
Favor Short Dependencies: Parsing with Soft
and Hard Constraints on Dependency Length

Jason Eisner and Noah A. Smith

Abstract In lexicalized phrase-structure or dependency parses, a word’s modifiers
tend to fall near it in the string. This fact can be exploited by parsers. We first show
that a crude way to use dependency length as a parsing feature can substantially
improve parsing speed and accuracy in English and Chinese, with more mixed re-
sults on German. We then show similar improvements by imposing hard bounds
on dependency length and (additionally) modeling the resulting sequence of parse
fragments. The approach with hard bounds, “vine grammar,” accepts only a regular
language, even though it happily retains a context-free parameterization and defines
meaningful parse trees. We show how to parse this language in O(n) time, using a
novel chart parsing algorithm with a low grammar constant (rather than an imprac-
tically large finite-state recognizer with an exponential grammar constant).

1 Introduction

Many modern parsers identify the head word of each constituent they find. This
makes it possible to identify the word-to-word dependencies implicit in a parse.1

Some parsers, known as dependency parsers, even return these dependencies as
their primary output. Why bother to identify dependencies? The typical reason is
to model the fact that some word pairs are more likely than others to engage in a

Jason Eisner
Johns Hopkins University, Baltimore, MD, USA, e-mail: jason@cs.jhu.edu

Noah A. Smith
Carnegie Mellon University, Pittsburgh, PA, USA, e-mail: nasmith@cs.cmu.edu

1 In a phrase-structure parse, if phrase X headed by word token x is a subconstituent of phrase
Y headed by word token y 6= x, then x is said to depend on y. In a more powerful compositional
formalism like LTAG or CCG, dependencies can be extracted from the derivation tree.

1

2 Jason Eisner and Noah A. Smith

dependency relationship.2 In this paper, we propose a different reason to identify
dependencies in candidate parses: to evaluate not the dependency’s word pair but
its length (i.e., the string distance between the two words). Dependency lengths dif-
fer from typical parsing features in that they cannot be determined from tree-local
information. Though lengths are not usually considered, we will see that bilexical
dynamic-programming parsing algorithms can easily consider them as they build
the parse.

Soft constraints. Like any other feature of trees, dependency lengths can be
explicitly used as features in a probability model that chooses among trees. Such a
model will tend to disfavor long dependencies (at least of some kinds), as these are
empirically rare. In the first part of the paper, we show that such features improve a
simple baseline dependency parser.

Hard constraints. If the bias against long dependencies is strengthened into a
hard constraint that absolutely prohibits long dependencies, then the parser turns
into a partial parser with only finite-state power. In the second part of the paper, we
show how to perform chart parsing in asymptotic linear time with a low grammar
constant. Such a partial parser does less work than a full parser in practice, and in
many cases recovers a more precise set of dependencies (with little loss in recall).

2 Short Dependencies in Langugage

We assume that correct parses exhibit a “short-dependency preference”: a word’s
dependents tend to be close to it in the string.3 If the jth word of a sentence depends
on the ith word, then |i− j| tends to be small. This implies that neither i nor j is
modified by complex phrases that fall between i and j. In terms of phrase structure,
it implies that the phrases modifying word i from a given side tend to be (1) few in
number, (2) ordered so that the longer phrases fall farther from i, and (3) internally
structured so that the bulk of each phrase falls on the side of j away from i.

These principles have been blamed for several linguistic phenomena across lan-
guages, both by traditional linguists (Hawkins, 1994) and by computational linguists
(Gildea and Temperley, 2007; Temperley, 2007). For example, (1) helps explain the
“late closure” or “attach low” heuristic, whereby a modifier such as a PP is more
likely to attach to the closest appropriate head (Frazier, 1979; Hobbs and Bear, 1990,
for example). (2) helps account for heavy-shift: when an NP is long and complex,
take NP out, put NP on the table, and give NP to Mary are likely to be rephrased

2 It has recently been questioned whether these “bilexical” features actually contribute much to
parsing performance (Klein and Manning, 2003b; Bikel, 2004), at least when one has only a million
words of training data.
3 In this paper, we consider only a crude notion of “closeness”: the number of intervening words.
Other distance measures could be substituted or added (following the literature on heavy-shift
and sentence comprehension), including the phonological, morphological, syntactic, or referential
(given/new) complexity of the intervening material (Gibson, 1998). In parsing, the most relevant
previous work is due to Collins (1997), Klein and Manning (2003c), and McDonald et al (2005a),
discussed in more detail in Sect. 7.

Parsing with Soft and Hard Constraints on Dependency Length 3

as take out NP, put on the table NP, and give Mary NP. (3) explains certain non-
canonical word orders: in English, a noun’s left modifier must become a right mod-
ifier if and only if it is right-heavy (a taller politician vs. a politician taller than
all her rivals4), and a verb’s left modifier may extrapose its right-heavy portion (An
aardvark walked in who had circumnavigated the globe5).

Why should sentences prefer short dependencies? Such sentences may be easier
for humans to produce and comprehend. Each word can quickly “discharge its re-
sponsibilities,” emitting or finding all its dependents soon after it is uttered or heard;
then it can be dropped from working memory (Church, 1980; Gibson, 1998). Such
sentences also succumb nicely to disambiguation heuristics that assume short de-
pendencies, such as low attachment. Thus, to improve comprehensibility, a speaker
can make stylistic choices that shorten dependencies (e.g., heavy-shift), and a lan-
guage can categorically prohibit some structures that lead to long dependencies (*a
taller-than-all-her-rivals politician; *the sentence that another sentence that had
center-embedding was inside was incomprehensible).

Such functionalist pressures are not all-powerful. For example, many languages
use SOV basic word order where SVO (or OVS) would give shorter dependen-
cies. However, where the data exhibit some short-dependency preference, computer
parsers as well as human parsers can obtain speed and accuracy benefits by exploit-
ing that fact.

3 Soft Constraints on Dependency Length

We now enhance simple baseline probabilistic parsers for English, Chinese, and
German so that they consider dependency lengths. We confine ourselves (throughout
the paper) to parsing part-of-speech (POS) tag sequences. This allows us to ignore
data sparseness, out-of-vocabulary, smoothing, and pruning issues, but it means that
our accuracy measures are not state-of-the-art. Our techniques could be straight-
forwardly adapted to (bi)lexicalized parsers on actual word sequences, though not
necessarily with the same success.

4 Whereas *a politician taller and *a taller-than-all-her-rivals politician are not allowed. The
phenomenon is pervasive. Other examples: a sleeping baby vs. a baby sleeping in a crib; a gun-
toting honcho vs. a honcho toting a gun; recently seen friends vs. friends seen recently.
5 This actually splits the heavy left dependent [an aardvark who ...] into two non-adjacent pieces,
moving the heavy second piece. By slightly stretching the aardvark-who dependency in this way,
it greatly shortens aardvark-walked. The same is possible for heavy, non-final right dependents:
I met an aardvark yesterday who had circumnavigated the globe again stretches aardvark-who,
which greatly shortens met-yesterday. These examples illustrate (3) and (2) respectively. However,
the resulting non-contiguous constituents lead to non-projective parses that are beyond the scope
of this paper; see Sect. 8.

4 Jason Eisner and Noah A. Smith

3.1 Grammar Formalism

Throughout this paper we will use split bilexical grammars, or SBGs (Eisner, 2000),
a notationally simpler variant of split head-automaton grammars, or SHAGs (Eisner
and Satta, 1999). The formalism is context-free and only allows projective parses
(those that are free of crossing dependencies). We define here a probabilistic ver-
sion,6 which we use for the baseline models in our experiments. They are only
baselines because the SBG generative process does not take note of dependency
length.

An SBG is an tuple G = (Σ ,$,L,R). Σ is an alphabet of words. (In our exper-
iments, we parse only POS tag sequences, so Σ is actually an alphabet of tags.)
$ 6∈ Σ is a distinguished root symbol; let Σ̄ = Σ ∪{$}. L and R are functions from Σ̄

to probabilistic ε-free finite-state automata over Σ . Thus, for each w ∈ Σ̄ , the SBG
specifies “left” and “right” probabilistic FSAs, Lw and Rw.

We use Lw(G) : Σ̄ ∗→ [0,1] to denote the probabilistic context-free language of
phrases headed by w. Lw(G) is defined by the following simple top-down stochastic
process for sampling from it:

1. Sample from the finite-state language L(Lw) a sequence λ = w−1w−2 . . .w−` ∈
Σ ∗ of left children, and from L(Rw) a sequence ρ = w1w2 . . .wr ∈ Σ ∗ of right
children. Each sequence is found by a random walk on its probabilistic FSA. We
say the children depend on w.

2. For each i from −` to r with i 6= 0, recursively sample αi ∈ Σ ∗ from the
context-free language Lwi(G). It is this step that indirectly determines depen-
dency lengths.

3. Return α−` . . .α−2α−1wα1α2 . . .αr ∈ Σ̄ ∗, a concatenation of strings.

Notice that w’s left children λ were generated in reverse order, so w−1 and w1 are
its closest children while w−` and wr are the farthest.

Given an input sentence ω = w1w2 . . .wn ∈ Σ ∗, a parser attempts to recover the
highest-probability derivation by which $ω could have been generated from L$(G).
Thus, $ plays the role of w0. A sample derivation is shown in Fig. 1a. Typically, L$
and R$ are defined so that $ must have no left children (` = 0) and at most one right
child (r ≤ 1), the latter serving as the conventional root of the parse.

3.2 Baseline Models

In the experiments reported here, we defined only very simple automata for Lw and
Rw (w ∈ Σ). However, we tried three automaton types, of varying quality, so as to
evaluate the benefit of adding length-sensitivity at three different levels of baseline
performance.

6 There is a straightforward generalization to weighted SBGs, which need not have a stochastic
generative model.

Parsing with Soft and Hard Constraints on Dependency Length 5

(a
)

$
w

ou
ld

``
``

``
``

``
``

``
``

``
``

``
``

``
``

``
``

``
``

``
`

aa
aa

aa
aa

aa
aa

aa
aa

aa
aa

ee
ee

e
YYYYY

[[

A
cc

or
di

ng
YYYYY

,
ch

an
ge

s
bb

bb
bb

bb
bb

ee
ee

e
cu

t
\\\\\\\\\\

]]]]]]]]]]]]]]]

to
\\\\\\\\\\

th
e

ru
le

fil
in

gs
ee

ee
e

by
YYYYY

.

es
tim

at
es

ee
ee

e
in

si
de

r
m

or
e

YYYYY

so
m

e
th

an
\\\\\\\\\\

th
ir

d
ee

ee
e

a
(b

)
$

A
cc

or
di

ng WWWW
,

w
ou

ld
gg

gg
WWWW

to
[[[[[[[[

ch
an

ge
s

cc
cc

cc
cc

gg
gg

cu
t

[[[[[[[[
\\\\\\\\\\\

es
tim

at
es

gg
gg

th
e

ru
le

fil
in

gs
gg

gg
by

WWWW
.

so
m

e
in

si
de

r
m

or
e

WWWW

th
an

[[[[[[[[

th
ir

d
gg

gg

a

Fi
g.

1:
(a

)A
de

pe
nd

en
cy

tr
ee

on
w

or
ds

.(
O

ur
ex

pe
ri

m
en

ts
us

e
on

ly
PO

S
ta

gs
.)

(b
)A

pa
rt

ia
lp

ar
se

fo
rt

he
sa

m
e

se
nt

en
ce

re
ta

in
in

g
on

ly
tr

ee
de

pe
nd

en
ci

es
of

le
ng

th
≤

k
=

3.
T

he
ro

ot
s

of
th

e
4

re
su

lti
ng

pa
rs

e
fr

ag
m

en
ts

ar
e

no
w

co
nn

ec
te

d
on

ly
by

th
ei

rd
ot

te
d-

lin
e

“v
in

e
de

pe
nd

en
ci

es
”

on
$.

Tr
an

sf
or

m
in

g
(a

)i
nt

o
(b

)i
nv

ol
ve

s
gr

af
tin

g
su

bt
re

es
ro

ot
ed

at
“A

cc
or

di
ng

”,
“,

”,
an

d
“.

”
on

to
th

e
vi

ne
.

6 Jason Eisner and Noah A. Smith

In model A (the worst), each automaton has topology } ���, with a single state q1,
so token w’s left dependents are conditionally independent of one another given w.
In model C (the best), each automaton }−→} ��� has an extra state q0 that allows
the first (closest) dependent to be chosen differently from the rest. Model B is a
compromise:7 it is like model A, but each type w ∈ Σ may have an elevated or
reduced probability of having no dependents at all. This is accomplished by using
automata }−→} ���as in model C, which allows the stopping probabilities p(STOP |
q0) and p(STOP | q1) to differ, but tying the conditional distributions p(q0

w−→q1 |
q0,¬STOP) and p(q1

w−→q1 | q1,¬STOP).
Finally, throughout Sect. 3, L$ and R$ are restricted as above, so R$ gives a

probability distribution over Σ only.

3.3 Length-Sensitive Models

None of the baseline models A–C explicitly model the distance between a head
and child. We enhanced them by multiplying in some extra length-sensitive factors
when computing a tree’s probability. For each dependency, an extra factor p(∆ | . . .)
is multiplied in for the probability of the dependency’s length ∆ = |i− j|, where i
and j are the positions of the head and child in the surface string. In practice, this
especially penalizes trees with long dependencies, because large values of ∆ are
empirically unlikely.

Note that this is a crude procedure. Each legal tree—whether its dependencies are
long or short—has had its probability reduced by some extra factors p(∆ | . . .)≤ 1.
Thus, the resulting model is deficient (does not sum to 1). (The remaining proba-
bility mass goes to impossible trees whose putative dependency lengths ∆ are in-
consistent with the tree structure.) One could develop non-deficient models (either
log-linear or generative), but we will see that even the present crude approach helps.

Again we tried three variants. In one version, this new probability p(∆ | . . .) is
conditioned only on the direction d = sign(i− j) of the dependency. In another
version, it is conditioned only on the POS tag h of the head. In a third version, it is
conditioned on d, h, and the POS tag c of the child.

3.4 Parsing Algorithm

Fig. 2 gives a variant of Eisner and Satta’s (1999) SHAG parsing algorithm, adapted
to SBGs, which are easier to understand.8 (We will modify this algorithm later in
Sect. 5.) The algorithm obtains O(n3) runtime, despite the need to track the posi-
tion of head words, by exploiting the conditional independence between a head’s

7 It is equivalent to the “dependency model with valence” of Klein and Manning (2004).
8 The SHAG notation was designed to highlight the connection to non-split HAGs.

Parsing with Soft and Hard Constraints on Dependency Length 7

left children and its right children (given the head). It builds “half-constituents” de-

noted by @@ (a head word together with some modifying phrases on the right,

i.e., wα1 . . .αr) and �� (a head word together with some modifying phrases on

the left, i.e., α−` . . .α−1w). A new dependency is introduced when @@ + ��

are combined to get the “trapezoid” HH or �
�

(a pair of linked head words
with all the intervening phrases, i.e., wα1 . . .αrα

′
−`′ . . .α

′
−1w′, where w is respec-

tively the parent or child of w′). One can then combine HH + @@ = @@ , or

�� + �� = �� . Only O(n3) combinations are possible in total when parsing
a length-n sentence.

3.5 A Note on Word Senses

A remark is necessary about :w and :w′ in Fig. 2, which represent senses of the
words at positions h and h′. Like past algorithms for SBGs (Eisner, 2000), Fig. 2 is
designed to be a bit more general and integrate sense disambiguation into parsing.9

It formally runs on an input Ω = W1 . . .Wn ⊆ Σ ∗, where each Wi ⊆ Σ is a “confusion
set” over possible values of the ith word wi. Thus Ω is a “confusion network.” The
algorithm recovers the highest-probability derivation that generates $ω for some
ω ∈Ω (i.e., ω = w1 . . .wn with (∀i)wi ∈Wi).

9 In the present paper, we adopt the simpler and slightly more flexible SBG formalism of Eisner
(2000), which allows explicit word senses, but follow the asymptotically more efficient SHAG
parsing algorithm of Eisner and Satta (1999), in order to save a factor of g in our runtimes. Thus
Fig. 2 presents a version of the Eisner-Satta SHAG algorithm that has been converted to work with
SBGs, exactly as sketched and motivated in footnote 6 of Eisner and Satta (1999).

This conversion preserves the asymptotic runtime of the Eisner-Satta algorithm. However, no-
tice that the version in Fig. 2 does have a practical inefficiency, in that START-LEFT nondeter-
ministically guesses each possible sense w ∈Wh, and these g senses are pursued separately. This
inefficiency can be repaired as follows. We should not need to commit to one of a word’s g senses
until we have seen all its left children (in order to match the behavior of the Eisner-Satta algo-
rithm, which arrives at one of g “flip states” in the word’s FSA only by accepting a sequence of
children). Thus, the left triangles and left trapezoids of Fig. 2 should be simplified so that they
do not carry a sense :w at all, except in the case of the completed left triangle (marked F) that is
produced by FINISH-LEFT. The FINISH-LEFT rule should nondeterministically choose a sense w
of Wh according to the final state q, which reflects knowledge of Wh’s sequence of left children.

For this strategy to work, the transitions in Lw (used by ATTACH-LEFT) clearly may not depend
on the particular sense w ∈Wh but only on Wh. In other words, all Lw : w ∈Wh are really copies of
a shared LWh , except that they may have different final states. This slightly inelegant restriction on
the SBG involves no loss of generality, since the nondeterministic shared LWh is free to branch as
soon as it likes onto paths that commit to the various senses w.

We remark without details that this modification to Fig. 2, which defers the choice of w for as
long as possible, could be obtained mechanically as an instance of the speculation transformation
of Eisner and Blatz (2007). Speculation could similarly be used to extend the trick to the lattice
parsing of Sect. 3.7, where a left triangle would commit immediately to the initial state of its head
arc but defer committing to the full head arc for as long as possible.

8 Jason Eisner and Noah A. Smith

This extra level of generality is not needed for any of our experiments, but with-
out it, SBG parsers would not be as flexible as SHAG parsers. We include it in this
paper to broaden the applicability of both Fig. 2 and our extension of it in Sect. 5.

The “senses” can be used in an SBG to pass a finite amount of information be-
tween the left and right children of a word (Eisner, 2000). For example, to model
the fronting of a direct object, an SBG might use a special sense of a verb, whose
automata tend to generate both one more noun in the left child sequence λ and one
fewer noun in the right child sequence ρ .

Senses can also be used to pass information between parents and children. Im-
portant uses are to encode lexical senses, or to enrich the dependency parse with
constituent labels, dependency labels, or supertags (Bangalore and Joshi, 1999;
Eisner, 2000). For example, the input token Wi = {bank1/N/NP, bank2/N/NP,
bank3/V/VP, bank3/V/S} ⊂ Σ allows four “senses” of bank, namely two nomi-
nal meanings, and two syntactically different versions of the verbal meaning, whose
automata require them to expand into VP and S phrases respectively.

The cubic runtime is proportional to the number of ways of instantiating the
inference rules in Fig. 2: O(n2(n + t ′)tg2), where n = |Ω | is the input length, g =
maxn

i=1 |Wi| bounds the size of a confusion set, t bounds the number of states per
automaton, and t ′ ≤ t bounds the number of automaton transitions from a state that
emit the same word. For deterministic automata, t ′ = 1.

3.6 Probabilistic Parsing

It is easy to make the algorithm of Fig. 2 length-sensitive. When a new dependency

is added by an ATTACH rule that combines @@ + �� , the annotations on @@

and �� suffice to determine the dependency’s length ∆ = |h−h′|, direction d =
sign(h−h′), head word w, and child word w′.

So the additional cost of such a dependency, e.g. p(∆ | d,w,w′), can be included
as the weight of an extra antecedent to the rule, and so included in the weight of the

resulting �
�

or H
H

.
To execute the inference rules in Fig. 2, common practice is to use a prioritized

agenda (Eisner et al, 2005), at the price of an additional logarithmic factor in the
runtime for maintaining the priority queue. In our experiments, derived items such

as @@ , �� , �
�

, and HH are prioritized by their Viterbi-inside probabili-
ties. This is known as uniform-cost search or shortest-hyperpath search (Nederhof,
2003). We halt as soon as a full parse (the special accept item) pops from the agenda,
since uniform-cost search (as a special case of the A∗ algorithm) guarantees this to
be the maximum-probability parse. No other pruning is done.

With a prioritized agenda, a probability model that more sharply discriminates
among parses will typically lead to a faster parser. (Low-probability constituents

Parsing with Soft and Hard Constraints on Dependency Length 9

languish at the back of the agenda and are never pursued.) We will see that the
length-sensitive models do run faster for this reason.10

3.7 A Note on Lattice Parsing

A lattice is an acyclic FSA. Often parsing a weighted lattice is useful—for example,
the output of a speech recognition or machine translation system. The parser ex-
tracts a good path through the lattice (i.e., one that explains the acoustic or source-
language data) that also admits a good syntax tree (i.e., its string is likely under a
generative syntactic language model, given by Sect. 3.1).

More generally, we may wish to parse an arbitrary FSA. For example, if we apply
our inference rules using the inside semiring (Goodman, 1999), we obtain the total
weight of all parses of all paths in the FSA. This provides a normalizing constant
that is useful in learning, if the FSA is Σ ∗ or a “neighborhood” (contrast set) of
distorted variants of the observed string (Smith and Eisner, 2005; Smith, 2006).

Thus, for completeness, we now present algorithms for the case where we are
given an arbitrary FSA as input. A parse now consists of a choice of path through
the given FSA together with an SBG dependency tree on the string accepted by that
path. In the weighted case, the weight of the parse is the product of the respective
FSA and SBG weights.

Sect. 3.5 already described a special case—the confusion network Ω =W1 . . .Wn,
which may be regarded as a particular unweighted lattice with n states and ng arcs.
The confusion-network parsing algorithm of Fig. 2 can easily be generalized to
parse an arbitrary weighted FSA, Ω :

• In general, the derivation tree of a triangle or trapezoid item now explains a path
in Ω . The lower left corner of the item specifies the leftmost state or arc on that
path, while the lower right corner specifies the rightmost state or arc. If the lower
left corner specifies an arc, the weight of this leftmost arc is not included in the
weight of the derivation tree (it will be added in by a later COMPLETE step).

• Each position h in Fig. 2 that is paired with a word w (i.e., h :w) now denotes an
arc in Ω that is labeled with w. Similarly for h′ :w′.

• The special position 0, which is paired with the non-word $, denotes the initial
state of Ω (rather than an arc).

• Each unpaired position i now denotes a state in Ω . In the ATTACH rules, i− 1
should be modified to equal i. In END-VINE, the unpaired position n should be
constrained by a new antecedent to be a final state of Ω , whose stopping weight
is the weight of this antecedent.

• In the START-LEFT (respectively START-RIGHT) rule, where h in h : w now de-
notes an arc, the unpaired h should be replaced by the start (respectively end)
state of this arc.

10 A better priority function that estimated outside costs would further improve performance (Cara-
ballo and Charniak, 1998; Charniak et al, 1998; Klein and Manning, 2003a).

10 Jason Eisner and Noah A. Smith

• In the START-LEFT rule, the antecedent w ∈Wh is replaced by a new antecedent
requiring that h is an arc of Ω , labeled with w. The weight of this arc is the weight
of the new antecedent.

• We add the following rule to handle arcs of Ω that are labeled with ε rather than
with a word: TRAVERSE-ε:

@@

q

h :w i
(i ε→ j) ∈Ω

@@

q

h :w j
• If Ω is cyclic, it is possible to obtain cyclic derivations (analogous to unary rule

cycles in CFG parsing) in which an item is used to help derive itself. However,
this is essentially unproblematic if this cyclic derivation always has worse prob-
ability than the original acyclic one, and hence does not improve the weight of
the item (Goodman, 1999).

The resulting algorithm has runtime O(m2(n + t ′)t) for a lattice of n states and
m arcs. In the confusion network case, where m = ng, this reduces to our earlier
runtime of O(n2(n+ t ′)tg2) from Sect. 3.5.

The situation becomes somewhat trickier, however, when we wish to consider
dependency lengths. For our soft constraints in Sect. 3.6, we needed to determine
the length ∆ of a new dependency that is added by an ATTACH rule. Unfortunately
the distance ∆ = |h− h′| is no longer well-defined now that h and h′ denote arcs
in an FSA rather than integer positions in a sentence. Different paths from h to h′

might cover different numbers of words.
Before proceeding, let us generalize the notion of dependency length. Assume

that each arc in the input FSA, Ω , comes equipped with a length. Recall that a
parse specifies a finite path h1h2 . . .hn through Ω and a set of dependencies among
the word tokens that label that path. If there is a leftward or rightward dependency
between the word tokens that label arcs h` and hr, where ` < r, we define the length
of this dependency to be the total length of the subpath h`+1h`+2 . . .hr.11

When an ATTACH rule builds a trapezoid item, it adds a dependency. Our goal is
to determine the length ∆ of that dependency from the “width” of the trapezoid, so
that the ATTACH rule can multiply in the appropriate penalty. The problem is that
the width of an item is not well-defined: rather, each derivation (proof tree) of a
triangle or trapezoid item has a possibly different width.

We define a derivation’s width to be the total length of the subpath of Ω that is
covered by the derivation, but excluding the leftmost arc of the subpath iff the item
itself specifies that arc.12 In other words, let i denote the item’s leftmost state or

11 It is an arbitrary decision for a dependency’s length to include the length of its right word but not
the length of its left word. We adopt that convention only for consistency with our earlier definition
of dependency length, and to simplify the relationship between dependency length and derivation
width. It might however be justified in terms of incremental parsing, since it encodes the wait time
once the left word has been heard until the right word is fully available to link to it.
12 This exclusion ensures that when we combine two such derivations using COMPLETE or AT-
TACH, then the consequent derivation’s width is always the sum of its antecedent derivations’

Parsing with Soft and Hard Constraints on Dependency Length 11

the end state of its leftmost arc if specified, and j denote its rightmost state or the
start state of its rightmost arc if specified. The derivation’s width is the length of the
subpath from i to j, plus the length of the rightmost arc if specified. Unfortunately,
the item does not record this subpath, which differs by derivation; it only records i
and j.

There are several possible attacks on the problem of defining the widths of trian-
gle and trapezoid items:
Redefine length. One option is to ensure that all derivations of an item do have
equal widths. This may be done by defining the arc lengths in Ω in a “consistent”
way. Where Ω is an acoustic lattice derived from a speech signal, we can meaning-
fully associate a time t(i) with each state i ∈ Ω , and define the length of an arc to
be the difference between its start and end times. Then all paths from state i to state
j have the same length, namely t(j)− t(i). In short, the problem goes away if we
measure dependency length in acoustic milliseconds.

However, Ω is not necessarily an acoustic lattice. To measure a dependency’s
length by its string distance in words, as we have been doing thus far, we must
define each arc’s length to be be 1 or 0 according to whether it accepts a word or
ε .13 In this case, different paths from i to j do have different lengths.
Specialize the items. A second option is to augment each triangle or trapezoid
item with a specific width ∆ . In other words, we split an item that already specifies
i and j into several more specific items, each of which allows only derivations of
a particular width. The width of a consequent item can be determined easily by
summing the widths of its antecedents.

Unfortunately, this exact method leads to more items and increased runtime
(though only to the extent that there really are paths of many different lengths be-
tween i and j). In particular, it leads to infinitely many items if the input FSA Ω is
cyclic.14

Use a lower bound based on shortest path. A third option is to approximate by
using only a lower bound on dependency length. The ATTACH rule can consider the
width of a trapezoid to be a lower bound on the widths of its derivations, specifically,
the shortest path in Ω from i to j.15 In other words, when evaluating a parse, we
will define a dependency between arcs h` and hr to be be “short” if these arcs are
close on some path, though not necessarily on the path actually chosen by the parse.

Notice that one can improve this lower bound at the expense of greater runtime,
by modifying Ω to use more states and less structure-sharing. A reasonable trick is

widths. Recall from the first bullet point above that the same exclusion was used when defining the
weight of an item, and for the same reason.
13 One could change the arc lengths to measure not in words but in one of the other measurement
units from footnote 3.
14 Although uniform-cost search will still terminate, provided that all cycles in Ω have positive
cost. All sufficiently wide items will then have a cost worse than that of the best parse, so only
finitely many items will pop from the priority queue.
15 The shortest-path distances between all state pairs can be precomputed in O(n3 +m) time using
the Floyd-Warshall algorithm. This preprocessing time is asymptotically dominated by the runtime
of Fig. 2.

12 Jason Eisner and Noah A. Smith

to intersect Ω with an FSA that accepts Σ ∗ and has the topology of a simple 4-cycle.
This does not change the weighted language accepted by Ω , but it splits states of Ω

so that two paths from i to j must accept the same number of words, modulo 4. For
many practical lattices, this will often ensure that all short paths from i to j accept
exactly the same number of words. It increases n by a factor of ≤ 4 and does not
increase m at all.16

Partially specialize the items. By combining the previous two methods, we can
keep the number of items finite. Fix a constant k ≥ 0. Each item either records a
specific width ∆ ∈ [0,k], or else records that it has width > k. The former items
conside only derivations of a particular width, while for the latter items we can use
a lower bound.
Coarse to fine. There is another way to combine these methods. The lower-
bounding method can be run as a “coarse pass,” followed by the exact specialized-
items method as a “fine pass.” If shorter dependencies are always more likely than
longer ones, then the Viterbi outside probabilities from the coarse pass are upper
bounds on the Viterbi outside probabilities from the fine pass, and hence can be
used as an admissible A∗ heuristic to prioritize derivations on the fine pass.
Aggregate over derivations. A final option is to approximate more tightly. Each
triangle and each trapezoid can dynamically maintain an estimate ∆̄ of the minimum
(or the expected) width of its derivations. Whenever an inference rule derives or
rederives the item, it can update this ∆̄ estimate based on the current estimates ∆̄

at its antecedents.17 When deriving a trapezoid, the ATTACH rule can estimate the
dependency length that it needs as the total current ∆̄ of its antecedents.18

This may give a lower bound that is tighter than the one given earlier, since it at-
tempts to use the shortest i-to- j subpath that is covered by some actual derivation of
the item in question, rather than the shortest i-to- j subpath overall. Unfortunately, if
we wish to ensure that it is a true lower bound (i.e., considers all relevant i-to- j sub-
paths), then we must incur the extra overhead of updating it when new derivations
are found. Specifically, we must consider reducing the ∆̄ of an item whenever the ∆̄

of one of its antecedents is reduced. Since a trapezoid’s ∆̄ in turn affects its weight,
this may in turn force us to propagate increases or other updates to item weights.

