers. 18(2), 271–283 (2003)

    Google Scholar 

  33. Loser, F., Sattler, P.: Identification and compensation of the rotor temperature of AC drives by an observer. In: Conference Record IEEE IAS Annual Meeting, pp. 532–537 (1984)

    Google Scholar 

  34. Tzafestas, S.G., Zikidis, K.C.: Neuro FAST: On-line neuro-fuzzy ART-based structure and parameter learning TSK model. IEEE Trans. Syst. Man Cybern. B 31, 797–802 (2001)

    Google Scholar 

  35. Uddin, M.N., Radwan, T.S., Rahman, M.A.: Performances of fuzzy-logic-based indirect vector control for induction motor drive. IEEE Trans. Ind. Appl. 38(5), 1219–1225 (2002)

    Google Scholar 

  36. Uddin, M.N., Abido, M.A., Rahman, M.A.: Development and implementation of a hybrid intelligent controller for interior permanent magnet synchronous motor drive. IEEE Trans. Ind. Appl. 40(1), 68–76 (2004)

    Google Scholar 

  37. Consoli, A., Cerruto, E., Raciti, A., Testa, A.: Adaptive vector control of induction motor drives based on a neuro-fuzzy approach. In: Proceedings of IEEE PESC, pp. 225–232 (1994)

    Google Scholar 

  38. Treetrong, J.: Induction Motor Fault Detection Based on Parameter Identification Using Genetic Algorithm. J. KMUTNB. 20(3) (2010)

    Google Scholar 

  39. Phumiphak, T., Chat-uthai, C.: Estimation of Induction Motor Parameters Based on Field Test Coupled with Genetic Algorithm. Mahanakorn University of Technology, Thailand (1999)

    Google Scholar 

  40. Holtz J.: Sensorless control of induction machines—With or without signal injection? IEEE Trans. Ind. Electron. 53(1), 7–30 (2006)

    Google Scholar 

  41. Telford, D., Dunnigam, M.W., Williams, B.W.: Online identification of induction machine electrical parameters for vector control loop tuning. IEEE Trans. Ind. Electron. 50(2), 253–261 (2003)

    Google Scholar 

  42. Abdelhadi, B., Benoudjit, A., Nait-Said, N.: Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters. IEEE Trans. Energy Convers. 20(2), 284–291 (2005)

    Google Scholar 

  43. Levi, E., Sokola, M., Vukosavi, S.N.: A method for magnetizing curve identification in rotor flux oriented induction machines. IEEE Trans. Energy Convers. 15, 157–162 (2000)

    Article  Google Scholar 

  44. Levi, E., Vukosavic, S.N.: Identification of the magnetizing curve during commissioning of a rotor flux oriented induction machine. Proc. IEEE Power Appl. 146(6), 685–693 (1999)

    Google Scholar 

  45. Levi, E., Sokola, M., Boglietti, A., Pastorelli, M.: Iron loss in rotor flux oriented induction machine: identification, assessment of detuning and compensation. IEEE Trans. Power Electron. 11, 698–709 (1996)

    Article  Google Scholar 

  46. Toliyat H. A. and Hosseiny A. A. GH.,(1993), “Parameter estimation algorithm using spectral analysis for vector controlled induction motor drives,” in Proc. IEEE Int. Symp. Ind. Electron, pp. 9095

    Google Scholar 

  47. Vukosavic, S.N., Stojic, M.R.: On-line tuning of the rotor time constant for vector-controlled induction motor in position control applications. IEEE Trans. Ind. Electron. 40, 130–138 (1993)

    Article  Google Scholar 

  48. Toliyat, H., Arefeen, M.S., Rahman, K.M., Ehsani, M.: Rotor time constant updating scheme for a rotor flux oriented induction motor drive. IEEE Trans. Power Electron. 14, 850–857 (1999)

    Article  Google Scholar 

  49. Nasir Uddin, M., Wen Hao.: Development of a self-tuned neuro-fuzzy controller for induction motor drives. IEEE Trans. Ind. Appl. 43(4), 1106–1115 (2007)

    Google Scholar 

  50. Nemec, M., Makuc, D., Ambrožiè, V., Fišer, R.: Simplified Model of Induction Machine with Electrical Rotor Asymmetry. ICEM, Rome, Italy (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Chaturvedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Chaturvedi, D.K., Singh, M.P. (2014). Parameter Estimation and Soft Computing Techniques. In: Pant, M., Deep, K., Nagar, A., Bansal, J. (eds) Proceedings of the Third International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 258. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1771-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1771-8_24

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1770-1

  • Online ISBN: 978-81-322-1771-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics