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PREFACE

Integrated circuits (ICs) are becoming increasingly susceptible to uncertainty caused

by soft errors, inherently probabilistic devices, and manufacturing variability. These ef-

fects can be detrimental to the reliability of logic circuits as device technologies scale. In

order to address these issues, we develop methods for analyzing, designing, and testing

circuits subject to probabilistic effects. The main contributions of this work are: 1) a fast,

soft-error rate (SER) analyzer that uses functional-simulation signatures to capture error

effects, 2) novel design techniques that improve reliability using little area and perfor-

mance overhead, 3) a matrix-based reliability-analysis framework that can capture many

types of probabilistic faults, and 4) test-generation and test-compaction methods aimed at

probabilistic faults in logic circuits.

SER analysis must account for the three main error-masking mechanisms in ICs: logic,

timing, and electrical masking. We observe that logic masking is closely related to node

testability of the circuit. We use functional-simulation signatures, i.e., partial truth tables,

to efficiently compute the testability measures (signal probability and observability). To

account for timing masking, we compute error-latching windows from timing analysis

information. Electrical masking is incorporated into our estimates through derating factors

for gate error probabilities. The SER of a circuit is computed by combining the effects of

all three masking mechanisms within our SER analyzer called AnSER.

Based on AnSER, we develop several low-overhead techniques that increase reliability,

including: 1) a design method called SiDeR to enhance circuit reliability using partial
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redundancy already present within the circuit, 2) a guided local rewriting technique to

resynthesize small windows of logic to improve area and reliability simultaneously, and 3)

a post-placement gate-relocation technique that increases timing masking by decreasing

the error-latching window of each gate.

In order to analyze probabilistic effects beyond soft errors, we develop a reliability

analysis method that can evaluate circuits under a variety of fault assumptions. This

method represents faulty gate behavior by means of stochastic matrices called probabilistic

transfer matrices (PTMs). To improve computational efficiency, PTMs are, in turn, com-

pressed into algebraic decision diagrams (ADDs). Several ADD algorithms are developed

for the corresponding matrix operations.

We propose new algorithms for circuit testing under probabilistic faults. This con-

text requires a reformulation of existing techniques for circuit testing. For instance, any

given fault may remain undetected by a given test vector, unless the test vector is repeated

sufficiently many times. Also since different vectors detect the same fault with differ-

ent probabilities, the number of repetitions required is a key issue in probabilistic testing.

We develop test generation methods that account for these differences, and integer linear

programming (ILP) formulations to optimize our test sets for various objectives.
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CHAPTER I

Introduction

Digital computers have always been vulnerable to a variety of manufacturing and wear-

out defects. Integrated circuit (IC) chips, which lie at the heart of modern computers,

are subject to silicon-surface imperfections, contaminants, wire shorts, etc. Due to the

prevalence of such defects, various forms of fault tolerance have been built into digital

systems since the 1960s. For example, the first computers NASA sent to space were

equipped with triple-modular redundancy (TMR) [113] to protect their internal logic from

defects.

Over time, IC technology scaling has brought forth heightened device sensitivity to

a different kind of error, known as a soft, or transient, error. Soft errors are caused by

external noise or radiation that temporarily affects circuit behavior without permanently

damaging the hardware. These errors first became problematic in the 1970s, when scien-

tists at Intel noticed that DRAM cells experienced spontaneous bit-flips that could not be

replicated. May and Woods [70] discovered that these errors were a result of α-particles

emitted by trace amounts of radioactive material in ceramic chip packaging. Although the

α-particle problem was eliminated for a period of time by using plastic packaging mate-
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rial, other sources of soft error soon became apparent. Later that year, Ziegler et al. [130]

at IBM, showed that cosmic rays, consisting primarily of neutrons produced by cosmic

rays from outer space, could also cause errors. The neutrons could strike p-n junctions of

transistors and create enough electron-hole pairs for current to flow through the junctions.

With the advent of nanoscale computing, soft errors are beginning to affect not only

memory but also combinational logic. Unlike errors in memory, errors in combinational

logic cannot be easily corrected and can lead to system failures, with potentially disastrous

results in error-critical systems such as pacemakers, spacecraft, and servers. Additionally,

new device technologies such as carbon nanotubes (CNTs), resonant tunneling diodes

(RTDs), and quantum computers exhibit inherently probabilistic behavior due to nanoscale

and quantum-mechanical effects. Resilience under these sources of uncertainty is vital for

technology and performance improvements.