16 A related trick is to convert Ω to a trie (if it is acyclic). This makes the lower bound exact by
ensuring that there are never multiple paths from i to j, but potentially increases the size of Ω

exponentially.
17 For the expected-width case, each item must maintain both ∑d p(d)∆(d) and ∑d p(d), where
d ranges over derivations. These quantities can be updated easily, and their ratio is the expected
width.
18 This is more precise than using the ∆̄ of the consequent, which is muddied by other derivations
that are irrelevant to this dependency length.

Parsing with Soft and Hard Constraints on Dependency Length 13

4 Experiments with Soft Constraints

We trained models A–C, using unsmoothed maximum likelihood estimation, on
three treebanks: the Penn (English) Treebank (split in the standard way, §2–21
train/§23 test, or 950K/57K words), the Penn Chinese Treebank (80% train/10%
test or 508K/55K words), and the German TIGER corpus (80%/10% or 539K/68K
words).19 Estimation was a simple matter of counting automaton events and nor-
malizing counts into probabilities. For each model, we also trained the three length-
sensitive versions described in Sect. 3.3.

The German corpus contains some non-projective trees, whose dependencies
cross. None of our parsers can recover these non-projective dependencies, nor can
our models produce them (but see Sect. 8). This fact was ignored when counting
events for maximum likelihood estimation: in particular, we always trained Lw and
Rw on the sequence of w’s immediate children, even in non-projective trees.

Our results (Table 1) show that sharpening the probabilities with the most so-
phisticated distance factors p(∆ | d,h,c), consistently improved the speed of all
parsers.20 The change to the code is trivial. The only overhead is the cost of looking
up and multiplying in the extra distance factors.

Accuracy also improved over the baseline models of English and Chinese, as well
as the simpler baseline models of German. Again, the most sophisticated distance
factors helped most, but even the simplest distance factor usually obtained most of
the accuracy benefit.

German model C fell slightly in accuracy. The speedup here suggests that the
probabilities were sharpened, but often in favor of the wrong parses. We did not
analyze the errors on German; it may be relevant that 25% of the German sentences
contained a non-projective dependency between non-punctuation tokens.

Studying the parser output for English, we found that the length-sensitive models
preferred closer attachments, with 19.7% of tags having a nearer parent in the best
parse under model C with p(∆ | d,h,c) than in the original model C, 77.7% having
a parent at the same distance, and only 2.5% having a farther parent. The surviving
long dependencies (at any length > 1) tended to be much more accurate, while
the (now more numerous) length-1 dependencies were slightly less accurate than
before.

We caution, however, that the length-sensitive models improved accuracy only
in the aggregate. They corrected many erroneous attachments, but also introduced

19 Heads were extracted for English using Michael Collins’ rules and for Chinese using Fei Xia’s
rules (defaulting in both cases to right-most heads where the rules fail). German heads were ex-
tracted using the TIGER Java API; we discarded all resulting dependency structures that were
cyclic or unconnected (6%).
20 In all cases, we measure runtime abstractly by the number of items built and pushed on the
agenda, where multiple ways of building the same item are counted multiple times. The items

in question are @@ , �� ,
��

,
HH

, and in the case of Fig. 4, also ��@@ and
XXyXXy

.) Note that if the agenda is a general priority queue, then popping an item takes log-
arithmic time, although pushing an item can be achieved in constant time using a Fibonacci-heap
implementation.

14 Jason Eisner and Noah A. Smith

English (Penn Treebank) Chinese (Chinese Treebank) German (TIGER Corpus)
recall (%) runtime model recall (%) runtime model recall (%) runtime model

model train test test size train test test size train test test size
A (1 state) 62.0 62.2 93.6 1,878 50.7 49.3 146.7 782 70.9 72.0 53.4 1,598
+ p(∆ | d) 70.1 70.6 97.0 2,032 59.0 58.0 161.9 1,037 72.3 73.0 53.2 1,763
+ p(∆ | h) 70.5 71.0 94.7 3,091 60.5 59.1 148.3 1,759 73.1 74.0 48.3 2,575
+ p(∆ | d,h,c) 72.8 73.1 70.4 16,305 62.2 60.6 106.7 7,828 75.0 75.1 31.6 12,325
B (2 states, tied arcs) 69.7 70.4 93.5 2,106 56.7 56.2 151.4 928 73.7 75.1 52.9 1,845
+ p(∆ | d) 72.6 73.2 95.3 2,260 60.2 59.5 156.9 1,183 72.9 73.9 52.6 2,010
+ p(∆ | h) 73.1 73.7 92.1 3,319 61.6 60.7 144.2 1,905 74.1 75.3 47.6 2,822
+ p(∆ | d,h,c) 75.3 75.6 67.7 16,533 62.9 61.6 104.0 7,974 75.2 75.5 31.5 12,572
C (2 states) 72.7 73.1 90.3 3,233 61.8 61.0 148.3 1,314 75.6 76.9 48.5 2,638
+ p(∆ | d) 73.9 74.5 91.7 3,387 61.5 60.6 154.7 1,569 74.3 75.0 48.9 2,803
+ p(∆ | h) 74.3 75.0 88.6 4,446 63.1 61.9 141.9 2,291 75.2 76.3 44.3 3,615
+ p(∆ | d,h,c) 75.3 75.5 66.6 17,660 63.4 61.8 103.4 8,360 75.1 75.2 31.0 13,365

Table 1: Dependency parsing of POS tag sequences with simple probabilistic split bilexical gram-
mars. The models differ only in how they weight the same candidate parse trees. Length-sensitive
models are larger but can improve dependency accuracy and speed. (Recall is measured as the
fraction of non-punctuation tags whose correct parent (if not the $ symbol) was recovered by the
parser; it equals precision, unless the parser left some sentences unparsed (or incompletely parsed,
as in Sect. 5), in which case precision is higher. Runtime is measured abstractly as the average
number of items built (see footnote 20). Model size is measured as the number of nonzero param-
eters.)

new errors. We also caution that length sensitivity’s most dramatic improvements to
accuracy were on the worse baseline models, which had more room to improve. The
better baseline models (B and C) were already able to indirectly capture some pref-
erence for short dependencies, by learning that some parts of speech were unlikely
to have multiple left or multiple right dependents. Enhancing B and C therefore
contributed less, and indeed may have had some harmful effect by over-penalizing
some structures that were already appropriately penalized.21 It remains to be seen,
therefore, whether distance features would help state-of-the art parsers that are al-
ready much better than model C. Such parsers may already incorporate features that
indirectly impose a good model of distance (see Sect. 7), though perhaps not as
cheaply.

5 Hard Dependency-Length Constraints

We have seen how an explicit model of distance can improve the speed and accuracy
of a simple probabilistic dependency parser. Another way to capitalize on the fact

21 Owing to our deficient model. A log-linear or discriminative model would be trained to cor-
rect for overlapping penalties and would avoid this risk. Non-deficient generative models are also
possible to design, along lines similar to footnote 22.

Parsing with Soft and Hard Constraints on Dependency Length 15

that most dependencies are local is to impose a hard constraint that simply forbids
long dependencies.

The dependency trees that satisfy this constraint yield a regular string language.22

The constraint prevents arbitrarily deep center-embedding, as well as arbitrarily
many direct dependents on a given head, either of which would allow the non-
regular language {anbcn : 0 < n < ∞}. However, it does allow arbitrarily deep right-
or left-branching structures.

5.1 Vine Grammars

The tighter the bound on dependency length, the fewer parse trees we allow and the
faster we can find them using an algorithm similar to Fig. 2 (as we will see). If the
bound is too tight to allow the correct parse of some sentence, we would still like
to allow an accurate partial parse: a sequence of accurate parse fragments (Hindle,
1990; Abney, 1991; Appelt et al, 1993; Chen, 1995; Grefenstette, 1996). Further-
more, we would like to use the fact that some fragment sequences are presumably
more likely than others.

Our partial parses will look like the one in Fig. 1b. where four subtrees rather
than just one are dependent on $. This is easy to arrange in the SBG formalism. We
merely need to construct our SBG so that the automaton R$ is now permitted to
generate multiple children—the roots of parse fragments.

This R$ is a probabilistic finite-state automaton that describes legal or likely root
sequences in Σ ∗. In our experiments in this section, we will train it to be a first-order
(bigram) Markov model. (Thus we construct R$ in the usual way to have |Σ |+ 1
states, and train it on data like the other left and right automata. During generation,
its state remembers the previously generated root, if any. Recall that we are working
with POS tag sequences, so the roots, like all other words, are tags in Σ .)

The 4 subtrees in Fig. 1b appear as so many bunches of grapes hanging off a vine.
We refer to the dotted dependencies upon $ as vine dependencies, and the remaining,
bilexical dependencies as tree dependencies.

One might informally use the term “vine grammar” (VG) for any generative for-
malism, intended for partial parsing, in which a parse is a constrained sequence of
trees that cover the sentence. In general, a VG might use a two-part generative pro-
cess: first generate a finite-state sequence of roots, then expand the roots according
to some more powerful formalism. Conveniently, however, SBGs and other depen-
dency grammars can integrate these two steps into a single formalism.

22 One proof is to construct a strongly equivalent CFG without center-embedding (Nederhof,
2000). Each nonterminal has the form 〈w,q, i, j〉, where w ∈ Σ , q is a state of Lw or Rw, and
i, j ∈ {0,1, . . .k−1,≥ k}. We leave the details as an exercise.

16 Jason Eisner and Noah A. Smith

5.2 Feasible Parsing

Now, for both speed and accuracy, we will restrict the trees that may hang from
the vine. We define a feasible parse under our SBG to be one in which all tree
dependencies are short, i.e., their length never exceeds some hard bound k. The vine
dependencies may have unbounded length, of course, as in Fig. 1b.

Sentences with feasible parses form a regular language. This would also be true
under other definitions of feasibility: e.g., we could have limited the depth or width
of each tree on the vine. However, that would have ruled out deeply right-branching
trees, which are very common in language, and are also the traditional way to de-
scribe finite-state sublanguages within a context-free grammar. By contrast, our lim-
itation on dependency length ensures regularity while still allowing (for any bound
k ≥ 1) arbitrarily wide and deep trees, such as a→ b→ . . .→ root← . . .← y← z.

