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1. INTRODUCTION
As the level of detail and intricacy of dynamical system models con-

tinues to grow, the essential behaviour of such systems can be lost in a
cloud of complexity. Furthermore, numerical simulations of such systems
can consume extensive memory resources and take inordinate amounts of
time. Consequently, to cope with the growing complexity and dimension-
ality of systems, model reduction has become a vital aspect of modern
system simulation. Model reduction techniques for linear systems are
well studied (e.g. [B. Moore (1981)], [A.C. Antoulas et all. (2001).] and
references therein). However, the study of nonlinear systems is much
more complicated and the development of model reduction methods for
large-scale nonlinear systems represents a formidable challenge.

In general, model reduction techniques fall into two categories – mo-
ment - matching and Krylov techniques and balancing techniques. The
present contribution is concerned with the former. The advantage of
Krylov-based methods is that matrix-vector multiplications are all that
are involved in the formation of the projection matrices that are used to
project the system onto a reduced system. Also sparse linear solvers and
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iterative approaches can be used to improve the computational efficiency
[Beattie et all. (2007)].

To be amenable to the application of Krylov methods, the nonlin-
ear function describing the system must be approximated in a suitable
manner. A widely used approach is the utilisation of the bilinear repre-
sentation. However, the present contribution proposes the use of a per-
turbative representation as an alternative to the bilinear representation
[Phillips (2003)]. While for weakly nonlinear systems, either approxi-
mation is satisfactory, it will be seen that the perturbative method has
several advantages over the bilinear representation. The use of the per-
turbative representation in reduction techniques based on Krylov meth-
ods has been addressed in [Phillips (2003)]. In this contribution, an
improved reduction method is proposed. Illustrative examples are cho-
sen, which are typical of examples employed for comparing model reduc-
tion approaches [Phillips (2003)]. The errors obtained from the different
reduction strategies will be compared.

2. PERTURBATIVE APPROXIMATION OF
NONLINEAR SYSTEMS

Let the nonlinear dynamical system under consideration be of the
form:

ẋ(t) = f(x(t)) + Bu(t)
y(t) = Cx(t), (1.1)

where f : Rn → Rn is a non-linear function, x ∈ Rn are the state-
space variables. The initial condition is x(0) = x0 and u(t), y(t) ∈ R.
B, C ∈ Rn are constant vectors (C is a vector-row and B is a vector-
column). It is assumed that x = 0 is a stable equilibrium point of the
system (1.1) and x0 = 0. Under this assumption, f(x) can be expanded
in a generalised Taylor’s series about x = 0:

f(x) = A1x
(1) + A2x

(2) + A3x
(3) + . . . , (1.2)

where x(1) = x, x(2) = x ⊗ x, x(3) = x ⊗ x ⊗ x, etc. and ⊗ denotes the
Kronecker product. Since x = 0 is a stable equilibrium point, A1 is a
stable matrix, i.e. all of its eigenvalues have negative real parts. It is
also assumed that each term in the Taylor’s expansion is small compared
to the previous one.

Now consider the case where a variational parameter α is introduced,
i.e. ẋ(t) = f(x(t)) + Bαu(t) and let the response of the system x(t) be
perturbatively expanded in a power series in α [Phillips (2003)]:

x(t) = αx1(t) + α2x2(t) + α3x3(t) + . . . . (1.3)
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On comparing terms in the variational parameter α, the following set of
n-dimensional differential equations can be derived:

ẋ1 = A1x1 + Bu

ẋ2 = A1x2 + A2(x1 ⊗ x1) (1.4)
ẋ3 = A1x3 + A2(x1 ⊗ x2 + x2 ⊗ x1) + A3(x1 ⊗ x1 ⊗ x1)

...

Each n-dimensional equation describes the time evolution of an xi, where
xi represents the ith order perturbative term in the expansion (1.3).
Defining a vector x(t):

x(t) =




x1

x2
...