Due to the cost and high power consumption of modern ICs, the widespread addition

of redundancy is not a practical option for curtailing error rates. Instead, careful circuit

analysis and low-cost methods of improving reliability are necessary. Further, circuits

must be tested post-manufacture for their vulnerability to transient faults as well as to

manufacturing defects.

In the remainder of this chapter, we describe soft errors and technology trends that lead

to increased uncertainty in circuit behavior. We also survey previous work on soft-error

rate (SER) analysis, fault-tolerant design, SER testing, and probabilistic-circuit analysis.

Finally, we state the goals of our research and outline the remaining chapters.
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1.1 Background and Motivation

Soft errors are one of the main causes of uncertainty and failure in logic circuits [114].

Current trends in circuit technology are exacerbating the frequency and impact of soft

errors. In this section, we describe soft errors and how they affect circuit behavior. We also

survey technology trends, from current CMOS ICs to quantum and molecular computing.

1.1.1 Soft Errors

A soft error is a signal that has an incorrect logic value but does not imply a per-

manent defect. Soft errors can be caused by cosmic rays, α-particles, and even thermal

noise. Cosmic rays are particles that originate in space, usually from supernovas or solar

flares, and enter the Earth’s atmosphere. They are estimated to consist of 92% protons,

6% α-particles, and 2% heavy nuclei [129]. When primary cosmic particles enter the at-

mosphere, they can create a shower of secondary and tertiary particles, as shown in Figure

1.1. Some of these particles can eventually reach the ground and disturb circuit behavior.

While cosmic rays are more problematic at higher altitudes, α-particles can affect cir-

cuits at any altitude. An α-particle (or equivalently, a helium nucleus) consists of two

protons and two neutrons that are bound together. They are emitted by radioactive ele-

ments, such as the uranium or lead isotopes in chip-packaging materials. When packaging

materials were improved in the 1980s, the problem was eliminated to a large extent; how-

ever, as device technologies scale down towards 32nm, the particle energy required to

upset the state of registers and memory circuits becomes smaller [41]. Figure 1.2 shows

that even at 1.25 MeV, incident particles can alter the state of latches, depending on the

angle of incidence. As the energy threshold for causing an error decreases, the number
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Figure 1.1: Shower of error-inducing particles caused by a primary particle in the atmo-
sphere [129].

of particles with sufficient energy to cause errors increases rapidly [106]. For instance,

even the lead in solder balls or trace amounts of radioactive contaminants in tin can affect

CMOS circuits at lower energies [40].

When a particle actually strikes a circuit and lands in the sensitive area of a logic gate,

it can cause an ionized track in silicon, known as a single-event upset (SEU), as illustrated
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in Figure 1.3. An SEU is a transient, or soft, fault as opposed to a permanent fault. The

effects of an SEU do not propagate if the charge deposited is below the critical charge

Qcrit required to switch the corresponding transistor on or off [114]. If an SEU deposits

enough charge to cause a spurious signal pulse or glitch in the circuit, it produces a soft

error. Error propagation from the site of fault occurrence to a flip-flop or primary output is

stopped if there is no logically sensitized path for the error to pass through. If a soft error

is propagated to and captured or ”latched” by a flip-flop, then it can persist in a system for

several clock cycles.

A single latched error can also fan out to multiple flip-flops. Unlike errors in memory,

errors in combinational logic cannot be rectified using error-correcting codes (ECCs) with-

out incurring significant area overhead. Hence, it becomes vital to find ways to accurately

Figure 1.2: Latch failure for 1.25MeV proton strikes, as a function of the angle of inci-
dence [106].
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Figure 1.3: Ionized track in a transistor, caused by cosmic radiation [34].

analyze and decrease the soft-error rate (SER) of a circuit through careful design. This is

especially true of circuits in mission-critical applications, such as servers and aircraft and

medical devices.

1.1.2 Technology Trends

As described by Moore’s Law in 1965, the number of transistors in an IC tends to

double every two years—a trend that has continued to the present; see Figure 1.4. In

order to facilitate this growth, chip features have become smaller, alongside the amount

of charge stored and transferred between gates during computation. Consequently, the

various sources of uncertainty described in the previous section can disrupt circuit func-

tionality with greater ease. Other technology trends affecting the SER include decreasing

power supply voltage and increasing operating frequency.

