Applied Time Series Analysis and Innovative Computing

Lecture Notes in Electrical Engineering Volume 59

For other titles published in this series, go to www.springer.com/series/7818

Sio-Iong Ao

Applied Time Series Analysis and Innovative Computing

Sio-Iong Ao International Association of Engineers Unit 1, 1/F, 37–39 Hung To Road Hong Kong publication@iaeng.org

ISBN 978-90-481-8767-6 e-ISBN 978-90-481-8768-3 DOI 10.1007/978-90-481-8768-3 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2010924436

© Springer Science+Business Media B.V. 2010

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com

To My Lovely Wife Choi, Wai-Ming

Preface

There are many reasons to analyze the time series data, for example, to understand the underlying generating mechanism better, to achieve optimal control of the system, or to obtain better forecasting of future values. Applied time series analysis consists of empirical models for analyzing time series in order to extract meaningful statistics and other properties of the time series data. With the advances in computer technology, nowadays huge amounts of time series data are stored in data warehouses. Different innovative computing techniques are needed to extract information from these datasets. Innovative computing paradigms can extract the patterns from the time series and to present it in such a way that can better our understanding of the structure, relation, and function of the subjects. The purpose of this book is to illustrate how to apply innovative computing paradigms for the applied time series analysis, with frontier application studies of the time series problems based on the recent works at the Oxford University Computing Laboratory, University of Oxford, the University of Hong Kong, and the Chinese University of Hong Kong. The monograph was drafted when the author was a postdoctoral fellow in Harvard School of Engineering and Applied Sciences, Harvard University. It provides a systematic introduction to the use of innovative computing paradigms as an investigative tool for applications in time series analysis.

In this book, innovative computing algorithms have been illustrated for solving some frontier problems in time series analysis. The book is organized as follows. In Chap. 1, it is the brief introduction to the applied time series analysis and the advances in innovative computing paradigms. The three real-word applications of innovative computing paradigms for time series problems and the contributions of these algorithms to the time series analysis are described briefly. In Chap. 2, we describe about the applied time series analysis generally. Time series analysis models including time domain models and frequency domain models are covered. In Chap. 3, we describe about the recent advances in innovative computing paradigms. Topics like computing algorithms and databases, integration of hardware, systems and networks, Internet and grid computing, and visualization, design and communication, will be covered. The advances of innovative computing for time series problems are also discussed, and an example of building of an innovative computing algorithm for some simulated time series is illustrated. In Chap. 4, we present the real-word application of innovative computing paradigms for time series problems.

The interdisciplinary innovative computing techniques are applied to understand, model and design systems for business forecasting. In Chap. 5, the second real-word application is for the analysis of the biological time series. Recurrent Elman neural networks and support vector machines have been outlined for temporal modeling of microarray continuous time series data sets. In Chap. 6, we present the last real-word application for the astronomical time series. Some innovative computing algorithms are described about how to classify the light curves of the quasars against light curves of the other stars.

In business organizations, forecasting is one of the most important activities that form the basis for strategic and operational decision. Traditionally, business time series forecasting has been dominated by linear methods. However, the linear models have serious limitation with problems of nonlinear relationships. It may be unsatisfactory to approximate the linear models for these nonlinear relationships. The importance and complexity of the business time series forecasting problem paves way for the importance of innovative computing paradigms. In Chap. 4, the interdisciplinary innovative computing techniques are applied to understand, model and design systems for business forecasting. Two business case studies are described to demonstrate the advantages of our proposed system. In global business, the interactions between different markets cause collective lead-lag behavior having special statistical properties which reflect the underlying dynamics. The internal structure of a complex system can manifest itself with correlations among its components. An innovative computing system of combining the vector autoregression and genetic algorithm with neural network is outlined how to take advantage of the lead-lag dynamics, to make the neural network forecasting process more transparent and to improve the prediction capability of the neural network.

The temporal patterns exhibited by biological time series are often complex, nonlinear or chaotic, nevertheless, the analysis are emerging as important means for many biological studies. To address the nonlinear properties of the biological time series, innovative computing algorithms are becoming important tools to study these systems. In Chap. 5, recurrent Elman neural networks and support vector machines are outlined for temporal modeling of microarray continuous time series data sets. In a single microarray experiment, the expression levels of as many as thousands of genes can be measured simultaneously. Thus, it can enable the genome-wide measurement of gene expression, and the construction of genetic network from gene expression time series with innovative computing approaches. An ensemble of the ENN and SVM models are described to better improve the transparency and robustness of the recurrent neural networks, and to further improve the prediction accuracy of the individual models. In order to provide the neural networks with explanation capabilities, a pedagogical rule extraction technique is considered for inferring the output of our proposed ensemble system. The gene regulatory network can be reconstructed satisfactorily with this hybrid innovative computing methodology. The proposed rule extraction technique provides the network inference of the ensemble. The reconstructed gene regulatory network enables us to better understand the dynamics of the underlying biological processes.