 (1.5)

the system in (1.4) acquires the form:

ẋ = Ax + Bu

y = Cx, (1.6)

where

A =




A1

A1

A1

. . .


 B =




B 0 0 0 . . .
0 A2 0 0
0 0 A2 A3 . . .
...

...
...

...


 (1.7)

u(t) =




u1

u2

u3
...


 C = [C, C, C, . . . ], u1 = u(t), u2 = x1 ⊗ x1,

u3 = x1 ⊗ x2 + x2 ⊗ x1, u4 = x1 ⊗ x1 ⊗ x1, . . .

The source u2 for the second equation in (1.4) depends only on the
state vector x1 determined from the first equation and so on. Note
that since A1 is a stable matrix, A is also automatically stable. Now,
u2, u3, etc. are not independent inputs like u1 and therefore, linear
system theory cannot be applied directly to the representation in (1.6).
However, subsequent sections will show how the representation may be
adapted so that linear system theory and consequently, linear model
reduction may be applied to the representation in (1.6).
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The well-known bilinear representation (Carleman bilinearization) ([
Phillips (2003)], [Condon et all.(2005)]) is an alternative approach to
approximation of (1.1) for weakly nonlinear systems:

˙̂x(t) = Âx̂(t) + N̂ x̂(t)û(t) + B̂û(t)

y(t) = Ĉx̂(t), (1.8)

where

x̂(t) =




x(1)

x(2)

...


 ,

Â and N̂ are square matrices of dimension n + n2 + · · ·+ nK , B̂ and Ĉ
are vectors with n+n2 + · · ·+nK components if K terms in the Taylor’s
series expansion are taken into account. The matrices are defined in [
Phillips (2003)],[Condon et all.(2005)]. For example, for K = 2:

Â =
[

A1 A2

0 A21

]
, N̂ =

[
0 0
N 0

]
, B̂ =

[
B
0

]
, Ĉ = [C, 0],

where A1 and A2 are the matrices in (1.2), A21 = A1 ⊗ I + I ⊗ A1,
N = B ⊗ I + I ⊗B, where I is the n× n identity matrix.

However, the perturbative representation has several advantages over
the bilinear representation - namely:

1 The system (1.6) has a simple linear form unlike (1.8).

2 The size of the system (1.6) with K perturbative terms is nK. The
size of (1.8) with K terms in the series expansion is n+n2 + · · ·+nK .

3 There is no need to restrict the input to the perturbative system
to guarantee stability. However, a restriction exists on the input to
guarantee stability of the bilinear system [Condon et all.(2005)]. A
sufficient condition for stability on the interval [0, T ] is |u(t)| ≤ Kc

for all t ∈ [0, T ] where Â + λN̂ is stable for all λ ∈ [−Kc, Kc].

3. KRYLOV-BASED MODEL REDUCTION
The goal of any model reduction technique is to replace the n- dimen-

sional system (1.1) with a system of much smaller dimension k ¿ n, such
that the behaviour of the reduced order system satisfactorily represents
the behaviour of the full system. In projection based reduction schemes,
a projection matrix, V , is selected such that its columns span the re-
quired subspace [Phillips (2003)]. The reduced system is then formed
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from approximating the state vector x with x̂ where x̂ = V̂ x. Consider
a linear state-space representation:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t), (1.9)

The state-space equations for the reduced system are then given as:

˙̂x(t) = Âx̂(t) + B̂û(t)

ŷ(t) = Ĉx̂(t), (1.10)

where

Â = V tAV, B̂ = V tB, Ĉ = CV.

In Krylov-based methods, the projection matrix is chosen to span the
columns of the Krylov subspace

Km((s0I −A)−1, (s0I −A)−1B) =
= {(s0I −A)−1B, (s0I −A)−2B, . . . , (s0I −A)−mB}.