The power supply voltage has steadily decreased to improve the power performance of

ICs. Additionally, dynamic voltage scaling is now being employed for further reductions in

power consumption. Keyes and Landauer [47] lower-bound the energy required to switch

a logic gate by KT ln2, where K is the Boltzmann constant and T is the temperature.
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A more accurate estimate is given by CV 2, where V is the supply voltage and C is the

capacitance of the gate given by C = WCout +∑ f anout CinWj +CL. Here, Cin, Cout , and CL

are the input, output, and load capacitance of the gate, respectively, while W is the width

of the transistor. Therefore, as W and V decrease, the switching energy approaches KT ln2,

causing logic gates to become more susceptible to noise.

Figure 1.4: Moore’s law, showing IC density increase per year.

Increased operating frequency—another technology trend—can lead to designs with

smaller logic depth, i.e., fewer levels of logic gates. This means that fewer errors are

masked by the intermediate gates between the site of fault occurrence and a flip-flop. En-

gineers at IROC Technologies have observed that the SER in logic circuits increases pro-

portionally with operating frequency [44]. Processors with 40MHz operating frequency

were tested, and 400MHz processors were simulated. The results, shown in Figure 1.5,

indicate that at higher frequencies, the SER of logic is only 10 times smaller than the SER

of memories—despite the additional sources of masking present in logic circuits.
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Figure 1.5: Memory and logic sensitivity to soft errors in the RISC processor [44].

IC technologies beyond CMOS are expected to exhibit even more probabilistic behav-

ior. Examples of new device technologies under active investigation include carbon nan-

otube transistors (CNTs), resonant-tunneling diodes (RTDs), quantum cellular automata

(QCA), and various quantum computing technologies, like ion traps that handle quan-

tum bits (qubits). CNTs and RTDs experience high error probabilities because they oper-

ate near the thermal limit of KT ln2 [69, 14]. QCAs have two main sources of error: 1)

decay—when electrons that store information are lost to the environment, and 2) switching

error—when the electrons do not properly switch from one state to another due to back-

ground noise or voltage fluctuations [62, 104]. Quantum computing devices are inherently

probabilistic (even during fault-free operation) because qubits exist in superposition states

and collapse to either 0 or 1, with different probabilities upon measurement.

Finally, technology scaling also makes devices harder to manufacture. Process vari-

ations cause stochastic behavior, in the sense that device parameters are not accurately

known after manufacture. While most process parameters do not change after manufac-

ture, they can often be modeled probabilistically. Figure 1.6 illustrates the lithography

wavelengths associated with smaller IC feature sizes by year. As the gap between the
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wavelength and feature sizes continues to widen, it becomes difficult for manufacturers

to control gate and wire widths. Neighboring wires can suffer from crosstalk, the ca-

pacitive and inductive coupling that occurs when two adjacent wires run parallel to each

other. Crosstalk can delay or speed up signal transitions and sometimes causes glitches

that resembles SEUs to appear [96]. Also, as the number of dopant atoms in transistors

decreases, a difference of just a few atoms can lead to large variations in threshold voltage

[15]. These variations can cause inherent uncertainty in circuit behavior.

Figure 1.6: Feature-size trends in ICs by year [34].

1.2 Related Work

In this section, we discuss related work in soft-error rate (SER) analysis, fault-tolerance

techniques, soft-error testing, and probabilistic circuit analysis.
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1.2.1 Soft-Error Rate Analysis

We first introduce the problem of SER estimation and discuss solutions that appear in

the literature, often alongside our work. The aim here is to reveal the intuition behind SER

analysis methods and to motivate techniques introduced in later chapters.

Figure 1.7: Illustration of transient-fault propagation in combinational logic.

There are several factors to consider in determining the SER of a logic circuit. Figure

1.7 illustrates the three main conditions that are required for an SEU to be latched, and

these conditions are explained below.

• The SEU must have sufficient energy to change a signal and propagate the erroneous

signal value through subsequent gates. If not, the fault is electrically masked.

• The change in a signal’s value must be propagated through the logic to affect a

primary output. If not, the fault is logically masked.