Preface

With the advances of the technologies for the sky surveys, massive amount of survey data become available. It is very helpful for the automatic and semi-automatic innovative computing methods in the classifications and detections of the astrophysical objects. In Chap. 6, the first section describes about the existing automatic and semi-automatic innovative computing methods for the comprehensive search of quasars. Quasars are interesting astrophysical objects that have been recently discovered more comprehensively from the sky surveys. Secondly, some innovative computing algorithms are described about how to classify the light curves of the quasars against light curves of the other stars.

Topics covered in the monograph include Frequency Domain, Correlation, Smoothing, Periodogram, Autoregression, ARIMA Models, Discrimination Analysis, Clustering Analysis, Factor Analysis, Dynamic Fourier Analysis, Random Coefficient Regression, Discrete Fourier Transform, Innovative Computing Algorithms, Knowledge Extraction, Large Complex Databases, Modeling and Simulations, Integration of Hardware, Systems and Networks, Grid Computing, Visualization, Design and Communication, Business Time Series Applications, Biological Time Series Applications, and Astronomical Time Series Applications. The book offers the state of art of tremendous advances in applied time series analysis and innovative computing paradigms and also serves as an excellent reference work for researchers and graduate students working on applied time series analysis and innovative computing paradigms.

The author is grateful for the supports of Dr. Vasile Palade throughout the author's research in Oxford University Computing Laboratory, University of Oxford, UK, and the supports of colleagues in Harvard throughout the author's research in Harvard School of Engineering and Applied Sciences, Harvard University, USA.

May 2009

Sio-Iong Ao, Ph.D. International Association of Engineers Unit 1, 1/F, 37-39 Hung To Road Hong Kong

Contents

1	Intr	oductio	on	1		
	1.1	Appli	ed Time Series Analysis	2		
		1.1.1	-	2		
		1.1.2	Basic Applied Time Series Models	2		
		1.1.3	Frequency Domain Models	2		
	1.2	Advar	nces in Innovative Computing Paradigms	3		
		1.2.1	Computing Algorithms and Databases	3		
		1.2.2	Integration of Hardware, Systems and Networks	3		
		1.2.3	Internet, Web and Grid Computing	4		
		1.2.4	Visualization, Design and Communication	4		
	1.3	Real-World Applications: Innovative Computing				
		Paradigms for Time Series Problems				
		1.3.1	Developing Innovative Computing Algorithms			
			for Business Time Series	5		
		1.3.2	Developing Innovative Computing Algorithms			
			for Biological Time Series	6		
		1.3.3	Developing Innovative Computing Algorithms			
			for Astronomical Time Series	6		
2	Applied Time Series Analysis					
	2.1	Basic Characteristics of Time Series				
		2.1.1	Estimation of Correlation	10		
		2.1.2	Stationary Time Series	12		
		2.1.3	Smoothing of the Time Series	12		
		2.1.4	Periodogram Analysis	13		
			egression and ARIMA Models	14		
		2.2.1	Time Series Regression	14		
		2.2.2	Autoregressive Moving Average Models	14		
		2.2.3	Building ARIMA Models	15		
		2.2.4	Forecasting and Evaluation	16		
		2.2.5	Causality of the Time Series	16		
	2.3	Mathe	ematical Models in the Frequency Domain	17		
		2.3.1	Introduction	17		

		2.3.2	Discrimination Analysis	18
		2.3.3	Clustering Analysis	19
		2.3.4	Principal Components and Factor Analysis	21
		2.3.5	Dynamic Fourier Analysis	22
		2.3.6	Random Coefficient Regression	23
		2.3.7	Discrete Fourier Transform	24
3	Adv		n Innovative Computing Paradigms	25
	3.1	Resea	rch Advances in Computing Algorithms and Databases	25
		3.1.1	Knowledge Extraction Methods	25
		3.1.2	Exploiting Large Complex Databases	26
		3.1.3	Neural Computing Algorithms	26
		3.1.4	Fuzzy Computing Algorithms	27
		3.1.5	Evolutionary Computing Algorithms	27
		3.1.6	Quantum Computing Algorithms	28
		3.1.7	Swarm-Based Computing Algorithms	28
		3.1.8	DNA Computing Algorithms	29
		3.1.9	Theoretical Modeling and Simulations	29
	3.2	Resea	rch Advances in Integration of Hardware, Systems	
		and N	etworks	29
		3.2.1	Innovative Experimental Hardware System	29
		3.2.2	Data-Acquisition Devices	30
		3.2.3	Interaction Devices for Visual Exploration	30
		3.2.4	Graphics Processing Units and Co-Processors	
			for Innovative Computing	31
		3.2.5	Networking and Interoperability	31
		3.2.6	Code Optimization and Integration	32
	3.3	Resea	rch Advances in Internet, Web and Grid Computing	32
		3.3.1	Distributed Computation and Data Sharing	32
		3.3.2	Large-Scale Collaborations over the Internet	32
		3.3.3	Grid Computing	33
		3.3.4	Pooling of Remote Computer Resources	33
		3.3.5	Integration of Knowledge Metadata Systems	33
	3.4	Resea	rch Advances in Visualization, Design	
		and C	ommunication	34
		3.4.1	Novel Solutions to Visualization	
			and Communication Challenges	34
		3.4.2	Displaying of Complex Information	34
		3.4.3	Escaping Flatland	35
		3.4.4	Systems Integration for High Performance	
			Image Processing	35
		3.4.5	Representation of Uncertainties	36
		3.4.6	Informative Graphics for Scientific Communication	36
	3.5		nces and Applications for Time Series Problems	37
		3.5.1	Efficient Retrieval of Similar Time Series	37