The rationale for selection of this subspace is that it results in match-
ing the first m moments of the original and reduced systems. Here s0

is the point in the complex plane about which moments are matched.
However, the Krylov-based reduction methods are preferable to direct
moment matching techniques as the methods avoid the numerical prob-
lems arising in explicit moment matching.

For nonlinear systems, model reduction is not as straightforward as for
linear systems. In this contribution, we look at some of the properties of
linear systems with a view to adapting the perturbative representation
of the nonlinear system so that a reduction strategy similar to that for
linear systems can be applied to it.

4. SCALE INVARIANCE PROPERTY
Consider the behaviour of a linear system when u → αu. In this case,

the output also changes as y → αy. We term this the scale invariance
property which holds for linear systems. The result is that the Krylov-
based reduction method is unaffected when u → αu. Similarly, if x →
βx, the reduction process is unaffected. However, nonlinear systems are
not scale invariant. For example, consider the perturbative system under
a rescaling of the input. I.e. consider u → αu. The Bu term of (1.6)
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transforms as:

Bu → α




1
α

α2

. . .


Bu. (1.11)

It is evident from (1.11) that the scale invariance property does not
hold. To enable application of linear theory to (1.6) would require that
which is not the case as evident from (1.11). Consequently, linear model
reduction techniques may not be applied directly to the perturbative
representation and hence, a modification is required. To this end, a
parameter µ is introduced with a view to explicitly accounting for the
scale dependence of the nonlinear system. The role of µ is to bear the
nonlinear properties of the system throughout the reduction process.
Consider (1.6) and (1.7). The Bu term can be rewritten as:

Bu = DBU,

where
D = diag (1, µ, µ2, . . . ),

with
U = [u1, µ

−1u2, µ
−2u3, µ

−2u4, . . . ].

for any nonzero function µ. If when u1(t) → αu1(t), µ transforms as:
µ → αµ, then transforms as:

U → αU. (1.12)

It transforms in the same manner as the input to a linear system. The
property in (1.12) is very important as it shows that to enable application
of linear systems theory to (1.6), then the proper input to (1.6) is actually
U and not u.

An estimate for µ may be determined as follows: If µ = 0, then the
system in (1.6) is linear. Thus, µ must be proportional to the output
due to the nonlinearity y − y1, where y1 = Cx1 is the output from the
linear part of (1.6). For the purposes of practical implementation of the
reduction scheme, it is convenient to take µ as a constant parameter.
Hence, the following is deemed an appropriate choice for µ:

µ =
|y − y1|

T |ū| , (1.13)

where the bar denotes the average value of the waveform over the time
interval [0, T ] for which the behaviour of the system is under examina-
tion, provided ū 6= 0. An exact optimal value for µ for a particular
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model parameterisation may be chosen from computer simulations for a
particular ’test input’ that is close to the inputs for which the system is
designed. µ is then determined by minimising an error function using
the Nelder-Mead algorithm. A suitable error function is the following:

err =

√∑
(fex − fred)2

N
, (1.14)

where fex is the output from the exact model and fred is the output from
the reduced model, N is the number of samples taken of fex to compute
the error.

However, for most practical cases, the estimate in (1.13) suffices. Ob-
viously, the reduced model approximates the input-output behaviour of
the system locally. No conclusions however, can be drawn about its
global behaviour.

5. KRYLOV REDUCTION OF
PERTURBATIVE REPRESENTATION

The reduction process for the perturbative representation proceeds as
follows: Let the approximation in (1.2) involve K terms. The dimension
of the system representation in (1.6) is thus NK. Suppose it is required
to reduce the system to dimension k. The Krylov space for the first-
order response x1 in (1.4) and (1.6) is formed as K1 = (A−1

1 , A−1
1 B)

(s0 is set to zero to simplify the explanation but this is not necessary).
An orthogonal projection matrix, V1 for the first-order system is formed
from K1 I.e. ẋ1 = V1x1. Now, the second-order system in (1.4) and (1.6)
is formed as:

ẋ2 = A1x2 + µA2(x̂1 ⊗ x̂1) = A1x2 + µA2(V1 ⊗ V1)(x1 ⊗ x1)
= A1x2 + µA2(V1 ⊗ V1)û2 = A1x2 + B2û2. (1.15)

This differs from the standard second-order system such as that pre-
sented by Phillips [Phillips (2003)]. In the standard version, µ = 1.
However, results in section 6 will show that inclusion of the novel pro-
posal for µ achieves greater accuracy.