• The fault must reach a flip-flop during the sensitive portion of a clock cycle, nor-
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mally known as the latching window. If not, the fault is temporally masked.

The probability of electrically masking a fault depends on the electrical characteris-

tics of the gates it encounters on its way to the primary output, i.e., it is path-dependent.

Similarly, the propagation delay of the SEU, before reaching a latch or a primary output,

depends on the gate and interconnect delays along the path it takes. Any path the SEU

takes has to have non-controlling values on side inputs. Therefore, different input vectors

can sensitize different sets of paths.

Assuming a single strike per clock cycle, the SER can be computed using the brute-

force algorithm given in Figure 1.9. In this algorithm, Perr is the probability of an error on

a gate. It is computed using the following variables.

• P(i), the probability of vector i being applied to the input,

• Pstrike(n), the probability of a fault at location n,

• Pattenuate(path(p)), the probability of attenuation along path p, and

• Platch(p,o), the probability of an error arriving on path p at output o during a latching

phase of a clock cycle.

Since the four values are probabilities, neglecting to model any of these factors leads to

overestimation of the SER. Figure 1.8 shows an example of an SEU in the ISCAS-85

circuit C17, along with logically sensitized paths for different input vectors.

The algorithm of Figure 1.9 is only practical for the smallest of circuits. The number

of input vectors to a circuit is exponential in the number of inputs, and the number of

sensitized paths can grow exponentially in the size of the circuit [99]. Therefore, even
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Figure 1.8: Illustration of logically sensitized paths (in heavy lines) for error propagation
with respect to a specific input vector.

compute SER(circuit C)
{

for(input vector i)
for(node n ∈C)

for(output o ∈C)
for(sensitized path p ∈ path(i,n))

Pprop(n) = (1−Pattenuate(p))
Perr(C)+ = P(i)Pstrike(n)Pprop(n)Platch(p,o)

return Perr(C)
}

Figure 1.9: Basic SER computation algorithm.

determining the probability of logical masking is as difficult as counting the number of

solutions to a SAT instance—a problem in the ]P-hard complexity class.

Several software tools have been recently shown to approximate the SER for com-

binational circuits. Below, we describe three of these tools and their SER computation

techniques [134, 135, 100]. Of the three algorithms, SERA is closest to that of Figure 1.9.

SERA relies on user-specified input patterns and analyzes each input vector individually.

For each gate, SERA finds all the paths from the gate to an output. Then, SEU-induced
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glitches are simulated on inverter chains of the same lengths as the paths in order to de-

termine the probability of electrical masking. In general, there can be many paths of the

same length, but only one representative inverter chain of each length is simulated. Since

the number of paths is in the size of the circuit, this algorithm runs in exponential time in

the worst case. However, the average runtime is much smaller since SERA only simulates

paths of unique length.

Unlike SERA, FASER [135] uses binary decision diagrams (BDDs) to enumerate all

possible input vectors. A BDD is created for each gate in a circuit—a static BDD for gates

outside the fan-out cone of the glitch location, and duration and amplitude BDDs for gates

in the fan-out cone of the glitch location. Then, these BDDs are merged in topological

order. During the process of merging, the width and amplitude of glitches at inputs are

decreased according to FASER’s estimation of electrical masking. Due to complete input-

vector enumeration, FASER’s BDD representations can require a lot of memory for many

practical circuits, especially multipliers. FASER attempts to lessen the amount of memory

used by partitioning the circuit into smaller subcircuits and then treating the inputs to these

subcircuits as pseudo-primary inputs.

SET’s algorithm [100] proceeds in topological order and considers each gate only once.

For each gate, SET encodes the probability and shape of a glitch as a Weibull probability-

density function. This distribution over the Weibull parameters is known as an SER de-

scriptor (SERD). The SERD for each gate is combined with those of its inputs, to produce

the output SERD. The Weibull parameters are slightly changed at each gate to account for

electrical attenuation, and the new output SERDs are passed on to their successor gates.
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The SET algorithm is similar to static timing analysis (STA) and does not consider false

paths. The authors of SET do provide another vector-driven mode that computes SER

vector-by-vector to account for input-pattern dependence.