		3.5.2	Automatic Classification of Time Series Sequences	37
		3.5.3	Time Warping Algorithms	38
		3.5.4	Time Frequency Clustering of Time Series Datasets	40
		3.5.5	Enhanced Representation for Complex Time Series	40
		3.5.6	Automatic Monitoring of Large and Complex	
			Time Series	41
	3.6	An Ill	ustrative Example of Building an Innovative	
		Comp	uting Algorithm for Simulated Time Series	41
		3.6.1	Description of the Simulated Time Series Problem	41
		3.6.2	Background of the Methodology	42
		3.6.3	Building the Innovative Regression Model	44
		3.6.4	Experimental Results with the Simulated Time Series	48
		3.6.5	Discussions and Further Works	50
4	Rea	l-Word	Application I: Developing Innovative	
		nputing	g Algorithms for Business Time Series	51
	4.1	Busin	ess Time Series	51
	4.2	Advar	nces in Business Forecasting	52
		4.2.1	Basic Econometrics Models	52
		4.2.2	Neural Computing Models	52
		4.2.3	Evolutionary Computing Models	53
		4.2.4	Hybrid Intelligent Models	53
	4.3	Devel	oping a Hybrid Intelligent Econometrics	
		Mode	l for Business Forecasting	54
		4.3.1	Vector Autoregression	54
		4.3.2	Neural Network	55
		4.3.3	Genetic Algorithm	58
		4.3.4	A Cybernetic Framework of Hybrid Vector	
			Autoregression, Neural Network	
			and Genetic Algorithm	60
	4.4	Applie	cation for Tourism Demand Forecasting	61
		4.4.1	Quantifying Cross-Market Dynamics	62
		4.4.2	Experimental Results	62
	4.5	Applie	cation for Cross-Market Financial Forecasting	63
		4.5.1	Quantifying the Cybernetic Lead–Lag Dynamics	
			across Different Markets	64
		4.5.2	Benchmark Stand-Alone Neural Network	64
			Hybrid Innovative System and Results Comparison	65
	4.6	Discu	ssions and Further Works	66
5	Rea	l-Word	Application II: Developing Innovative	
			Algorithms for Biological Time Series	67
	5.1	Biolog	gical Time Series	67
	5.2	Advar	nces in Experimental Designs for Microarray	
		Time	Series	68

		5.2.1	Microarray Experiments	68
		5.2.2	Microarray Time Series and Applications	69
			se Engineering of Biological Networks	70
		5.3.1	Introduction	70
		5.3.2	Materials and Methods	71
	5.4	Mode	els for Biological Network Inference	
		5.4.1	Biological Time Series Datasets	78
		5.4.2	Analysis with Simulated Non-stationary Datasets	79
		5.4.3	Analysis with Real Biological Datasets	79
		5.4.4	Rule Extraction for Reverse Engineering	
			of Biological Networks	80
	5.5	Discus	ssions and Further Works	81
	D			
6			Application III: Developing Innovative	0.7
			Algorithms for Astronomical Time Series	83
	6.1		nomical Time Series	83
	6.2		nces and Applications of Innovative	0.4
			uting Paradigms	84
		6.2.1		84
		6.2.2	8	84
		6.2.3	Semi-Supervised Learning for Astronomical	
			Time Series	85
		6.2.4	Anomaly Detection of Astronomical Time Series	86
	6.3	6.3 Motivations for Investigating the Quasar Time		
Series with Innovative Approaches			86	
	6.4 Advances in Emerging Methods for Quasar Studies			87
		6.4.1	Variability Properties of the Quasar Light Curves	87
		6.4.2	Algorithms Based on Variability and Proper	
			Motion for Quasar Classification	89
		6.4.3	Bayesian Classification for Efficient Photometric	
			Selection of Quasars	93
		6.4.4	Machine Learning Paradigms for Quasar Selection	97
Bi	bliog	raphy		99