Our goal is to find the best feasible parse (if any). (In our scenario, one will typ-
ically exist—at worse, just a vine of tiny single-word trees.) Rather than transform
the grammar as in footnote 22, our strategy is to modify the parser so that it only
considers feasible parses. The interesting problem is to achieve linear-time parsing
with a grammar constant that is as small as for ordinary parsing.

One could enforce this restriction by modifying either the grammar G or the
parser. In this paper, we leave the grammar alone, but restrict the parser so that
it is only permitted to find short within-tree dependencies. Other parses may be
permitted by the vine grammar but are not found by our parser.

We also correspondingly modify the training data so that we only train on feasible
parses. That is, we break any long dependencies and thereby fragment each training
parse (a single tree) into a vine of one or more restricted trees. When we break a
child-to-parent dependency, we reattach the child to $.23 This process, grafting, is
illustrated in Fig. 1. Although this new parse may score less than 100% recall of
the original dependencies, it is the best feasible parse, so we would like to train
the parser to find it.24 By training on the modified data, we learn more appropriate
statistics for both R$ and the other automata. If we trained on the original trees, we
would inaptly learn that R$ always generates a single root rather than a certain kind
of sequence of roots.

For evaluation, we score tree dependencies in our feasible parses against the tree
dependencies in the unmodified gold standard parses, which are not necessarily fea-
sible. We also show oracle performance.

23 Any dependency covering the child must also be broken to preserve projectivity. This case arises
later; see footnote 34.
24 Although our projective parser will still not be able to find it if it is non-projective (possible in
German). Arguably we should have defined a more aggressive grafting procedure that produced
projective parses, but we did not. See Sect. 8 for discussion of non-projective vine grammar pars-
ing, which would always be able to recover the best feasible parse.

Parsing with Soft and Hard Constraints on Dependency Length 17

5.2.1 Approach #1: FSA Parsing

Since we are now dealing with a regular or rational string language, it is possible in
principle to construct a weighted finite-state automaton (FSA) and use it to search
for the best feasible parse. The idea is to find the highest-weighted path that accepts
the input string ω = w1w2 . . .wn. Using the Viterbi algorithm, this takes time O(n).

The trouble is that this linear runtime hides a constant factor, which depends on
the size of the relevant part of the FSA and may be enormous for any correct FSA.25

Consider an example from Fig 1b. After nondeterministically reading w1 . . .w11 =
According. . . insider along the correct path, the FSA state must record (at least) that
insider has no parent yet and that R$, Rwould, and Rcut are in particular states that
may still accept more children. Else the FSA cannot know whether to accept the
continuation w12 . . .wn = filings by more than a third .

In general, after parsing a prefix w1 . . .w j, the FSA state must somehow record
information about all incompletely linked words in the past. It must record the se-
quence of past words wi (i ≤ j) that still need a parent or child in the future; if wi
still needs a child, it must also record the state of Rwi .

Our restriction to dependency length ≤ k is what allows us to build a weighted
finite-state automaton (as opposed to some kind of pushdown automaton with an
unbounded number of configurations). We need only build the finitely many states
in which the incompletely linked words are limited to at most w0 = $ and the k most
recent words, w j−k+1 . . .w j. Other states cannot extend into a feasible parse, and can
be pruned.

However, this still allows the FSA to be in O(2ktk+1) different states after nonde-
terministically reading w1 . . .w j. Then the runtime of the Viterbi algorithm, though
linear in n, is exponential in k.

5.2.2 Approach #2: Ordinary Chart Parsing

A much better idea for most purposes is to use a chart parser. This allows the
usual dynamic programming techniques for reusing computation. (The FSA in the
previous section failed to exploit many such opportunities: exponentially many
states would have proceeded redundantly by building the same w j+1w j+2w j+3 con-
stituent.)

It is simple to restrict our algorithm of Fig. 2 to find only feasible parses. It is

the ATTACH rules @@ + �� that add dependencies: simply use a side condition
to block them from applying unless |h− h′| ≤ k (short tree dependency) or h =

0 (vine dependency). This ensures that all HH and �� will have width ≤ k
or have their left edge at 0. One might now incorrectly expect runtime linear in
n. Unfortunately, the number of possible ATTACH combinations, which add new
dependencies, is reduced from O(n3) to O(nk2), because i and h′ are now restricted

25 The full runtime is O(nE), where E is the number of FSA edges, or for a tighter estimate, the
number of FSA edges that can be traversed by reading ω .

18 Jason Eisner and Noah A. Smith

START-LEFT:
w ∈Wh q ∈ init(Lw)

��

q

h h :w

1≤ h≤ n

START-RIGHT:

q ∈ init(Rw)

@@

q

h :w h

��
F

i h :w

START-VINE:
q ∈ init(R$)

@@

q

0:$ 0

FINISH-LEFT:

��

q

i h :w
q ∈ final(Lw)

��
F

i h :w

FINISH-RIGHT:

@@

q

h :w i
q ∈ final(Rw)

@@
F

h :w i

END-VINE:

@@
F

0:$ n
accept

ATTACH-LEFT: @@
F

h′ :w′ i−1
��

q

i h :w

 q w′−→r ∈ Lw

��
r

h′ :w′ h :w

ATTACH-RIGHT: @@

q

h :w i−1
��

F

i h′ :w′

 q w′−→r ∈ Rw

HH
r

h′ :w′h :w

COMPLETE-LEFT:

��
F

i h′ :w′
��

q

h′ :w′ h :w

��

q

i h :w

COMPLETE-RIGHT:

HH
q

h′ :w′h :w
@@

F

h′ :w′ i

@@

q

h :w i

Fig. 2: An algorithm that parses W1 . . .Wn in cubic time O(n2(n + t ′)tg2). Adapted with improve-
ments from (Eisner and Satta, 1999, Fig. 3); see footnote 9 for a further practical speedup that
delays the disambiguation of word senses. The algorithm is specified as a collection of deduc-
tive inference rules. Once one has derived all antecedent items above the horizontal line and any
side conditions to the right of the line, one may derive the consequent item below the line. The
parentheses in the ATTACH rules indicate the deduction of an intermediate item that “forgets” i.
Weighted agenda-based deduction is handled in the usual way (Goodman, 1999): i.e., the weight of
a consequent item is the product of the weights of its antecedents (not including side conditions),
maximized (or summed) over all ways of deriving that consequent. The probabilities governing the

automaton Lw, namely p(start at q), p(q w′−→ r | q), and p(stop | q), respectively give the weights

of the axiomatic items q ∈ init(Lw), q w′−→ r ∈ Lw, and q ∈ final(Lw); similarly for Rw. The weight
of the axiomatic item w ∈Wh is 1, but could be modified to define a penalty (not mentioned in
Sect. 3.5) for generating w rather than some other element of Wh.

to a narrow range given h. Unfortunately, the half-constituents @@ and �� may
still be arbitrarily wide, thanks to arbitrary right- and left-branching: a feasible vine

parse may be a sequence of wide trees ��@@ . Thus there are O(n2k) possible

Parsing with Soft and Hard Constraints on Dependency Length 19

TREE-START:

@@

q

0:$ i−1
��

F

i i :w

��@@

q

i :w0:$

TREE-LEFT:

��@@

q

i :w0:$
��

F

i :w j :x

��@@

q

j :x0:$

GRAFT-VINE:

��@@

q

i :w0:$
q w−→r ∈ R$

XXyXXy
r

i :w0:$
TREE-RIGHT:

XXyXXy
q

i :w0:$
HH

F

j :xi :w

XXyXXy
q

j :x0:$

‘

TREE-END:

XXyXXy
q

i :w0:$
@@

F

i :w i

@@

q

0:$ i

SEAL-LEFT:

��
q

h′ :w′ h :w
q ∈ final(Lw)

��
F

h′ :w′ h :w

SEAL-RIGHT:

HH
q

h′ :w′h :w
q ∈ final(Rw)

HH
F

h′ :w′h :w

Fig. 3: Extension to the algorithm in Fig. 2. If the ATTACH rules (Fig. 2) are restricted to apply only
when |h−h′| ≤ k, and the COMPLETE rules (Fig. 2) only when |h− i|< k, then the additional rules
above will assemble the resulting fragments into a vine parse. In this case, ATTACH-RIGHT should
also be restricted to h > 0, to prevent duplicate derivations (spurious ambiguity). The runtime is
O(nk(k + t ′)tg2), dominated by the ATTACH rules from Fig. 2; the additional rules above require
only O(nktg2 +ngtt ′) additional time.

COMPLETE combinations, not to mention O(n2) ATTACH-RIGHT combinations for
which h = 0. So the runtime remains quadratic. We now fix this problem.

5.2.3 Approach #3: Specialized Chart Parsing

How, then, do we get linear runtime and a reasonable grammar constant? We give
two ways to achieve runtime of O(nk2).

First, we observe without details that we can easily achieve this by starting in-
stead with the algorithm of Eisner (2000),26 rather than Eisner and Satta (1999),
and again refusing to add long tree dependencies. That algorithm effectively con-
catenates only trapezoids, not triangles (i.e., half-constituents). Each is spanned by
a single dependency and so has width ≤ k. The vine dependencies do lead to wide
trapezoids, but these are constrained to start at 0, where $ is. So the algorithm tries

26 With a small change that when two items are combined, the right item (rather than the left) must
be simple (in the terms of Eisner (2000)).

20 Jason Eisner and Noah A. Smith

at most O(nk2) trapezoid combinations of the form h i + i j (like the AT-

TACH combinations above) and O(nk) combinations of the form 0 i + i j ,
where i− h ≤ k, j− i ≤ k. The precise runtime is O(nk(k + t ′)tg3), in terms of the
parameters of Sect. 3.5. In the unrestricted case where k = n, we recover exactly the
algorithm of Eisner (2000) and its runtime.

We now propose a hybrid linear-time algorithm that further improves asymptotic
runtime to O(nk(k + t ′)tg2), saving a factor of g in the grammar constant. While we
will still build trapezoids as in Eisner (2000), the factor-of-g savings will come from
building the internal structure of a trapezoid from both ends inward rather than from
left to right. In the unrestricted case where k = n, this improved runtime exactly
matches that of Eisner and Satta (1999) and Fig. 2 (as given in Sect. 3.5)—although
the new algorithm itself is a hybrid of Eisner and Satta (1999) and Eisner (2000),
since we already saw in Sect. 5.2.2 that simply restricting Eisner and Satta (1999)
would not give linear runtime.