Table 1.1 summarizes the main characteristics of the tools described above, as well as

their methods for incorporating masking mechanisms. These tools have vastly different

methods of computing SER, and their different assumptions can yield very different SER

values for the same circuit.

Attribute SERA FASER SET
Logic masking Vector simulation BDD-based analysis Vector simulation
Timing masking SER derating No details given SER derating
Electrical masking Inverter-chain simulation Gate characterization Gate characterization
Fault assumptions Single Single Multiple

Table 1.1: Summary of differences between three SER evaluation tools.

Our work aims to build SER analysis tools that are scalable and can be used early in

the logic design phase [58, 59, 55]. Due to our emphasis on reliability-driven logic design,

we focus on modeling logical masking both accurately and efficiently. We then use our

tools to guide several design techniques to improve circuit resilience against soft errors.

1.2.2 Fault-Tolerant Design

Techniques for transient-fault tolerance have been developed for use at nearly all stages

of the design flow. Generally, these techniques rely on enhancing masking mechanisms

to mitigate error propagation. Below, we discuss several techniques and highlight their

masking mechanisms.

Faults can be detected at the architectural level via some form of redundancy and can

be corrected by rolling back to a checkpoint to replay instructions from that checkpoint.
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Redundant multi-threading (RMT) [82, 107] is another common method of error detection

at the architectural level. RMT refers to running multiple threads of the same program and

comparing results. The first thread, known as the leading thread, often executes ahead of

other threads to allow time for transient glitches to dissipate.

The DIVA method [7, 126] advocates the use of a functional checker to augment detect-

and-replay by recomputing results before they are committed. Since the data fetch is

assumed to be error-free (and memory is assumed to be protected by ECC), the functional

checkers simply rerun computations on pre-fetched data. Other methods attempt to detect

errors using symptoms that are unusual behaviors for specific programs. An example

is given by an instruction that accesses data spatially far from previous executions of the

same instruction. Another example is a branch predictor that misspeculates with unusually

high frequency [97, 6]. The main masking mechanism in these techniques is functional

masking. Components are selected for the addition of fault tolerance using a metric called

the architectural vulnerability factor (AVF) of the component in question, as computed by

statistical fault injection or other forms of performance analysis [80].

At the logic level, designers have complete information about the function of the circuit

and its decomposition into gates or other low-level functional modules. At this level, one

can assess logic masking in more detail. Traditionally, logic masking has been increased

by adding gate-level redundancy to the circuit. John von Neumann [125], in his classic

paper on reliability, showed that it is possible to build reliable circuits with unreliable

components, using schemes like cascaded triple modular redundancy (CTMR) and NAND

multiplexing. CTMR contains TMR units that are, in turn, replicated thrice, and this
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process is repeated until the required reliability is reached.

In NAND multiplexing, each unreliable signal is replicated N times. Then, a set of

NAND gates, each of which takes two of the N redundant signals as inputs, is used as

a simple majority function. Some of these NAND gates may produce incorrect outputs

due to an unfortunate combination of inputs; however, such instances are rare since a

random permutation changes the gate-pairs between stages of multiplexers. von Neumann

concluded that as long as component error probabilities are below a certain threshold,

redundancy can increase the reliability of a system to any required degree.

Techniques that involve replicating an entire circuit increase chip area significantly

and, therefore, decrease chip yield. Mohanram and Touba [76] propose to partially tripli-

cate logic by selecting regions of the circuit that are especially susceptible to soft errors.

Such regions are selected by simulating faults with random test vectors. Dominant-value

reduction [76] is also used to duplicate, rather than triplicate, selected logic. Dominant-

value reduction mitigates the soft errors that cause only one of the erroneous transitions

0-1 or 1-0, depending on which is more common. More recently, Almukhaizim et al. [3]

used a design modification technique, called rewiring, to increase reliability. In the spirit

of [3], our work focuses on lightweight modifications to the circuit that increase reliability

without requiring significant amounts of redundancy. These types of modifications will be

discussed further in Chapter III.

At the transistor level, gates can be electrically characterized, and electrical mask-

ing can be used as an error-mitigation mechanism. Gate sizing is a common technique

for increasing electrical masking: increasing the area of a gate increases its internal ca-
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pacitance and, therefore, the critical charge Qcrit necessary for a particle strike to alter a

signal. However, this technique increases circuit area and can also increase critical path

delay. Therefore, gates are usually selected for hardening according to their susceptibility

to error, which requires error-susceptibility analysis at the logic level.