The Krylov space for the linear system in (1.15) is then formed as
K2 = (A−1

2 , A−1
2 B2). An orthogonal projection matrix, V2, is formed

from K2 and this matrix is used to reduce the second order system. The
procedure for reducing the higher order terms in (1.4) and (1.6) , i.e.
x3, . . . , in the perturbative system is similar.

6. ILLUSTRATIVE EXAMPLE
The circuit employed is the nonlinear ladder shown in Fig. 1.1. The

number of nodes in the system is n = 30. The ladder in represents a
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Figure 1.1. Nonlinear circuit

heat flow model [Veijola et all. (1998)]. The voltage at the mth node
represents the temperature on a rod at a distance proportional to m. The
(input) voltage at node 1 represents the heat source. The nonlinearities
represent the dependence of the conductivity on the temperature. The
average voltage at all nodes is taken as the output and this represents
the average temperature of the rod. Varying the circuit parameters
corresponds to different spatial or environment conditions [Veijola et all.
(1998)]. The nonlinear resistor introduces a quadratic nonlinearity at
each node:

inl = gv2, (1.16)

for v > 0. The parameters are C = r = 1. The strength of the nonlin-
earity is varied by varying g.

The dimension of the original state-space is n = 30. The perturbative
representation (1.6) contains two terms, i.e. K = 2. The reduction
process is performed from the representation (1.6) of order nK = 60 to
a representation of order k = 6. The value is µ = 1.6443. Fig. 1.2 shows
the result for an exponential input e−t from the reduced perturbative
model for g = 0.1 superimposed on the result from a full nonlinear
model of Fig. 1.1. The root mean square error between this result
and that computed from a full model is 0.0026. The reduced model is
equally accurate for other input signals. In order to confirm the value
of inclusion of µ, the root mean square error is 0.0042 when µ = 1.

As a second example, consider the 30-section nonlinear RC ladder
shown in Fig. 1.3.

The reduction process described in Section 5 is applied. The system
is reduced from a dimension of 60 to a dimension of 6. The value of µ is
determined from (1.13) as 0.6747. With this value of µ, the RMS error is
0.0037. With the standard approach of [Phillips (2003)], the RMS error
is 0.0076.
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Figure 1.2. Reduced perturbative model g = 0.1 (Solid line = full model, Dashed
line = reduced model)

Figure 1.3. Nonlinear RC ladder

7. CONCLUSIONS
Krylov model reduction of perturbative representations of weakly non-

linear systems has been addressed. The restriction to weak nonlinear
systems arises as the size of the perturbative representation would grow
to impractical levels for highly nonlinear systems. This restriction also
applies to the bilinear representation and indeed is even greater owing
to the larger size of a bilinear representation of the same order. This is
the principal advantage of the perturbative representation compared to
the bilinear representation - it is the much smaller in size. It is of size
(nK) compared to the size of the bilinear representation (∼ nK). This
results in reduced computational cost. The input-output mapping for
nonlinear systems depends on inputs and is not scale-independent. To
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Figure 1.4. Reduced perturbative model (Solid line = full model, Dashed line =
reduced model)

explicitly account for this dependence, a parameter is introduced into
the perturbative representation. Results in this contribution indicate
that inclusion of the parameter leads to greater accuracy.

Previous work [Condon et all. (2005)] has shown that the same ap-
proach also leads to improved accuracy in balanced truncation model
reduction.
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