We observe that since within-tree dependencies must have length ≤ k, they can
all be captured within Eisner-Satta trapezoids of width ≤ k. So our vine grammar

parse ��@@ ∗ can be assembled by simply concatenating a sequence of the form

(�� �� ∗ HH ∗ @@)∗ of these narrow trapezoids interspersed with width-0
triangles. As this is a regular sequence, we can assemble it in linear time from left
to right (rather than in the order of Eisner and Satta (1999)), multiplying the items’

probabilities together. Whenever we start adding the right half H
H ∗ @@ of a tree

along the vine, we have discovered that tree’s root, so we multiply in the probability
of a $← root vine dependency.

Formally, our hybrid parsing algorithm restricts the original rules of Fig. 2 to
build only trapezoids of width ≤ k and triangles of width < k.27 The additional
inference rules in Fig. 3 then assemble the final VG parse from left to right as just
described.

Specifically, the sequence (�� �� ∗ HH ∗ @@)∗ (all with F at the apex)
is attached from left to right by the sequence of rules TREE-START TREE-LEFT∗

GRAFT-VINE TREE-RIGHT∗ TREE-END in Fig. 3. It is helpful to regard these rules

as carrying out transitions in a small FSA whose state set is { @@ , ��@@ ,
XXyXXy }

(all with 0 : $ at the left edge; these pictorially represent the state of the vine built

so far). TREE-START is the arc @@ ��−−−→ ��@@ ; TREE-LEFT is the self-loop

��@@
�� ��� ; GRAFT-VINE is the ε-transition from ��@@

ε−→ XXyXXy that is
weighted by the vine dependency probability p($← root); TREE-RIGHT is the self-

loop XXyXXy
HH ��� ; finally, TREE-END is the transition XXyXXy @@−−−→ @@

that loops back to the start state to accept the next fragment tree.

27 For the experiments of Sect. 6.1, where k varied by type, we restricted these rules as tightly as
possible given h and h′.

Parsing with Soft and Hard Constraints on Dependency Length 21

To understand the SEAL-LEFT rule in Fig. 3, notice that if a left trapezoid
headed by h : w has already received all its left children, there are two ways that
it can be combined with its stopping weight from Lw. Following Fig. 2, we can use
COMPLETE-LEFT to turn it into a left triangle for the last time, after which FINISH-
LEFT will incorporate its stopping weight, changing its apex state to F. (Word w
then combines with its parent using ATTACH-RIGHT or COMPLETE-LEFT, accord-
ing to whether the parent is to the left or right of h.) However, these rules may not
be permitted if their outputs are too wide. The alternative is to incorporate the left
trapezoid directly into the vine parse using TREE-LEFT from Fig. 3. In this case,
SEAL-LEFT must be used to incorporate the stopping weight, since we have by-
passed FINISH-LEFT. (Word w then combines with its parent using GRAFT-VINE
or another instance of TREE-LEFT, according to whether the parent is to the left of
h (i.e., $) or the right of h.) SEAL-RIGHT behaves similarly.

5.2.4 Lattice Parsing

Again, for completeness, we explain how to extend the final linear-time algorithm
of Sect. 5.2.3 to parse a lattice or other input FSA, Ω .

We modify Fig. 2 to handle lattice parsing, exactly as in Sect. 3.7, and modify
Fig. 3 similarly. Now, much as in Sect. 5.2.3, we restrict the ATTACH and COM-
PLETE rules in the modified Fig. 2 to apply only when the total width of the two
triangle or trapezoid antecedents is ≤ k. We then assemble the resulting fragments
using the modified Fig. 3, as before.

But how do we define the width of a triangle or trapezoid? The simplest approach
is to specialize these items as proposed in Sect. 3.7. Each such item records a explicit
width ∆ ∈ [0,k]. Because of our hard constraints, we never need to build specialize
items that are wider than that.28

The runtime of this algorithm depends on properties of Ω and its arc lengths.
Let n be the number of states and m be the number of arcs. Define M′ to be an
upper bound, for all states i ∈Ω , on the size of the set {(j,∆) : Ω contains a path of
the form i . . . j having length ∆ ≤ k}. Define M similarly except that now j ranges
over Ω ’s arcs rather than its states; note that M ∈ [M′,M′m]. An upper bound on
the runtime is then O(mM(M′+ t ′)t). In the confusion network case, with n states,
m = ng arcs, M′ = O(k), M = O(kg), this reduces to our earlier runtime of O(nk(k+
t ′)tg2) from Sect. 5.2.3.

An alternative approach is at least as efficient, both asymptotically and practi-
cally. To avoid specializing the triangle or trapezoid items to record explicit widths,

28 We do not specialize the vine items, i.e., items whose left boundary is 0 :$. Vine items can have
unbounded width ∆ > k, but it is unnecessary for them to record this width because it never comes
into play.

22 Jason Eisner and Noah A. Smith

we define their widths using the shortest-path-based lower bounds from Sect. 3.7.29

We are willing to combine two such items iff the sum of their widths is ≤ k.30

The resulting search may consider some infeasible parses. In other words, it is
possible that the search will return a parse that contains some dependencies that
cover string distance > k, if this infeasible parse happens to score better than any of
the feasible parses.31 However, this is unproblematic if our goal is simply to prune
infeasible parses in the interest of speed. If our pruning is incomplete and we can
still maintain linear-time parsing, so much the better. That is, we are not required to
consider infeasible parses (since we suppose that they will usually be suboptimal),
but neither are we forbidden to consider them or allow them to win on the merits.

If we really wish to consider only feasible parses, it may still be efficient to run
the lower-bounding method first, as part of an A∗ algorithm (cf. Sect. 3.7). Since
the lower-bounding method considers too many derivations, it produces optimistic
probability estimates relative to the feasible-only parser that specializes the items.
Thus, run the lower-bounding parser first. If this returns an infeasible parse, then
compute its Viterbi-outside probabilities, and use them as an admissible A∗ heuristic
when reparsing with the feasible-only parser.

6 Experiments with Hard Constraints

Our experiments used the asymptotically fast hybrid parsing algorithm of Sect. 5.2.3.
We used the same left and right automata as in model C, the best-performing model
from Sect. 3.2. However, we now define R$ to be a first-order (bigram) Markov
model (Sect. 5.1). We trained and tested on the same headed treebanks as be-
fore (Sect. 4), except that we modified the training trees to make them feasible
(Sect. 5.2).

Results with hard constraints are shown in Figure 4, showing both the preci-
sion/recall tradeoff (upper left) and the speed/accuracy tradeoff (other graphs), for
k ∈ {1,2, ...,10,15,20}. Dots correspond to different values of k. Tighter bounds k
typically improve precision at the expense of recall, with the result that on English
and Chinese, k = 7 (for example) actually achieves better F-measure accuracy than
the k = ∞ unbounded parser (shown with +), not merely greater speed.

29 As in footnote 15, we may precompute the shortest-path distances between all state pairs, but
here we only need to do this for the mM pairs whose distances are≤ k. Using a simple agenda-based
relaxation algorithm that derives all such pairs together with their shortest-path distances, this takes
time O(mMb), where b≤M′ is an upper bound on a state’s number of outgoing transitions of length
≤ k. This preprocessing time is asymptotically dominated by the runtime of the main algorithm.
30 This test is more efficient to implement in a chart parser than requiring the width of the conse-
quent to be ≤ k. It rules out more combinations, since with lower-bound widths, a consequent of
width ≤ k could be produced from two antecedents of total width > k. (The shortest path connect-
ing its endpoints may not pass through the midpoint where the antecedents are joined.)
31 For instance, suppose the best derivation of an item of width 3 happens to cover a subpath in Ω

of length 5. The item will nonetheless permitted to combine with an adjacent item of width k−3,
perhaps resulting in the best parse overall, with a dependency of length k +2.

Parsing with Soft and Hard Constraints on Dependency Length 23

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

re
ca

ll

precision

E

C

G

k
=

1

M
od

el
 C

, n
o

bo
un

d
si

ng
le

 b
ou

nd
 (E

ng
lis

h)
 (C

hi
ne

se
)

 (G
er

m
an

)

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 2

0
 4

0
 6

0
 8

0
 1

00
 1

20
 1

40
 1

60
ru

nt
im

e
(i

te
m

s/
w

or
d)

C
hi

ne
se

F

k
=

1

2
3

15
20

M
od

el
 C

, b
as

el
in

e
so

ft
 c

on
st

ra
in

t
si

ng
le

 b
ou

nd
ty

pe
-s

pe
ci

fi
c

bo
un

ds

 0
.5

 0
.5

5

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 0
 2

0
 4

0
 6

0
 8

0
 1

00
ru

nt
im

e
(i

te
m

s/
w

or
d)

E
ng

lis
h

F
k

=
1

2

3
15

20

M
od

el
 C

, b
as

el
in

e
so

ft
 c

on
st

ra
in

t
si

ng
le

 b
ou

nd
ty

pe
-s

pe
ci

fi
c

bo
un

ds

 0
.5

 0
.5

5

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0
ru

nt
im

e
(i

te
m

s/
w

or
d)

G
er

m
an

F

k
=

1

2

3

15
20

M
od

el
 C

, b
as

el
in

e
so

ft
 c

on
st

ra
in

t
si

ng
le

 b
ou

nd
ty

pe
-s

pe
ci

fi
c

bo
un

ds

Fig. 4: (upper left) Trading recall for precision: Imposing bounds can improve precision at the
expense of recall, for English and Chinese. German performance suffers more. Bounds shown
are k = {1,2, ...,10,15,20}. The dotted lines show constant F-measure of the unbounded model.
(remaining graphs) Trading accuracy for speed by varying the set of feasible parses: The
baseline (no length bound) is shown as +. Tighter bounds always improve speed, except for the
most lax bounds, for which vine construction overhead incurs a slowdown. Type-specific bounds
(Sect. 6.1) tend to maintain good F-measure at higher speeds than the single-bound approach.
The vertical bars connect each experiment to its “oracle” accuracy (i.e., the F-measure if we had
recovered the best feasible parse, as constructed from the gold-standard parse by grafting: see
Sect. 5.2). The “soft constraint” point marked with × shows the p(∆ | d,h,c)-augmented model of
Sect. 3.