Another transistor-level technique for soft-error mitigation is the dual-port design style

proposed by Baze et al. [9] and, later, by Zhang et al. [132]. Dual-port gates, illustrated

in Figure 1.13, decrease charge-collection efficiency, using two extra transistors placed in

a separate well from the original transistors.

In the 1990s, Nicolaidis proposed another method of increasing electrical masking

[87]. In this method, three latches sample a signal with small delays between, and a voter

is used to decide the correct value of the signal. Since stray glitches tend to have short

durations, the erroneous value induced by a glitch is likely to be sampled by only one of

the three latches. Razor [33] uses this idea for dynamic voltage scaling, sampling signals

twice and, when an error is found, restoring program correctness via a detect-and-playback

scheme. The recently-proposed BISER [131] architecture duplicates flip-flops and feeds

the outputs to a C-element and a keeper circuit. At each clock cycle, if the new flip-

flop values are the same, the C-element forwards the new value to the primary outputs;

otherwise, the C-element retains the value from the previous cycle. See Figure 1.14 for the

BISER flip-flop design.

Finally, after the placement and routing of a circuit are completed, gate and intercon-

nect delays can be determined. In earlier IC technology, timing was usually analyzed at

the gate level, since wire delay contributed only a small (often negligible) fraction of the
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Level Masking mechanism Fault-tolerance techniques
Architecture/RTL Functional masking Multithreading, functional checkers, replay
Logic Logic masking TMR, NAND-mux, partial replication, rewiring
Transistor Electrical masking Gate hardening, dual-port gates, dual sampling
Physical Timing masking No known techniques

Table 1.2: Summary of error-masking mechanisms and fault-tolerance techniques at vari-
ous levels of abstraction.

critical path delay. However, in current technology, wire delay dominates gate delay and

needs to be incorporated into any accurate timing analyzer. Once we can analyze the tim-

ing, we can also obtain information about timing masking [114, 74]. To date, very few

techniques that decrease timing masking have been proposed.

In summary, faults can be mitigated at several levels of abstraction including the ar-

chitecture, logic, transistor, and physical levels. Solutions at the logic and transistor levels

tend to be more general and do not depend on the function of the circuit. Our work indi-

cates that fine-grained, accurate SER analysis at low levels is computationally feasible and

decreases overhead [58, 59, 55]. Table 1.2 summarizes the fault-tolerance techniques and

masking mechanisms discussed in this section.

1.2.3 Soft-Error Testing

Chip manufacturers including IBM, Intel, and Toshiba, as well as medical equipment

manufacturers like Medtronics, routinely test their chips for SER [129, 70, 50, 127]. SER

testing is normally done in one of two ways: field testing or accelerated testing. In field

testing, a large number of devices are connected to testers and evaluated for several months

under normal operating conditions. In accelerated testing [130], devices are irradiated with

neutron or α-particle beams, thus shortening the test-time to a few hours. Accelerated tests
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can be further sped up by reducing the power-supply voltage, which changes the Qcrit of

transistors.

There has been some difficulty, however, in translating the SER obtained by acceler-

ated testing to that of field testing [50]. For instance, the SER may vary over time due

to solar activity, which can be difficult to replicate in a laboratory setting. Also, intense

radiation beams can cause multiple simultaneous errors, triggering system failures more

often than normal. Therefore, it is necessary to field-test some devices to calibrate the

accelerated tests.

Since field testing requires a vast number of devices and dedicated testers for each de-

vice, Polian et al.[39] have proposed a non-concurrent built-in self-test (BIST) architecture

for online testing. They define the impact of various soft faults on the circuit in terms of

frequency, observability, and severity. For instance, more frequent and observable faults

are considered more impactful than rare faults. With this fault characterization, integer

linear programming (ILP) is used to generate tests for various objectives, such as ensuring

a minimum fault-detection probability.

Recently, researchers have sought to accelerate testing by selecting test patterns that

sensitize faults. Conceptually, the main difference between testing for hard errors versus

soft errors is that soft errors are only present for a fraction of the test time. Therefore, test

vectors must be repeated to detect faults, and they must be selected to sensitize the most

frequent faults. Sanyal et al. [108] accelerate testing by selecting a set of error-critical

nodes and deriving test sets that, using ILP, sensitize the maximum number of these faults.