24 Jason Eisner and Noah A. Smith

We observed separately that changing R$ from a bigram to a unigram model
significantly hurt accuracy. This shows that it is in fact useful to empirically model
likely sequences of parse fragments, as our vine grammar does.

Note that we continue to report runtime in terms of items built (see footnote 20).
The absolute runtimes are not comparable across parsers because our prototype
implementations of the different kinds of parser (baseline, soft constraints, single-
bound, and the type-specific bounds in the next section) are known to suffer from
different inefficiencies. However, to give a general idea, 60-word English sentences
parsed in around 300ms with no bounds, but at around 200ms with either a distance
model p(∆ | d,h,c) or a generous hard bound of k = 10.

6.1 Finer-Grained Hard Constraints

The dependency length bound k need not be a single value. Substantially better accu-
racy can be retained if each dependency type—each (h,c,d) = (head tag, child tag,
direction) tuple—has its own bound k(h,c,d).32 We call these type-specific bounds:
they create a many-dimensional space of possible parsers. We measured speed and
accuracy along a sensible path through this space, gradually tightening the bounds
using the following process:

1. Initialize each bound k(h,c,d) to the maximum distance observed in training (or
1 for unseen triples).33

2. Greedily choose a bound k(h,c,d) such that, if its value is decremented and trees
that violate the new bound are accordingly broken, the fewest dependencies will
be broken.34

3. Decrement the bound k(h,c,d) and modify the training data to respect the bound
by breaking dependencies that violate the bound and “grafting” the loose portion
onto the vine. Retrain the parser on the training data.

4. If all bounds are not equal to 1, go to step 2.

The performance of every 200th model along the trajectory of this search is plotted
in Fig. 4. The graph shows that type-specific bounds can speed up the parser to a
given level with less loss in accuracy.

32 Note that k(h,c, right) = 7 bounds the width of @@ + �� =
��

. For a finer-grained ap-

proach, we could instead separately bound the widths of @@ and �� , say by kr(h,c, right) =
4 and kl(h,c, right) = 2.
33 In the case of the German TIGER corpus, which contains non-projective dependencies, we first
make the training trees into projective vines by raising all non-projective child nodes to become
heads on the vine.
34 Not counting dependencies that must be broken indirectly in order to maintain projectivity. (If
word 4 depends on word 7 which depends on word 2, and the 4→ 7 dependency is broken, making
4 a root, then we must also break the 2→ 7 dependency.)

Parsing with Soft and Hard Constraints on Dependency Length 25

7 Related Work

An earlier version of this chapter was originally published as Eisner and Smith
(2005). Since then, it has become more common to consider soft dependency-length
features in dependency parsing. Indeed, at the same time as our 2005 paper, McDon-
ald et al (2005a) used length features within a discriminatively trained model (ver-
sus our deficient generative model that redundantly generates dependency lengths).
Furthermore, they considered not only approximately how many words intervened
between a child and its parent, but also the POS tags of these words. These length
and length-like features were very helpful, and variants were used in a subsequent
extension by Hall (2007). Turian and Melamed’s history-based parser (Turian and
Melamed, 2006) also considered various kinds of length features when making its
decisions.

There is also relevant work on soft length constraints that predates ours, and
which like our present paper uses generative models. Klein and Manning (2003c)
conditioned child generation at a given position on whether the position was adja-
cent to the parent, and they conditioned stopping on whether the position was 0,
1, 2–5, 6–10, or more than 11 words away from the parent, which is essentially a
length feature. Even earlier, Collins (1997) used three binary features of the inter-
vening material as conditioning context for generating a child: did the intervening
material contain (a) any word tokens at all, (b) any verbs, (c) any commas or colons?
Note that (b) is effective because it measures the length of a dependency in terms of
the number of alternative attachment sites that the dependent skipped over, a notion
that was generalized by the intervening POS features of McDonald et al (2005a),
mentioned above.

Some parsers do not evaluate directly whether a parse respects the short-dependency
preference, but they do have other features that address some of the phenomena in
Sect. 2. For example, Charniak and Johnson’s reranker for phrase-structure parses
(Charniak and Johnson, 2005) has “Heavy” features that can learn to favor late
placement of large constituents in English, e.g., for heavy-shift. However, these
other features make rather different distinctions and generalizations than ours do. It
would be interesting to compare their empirical benefit.

We have subsequently applied our own soft constraint model to unsupervised
parsing. By imposing a bias against long dependencies during unsupervised learn-
ing, we obtained substantial improvements in accuracy over plain Expectation-
Maximization and other previous methods. Further improvements were obtained by
gradually relaxing (“annealing”) this bias as learning proceeded (Smith and Eisner,
2006; Smith, 2006).

As for hard constraints (Sect. 5), our limitation on dependency length can be
regarded as approximating a context-free language by a subset that is a regular lan-
guage. Our “vines” then let us concatenate several strings in this subset, which typ-
ically yields a superset of the original context-free language.

Subset and superset approximations of (weighted) CFLs by (weighted) regular
languages, usually by preventing center-embedding, have been widely explored;

26 Jason Eisner and Noah A. Smith

Nederhof (2000) gives a thorough review. Our approach limits all dependency
lengths (not just center-embedding).35 Further, we derive weights from a modified
treebank rather than by approximating the true weights. And though representing
a regular language by a finite-state automaton (FSA) is useful for other purposes,
we argued that the FSA in this case can be large, and that recognition and pars-
ing are much more efficient with a modified version of a context-free chart parsing
algorithm.

Bertsch and Nederhof (1999) gave a linear-time recognition algorithm for the
recognition of the regular closure of deterministic context-free languages. Our result
is slightly related, since a vine grammar is the Kleene closure of a different kind
of restricted CFL (not deterministic, but restricted in its dependency length, hence
regular).

Empirically, the algorithms described above were applied in Dreyer et al (2006)
to the construction of more interesting dependency parsing models. While the per-
formance of those models was not competitive, that paper presents further evidence
that hard bounds on dependency length need not harm the parser’s precision.

8 Future Work

The simple POS-sequence models we used as an experimental baseline are certainly
not among the best parsers available today. They were chosen to illustrate how mod-
eling and exploiting distance in syntax can affect various performance measures.
Our approach may be helpful for other parsing situations as well.

First, we hope that our results will generalize to more expressively weighted
grammars, such as log-linear models that can include head-child distance alongside
and in conjunction with other rich features.

Second, fast approximate parsing may play a role in more accurate parsing. It
might be used to rapidly compute approximate outside-probability estimates to pri-
oritize best-first search (Caraballo and Charniak, 1998, for example). It might also
be used to speed up the early iterations of training a weighted parsing model, which
for modern training methods tends to require repeated parsing (either for the best
parse, as in Taskar et al (2004), or all parses, as in Miyao and Tsujii (2002)). Note
that our algorithms also admit inside-outside variants (Goodman, 1999), allowing
iterative estimation methods for log-linear models such as Miyao and Tsujii (2002).

Third, it would be useful to investigate algorithmic techniques and empirical ben-
efits for limiting dependency length in more powerful grammar formalisms. Our
runtime reduction from O(n3) → O(nk2) for a length-k bound applies only to a
“split” bilexical grammar.36 More expressive grammar formalisms include lexical-

35 Of course, this still allows right-branching or left-branching to unbounded depth.
36 The obvious reduction for unsplit head automaton grammars, say, is only O(n4)→ O(n3k),
following Eisner and Satta (1999). Alternatively, one can convert the unsplit HAG to a split one
that preserves the set of feasible (length ≤ k) parses, but then g becomes prohibitively large in the
worst case.

Parsing with Soft and Hard Constraints on Dependency Length 27

ized CFG, CCG, and TAG (see footnote 1). Furthermore, various kinds of syn-
chronous grammars (Shieber and Schabes, 1990; Wu, 1997) have seen a resur-
gence in statistical machine translation since the work of Chiang (2005). Their high
runtime complexity might be reduced by limiting monolingual dependency length
(Schafer and Yarowsky, 2003).

One tool in deriving further algorithms of this sort is to apply general-purpose
transformations (Sikkel, 1997; Eisner and Blatz, 2007) to logical algorithm speci-
fications such as the inference rules shown in Figs. 2 and 3. For example, Eisner
and Blatz (2007) showed how to derive (a variant of) the O(n3) algorithm of Fig. 2
by transforming a naive O(n5) algorithm. Further transformations might be able to
continue by deriving Fig. 3, and these transformations might generalize to other
grammar formalisms.

Fourth, it would be useful to try limiting the dependency length in non-projective
parsing, specifically for the tractable “edge-factored” case where t = 1 and g = 1 (as
in our “model A” experiments). Here we can easily show a runtime reduction from
O(n2)→ O(kn logn) for a length-k bound. The O(n2) result for edge-factored non-
projective parsing is due to McDonald et al (2005b), who directly applied a directed
minimum spanning tree algorithm of Tarjan (1977) to the dense directed graph of
all O(n2) possible dependency edges. Our “vine grammar” restriction would simply
strip this graph down to a sparser graph of only m = O(kn) possible edges (namely,
the edges of length ≤ k together with the edges from $). Another algorithm also
in Tarjan (1977) can then find the desired non-projective tree in only O(m logn)
time (= O(kn logn)). It remains an empirical question whether this would lead to a
desirable speed-accuracy tradeoff for non-projective dependency parsing.

Fifth, an obvious application of our algorithms is for linear-time, on-the-fly pars-
ing or language modeling of long streams of tokens. Even though sentence bound-
aries can be accurately identified on the fly in newspaper text (Reynar and Ratna-
parkhi, 1997), this is harder in informal genres and in speech, particularly given
the lack of punctuation (Liu et al, 2005). Thus, one might want the syntactic model
to help determine the segmentation. This is what a vine grammar does, permitting
unboundedly long parsed fragments (which in practice would typically be the top-
level sentences) as long as they do not contain long dependencies. For parsing such
streams, our O(nk2) algorithm can be easily adapted to do incremental chart parsing
in this situation, in linear time and space, perhaps using a k that is fairly generous
(but still� n). For syntactic language modeling!syntactic, an inside-algorithm ver-
sion can be modified without too much difficulty so that it finds the probability of
a given prefix string (or lattice state) under a vine grammar, summing over just the
feasible prefix parses.37 This modest vine approximation to Stolcke’s exact PCFG
syntactic language model (Stolcke, 1995) could make it more practical by speeding
it up from cubic to linear time, as an alternative to switching to the history-based

37 Note that the vine grammar as we have presented it is a deficient model, since unless we repa-
rameterize it to consider dependency lengths, it also allocates some probability to infeasible parses
that are not included in this sum. However, the short-dependency preference suggests that these
infeasible parses should not usually contribute much to the total probability that we seek.

28 Jason Eisner and Noah A. Smith

models and approximate multistack decoders of subsequent work on syntactic lan-
guage modeling (Chelba and Jelinek, 2000, et seq.).

9 Conclusion

We have described a novel reason for identifying headword-to-headword depen-
dencies while parsing: to consider their length. We have demonstrated that simple
bilexical parsers of English, Chinese, and German can exploit a “short-dependency
preference” to improve parsing runtime and dependency precision and the expense
of recall. Notably, soft constraints on dependency length can improve both speed
and accuracy, and hard constraints allow improved precision and speed with some
loss in recall (on English and Chinese, remarkably little loss). Further, for the hard
constraint “length ≤ k,” we have given an O(nk2) partial parsing algorithm for split
bilexical grammars; the grammar constant is no worse than for state-of-the-art O(n3)
algorithms. This algorithm strings together the partial trees’ roots along a “vine.” We
also noted a non-projective variant that runs in time O(kn logn).

Our approach might be adapted to richer parsing formalisms, including syn-
chronous ones, and should be helpful as an approximation to full parsing when
fast, high-precision recovery of syntactic information is needed, or when the input
stream is very long.

Acknowledgements This work was supported by NSF ITR grant IIS-0313193 to the first author
and a fellowship from the Fannie and John Hertz Foundation to the second author. The views
expressed are not necessarily endorsed by the sponsors. The authors thank Mark Johnson, Eugene
Charniak, Charles Schafer, Keith Hall, and John Hale for helpful discussion and Elliott Drábek
and Markus Dreyer for insights on (respectively) Chinese and German parsing. They also thank an
anonymous reviewer for suggesting the German experiments.

References

Abney SP (1991) Parsing by chunks. In: Principle-Based Parsing: Computation and
Psycholinguistics, Kluwer

Appelt DE, Hobbs JR, Bear J, Israel D, Tyson M (1993) FASTUS: A finite-state
processor for information extraction from real-world text. In: Proceedings of IJ-
CAI

Bangalore S, Joshi AK (1999) Supertagging: An approach to almost parsing. Com-
putational Linguistics 25(2):237–265

Bertsch E, Nederhof MJ (1999) Regular closure of deterministic languages. SIAM
Journal on Computing 29(1):81–102

Bikel D (2004) A distributional analysis of a lexicalized statistical parsing model.
In: Proceedings of EMNLP

Parsing with Soft and Hard Constraints on Dependency Length 29

Caraballo SA, Charniak E (1998) New figures of merit for best-first probabilistic
chart parsing. Computational Linguistics 24(2):275–98

Charniak E, Johnson M (2005) Coarse-to-fine n-best parsing and maxent discrimi-
native reranking. In: Proceedings of ACL

Charniak E, Goldwater S, Johnson M (1998) Edge-based best-first chart parsing. In:
Proc. of VLC

Chelba C, Jelinek F (2000) Structured language modeling. Computer Speech and
Language 14:283–332

Chen S (1995) Bayesian grammar induction for language modeling. In: Proceedings
of ACL

Chiang D (2005) A hierarchical phrase-based model for statistical machine transla-
tion. In: Proceedings of ACL

Church KW (1980) On memory limitations in natural language processing. Master’s
thesis, MIT

Collins M (1997) Three generative, lexicalised models for statistical parsing. In:
Proceedings of ACL

Dreyer M, Smith DA, Smith NA (2006) Vine parsing and minimum risk reranking
for speed and precision. In: Proceedings of CoNLL

Eisner J (2000) Bilexical grammars and their cubic-time parsing algorithms. In:
Advances in Probabilistic and Other Parsing Technologies, Kluwer

Eisner J, Blatz J (2007) Program transformations for optimization of parsing algo-
rithms and other weighted logic programs. In: Proceedings of FG

Eisner J, Satta G (1999) Efficient parsing for bilexical CFGs and head automaton
grammars. In: Proceedings of ACL

Eisner J, Smith NA (2005) Parsing with soft and hard constraints on dependency
length. In: Proceedings of IWPT

Eisner J, Goldlust E, Smith NA (2005) Compiling Comp Ling: Practical weighted
dynamic programming and the Dyna language. In: Proceedings of HLT-EMNLP

Frazier L (1979) On comprehending sentences: Syntactic parsing strategies. PhD
thesis, University of Massachusetts

Gibson E (1998) Linguistic complexity: Locality of syntactic dependencies. Cogni-
tion 68:1–76

Gildea D, Temperley D (2007) Optimizing grammars for minimum dependency
length. In: Proceedings of ACL

Goodman J (1999) Semiring parsing. Computational Linguistics 25(4):573–605
Grefenstette G (1996) Light parsing as finite-state filtering. In: Proceedings of the

Workshop on Extended Finite-State Models of Language
Hall K (2007) k-best spanning tree parsing. In: Proceedings of ACL
Hawkins J (1994) A Performance Theory of Order and Constituency. Cambridge

University Press
Hindle D (1990) Noun classification from predicate-argument structure. In: Pro-

ceedings of ACL
Hobbs JR, Bear J (1990) Two principles of parse preference. In: Proceedings of

COLING

30 Jason Eisner and Noah A. Smith

Klein D, Manning CD (2003a) A∗ parsing: Fast exact viterbi parse selection. In:
Proc. of HLT-NAACL

Klein D, Manning CD (2003b) Accurate unlexicalized parsing. In: Proceedings of
ACL

Klein D, Manning CD (2003c) Fast exact inference with a factored model for natural
language parsing. In: Advances in NIPS 15

Klein D, Manning CD (2004) Corpus-based induction of syntactic structure: Models
of dependency and constituency. In: Proceedings of ACL

Liu Y, Stolcke A, Shriberg E, Harper M (2005) Using conditional random fields for
sentence boundary detection in speech. In: Proceedings of ACL

McDonald R, Crammer K, Pereira F (2005a) Online large-margin training of de-
pendency parsers. In: Proceedings of ACL

McDonald R, Pereira F, Ribarov K, Hajič J (2005b) Non-projective dependency
parsing using spanning tree algorithms. In: Proceedings of HLT-EMNLP

Miyao Y, Tsujii J (2002) Maximum entropy estimation for feature forests. In: Pro-
ceedings of HLT

Nederhof MJ (2000) Practical experiments with regular approximation of context-
free languages. CL 26(1):17–44

Nederhof MJ (2003) Weighted deductive parsing and Knuth’s algorithm. Computa-
tional Linguistics 29(1):135–143

Reynar JC, Ratnaparkhi A (1997) A maximum entropy approach to identifying sen-
tence boundaries. In: Proceedings of ANLP

Schafer C, Yarowsky D (2003) A two-level syntax-based approach to Arabic-
English statistical machine translation. In: Proceedings of the Workshop on MT
for Semitic Languages

Shieber S, Schabes Y (1990) Synchronous tree adjoining grammars. In: Proceedings
of COLING

Sikkel K (1997) Parsing Schemata: A Framework for Specification and Analysis of
Parsing Algorithms. Texts in Theoretical Computer Science, Springer-Verlag

Smith NA (2006) Novel estimation methods for unsupervised discovery of latent
structure in natural language text. PhD thesis, Johns Hopkins University

Smith NA, Eisner J (2005) Contrastive estimation: Training log-linear models on
unlabeled data. In: Proceedings of ACL, pp 354–362

Smith NA, Eisner J (2006) Annealing structural bias in multilingual weighted gram-
mar induction. In: Proceedings of COLING-ACL

Stolcke A (1995) An efficient probabilistic context-free parsing algorithm that com-
putes prefix probabilities. Computational Linguistics 21(2):165–201

Tarjan RE (1977) Finding optimum branchings. Networks 7(1):25–35
Taskar B, Klein D, Collins M, Koller D, Manning C (2004) Max-margin parsing.

In: Proceedings of EMNLP
Temperley D (2007) Minimization of dependency length in written English. Cogni-

tion 105:300–333
Turian J, Melamed ID (2006) Advances in discriminative parsing. In: Proceedings

of COLING-ACL

Parsing with Soft and Hard Constraints on Dependency Length 31

Wu D (1997) Stochastic inversion transduction grammars and bilingual parsing of
parallel corpora. Computational Linguistics 23(3):377–404

Index

A∗ algorithm, see priority function
agenda, see priority queue
antecedent, 18
approximations of grammars, 25
attach low, 2, 3
axiomatic item, 18

bilexical grammar, see grammar, bilexical

center-embedding, 15
Chinese, 13
comprehension, 3
confusion network, 7, 10, 21
confusion set, 7, 8
consequent, 18

deductive inference, 18
dependency grammar, 1
dependency length, 2
dependency model with valence, 6
dependency parser, 1
deterministic automaton, 8
DMV, see dependency model with valence

English, 13

features
non-local, 2, 4

finite-state automaton, 9
probabilistic, 4
weighted, 17

fragment sequence, 15
FSA, see finite-state automaton

German, 13
grammar

bilexical, 2

split, 4, 7
head-automaton

split, 4, 7

half-constituent, 7, 19
head-automaton grammar, see grammar,

head-automaton
heavy-shift, 2, 3
hypergraph, 8

incremental parsing, 10, 27
inside-outside algorithm, 26

language modeling
syntactic, 27

late closure, 2
lattice parsing, 9, 21
log-linear model, 26

non-local features, see features, non-local
non-projectivity, 13, 27

parse fragment, 15
partial parse, 15
priority function, 8, 26
priority queue, 8, 13
production, 3

rectangle, 20

SBG, see grammar, bilexical, split
senses, see word sense disambiguation
sentence boundaries, 27
SHAG, see grammar, head-automaton, split
short-dependency preference, 2
shortest path, 11, 22
side condition, 18
split bilexical grammar, see grammar, bilexical,

split

33

34 Index

split head-automaton grammar, see grammar,
head-automaton, split

spurious ambiguity, 19
stochastic process, 4
string distance, 2

trapezoid, 7, 19
triangle, see half-constituent

uniform-cost search, see priority function

vine dependency, 15
vine grammar, 15

word sense disambiguation, 7