In our work, which preceded [108], we developed a way of identifying error-sensitive test
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vectors for multiple faults, which could include other masking mechanisms like electrical

masking, and we devised algorithms for generating test sets to accelerate SER testing

[54, 53].

1.2.4 Probabilistic Analysis of Circuits

Soft errors and new device technologies are projected to make circuit behavior gener-

ally more uncertain. Therefore, circuit design and testing require new types of probabilistic

analysis that goes beyond soft error analysis only. In this section, we provide background

on the probabilistic analysis of logic circuits, using Bayesian networks and Markov ran-

dom fields.

In our work, we develop a novel probabilistic matrix-based model for gates, and we

use matrix operations and symbolic methods to evaluate overall circuit error probabilities

[60, 61]. More recently, Rejimon et al. [104] proposed capturing errors in nano-domain

logic circuits by Bayesian networks. A Bayesian network is a directed graph with nodes

representing variables and edges representing dependence relations among the variables.

If there is an edge from node a to another node b, then we say that a is a parent of b. If

there are n variables, x1 . . .xn, then the joint-probability distribution for x1 through xn is

represented as the product of the conditional probability distributions

Πn
i=1P[xi|parents(xi)]

If xi has no parents, its probability distribution is said to be unconditional. In order

to carry out numerical calculations on a Bayesian network, each node xi is labeled with a

probability distribution, conditioned on its parents. The probability distribution of xi can

be given in tabular form or by specifying a known distribution. Certain nodes (such as
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those corresponding to primary inputs) are given pre-defined probabilities. The probabil-

ities of other nodes are then computed using a method called belief propagation. Joint

probabilities are computed in large Bayesian networks using sampling methods such as

importance sampling. Many tools [35, 89] exist for Bayesian network analysis.

Bahar et al.[14] propose to model and design CNT-based neural networks using Markov

random fields (MRFs). MRFs are similar to Bayesian networks in that they specify joint-

probability distributions in terms of local conditional probabilities, but they can also de-

scribe cyclic dependences. In [14], the neural network is described by an MRF with node

values computed by a weighted sum of conditional probabilities of a neighboring clique

of nodes. This formulation of an MRF is known as the Gibbs formulation and lends itself

to optimizing for clique energy, which is translated into low probabilities of node error in

[14]. Related to this, Nepal et al. [86] present a method for implementing MRF-based

circuits in CMOS, and Bhadhuri et al. [12] describe a software tool, known as Nanolab,

which uses the algorithm from [14] to automate the design of fault-tolerant architectures,

like CTMR, in nanotechnologies.

1.3 Thesis Outline

In this dissertation, we focus on gate-level SER analysis, probabilistic circuit analysis,

and fault-tolerant design. We carefully study the input-vector dependence in logic, as well

as timing masking, in order to design circuits with better reliability. We further develop

methods to model inherently probabilistic methods in logic circuits and to test circuits for

determining their reliability after they are manufactured. Our main goals are:

• To develop scalable and accurate methods of SER and susceptibility analysis, usable
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during the CAD flow at the gate level,

• To devise methods that guide logic design towards greater resilience against soft

errors,

• To develop general and accurate methods for modeling and reasoning about proba-

bilistic behavior in logic circuits, and

• To develop test methods for accurately and efficiently measuring soft-error suscep-

tibility in circuits after they are manufactured.

The remainder of this dissertation is organized as follows. Chapter II presents an ef-

ficient technique to analyze SER at the logic level. Here, we formulate probabilistic fault

models, based on the stuck-at model used in the testing literature. We propose ways to

account for the three basic masking mechanisms, using probabilistic reasoning and func-

tional simulation. We also present techniques in the spirit of static-timing analysis to

estimate timing masking and use derating factors to account for electrical masking. Our

analysis methods are also extended to sequential circuits.

In Chapter III, we apply the analysis techniques from the previous chapter to the design

of reliable circuits. Our techniques include logic rewriting, gate hardening, and a novel

technique we call SiDeR. This technique uses functional relationships between signals

to partially replicate areas of logic with low redundancy. We also present a gate reloca-

tion technique that targets timing masking, a factor which has often been overlooked in

fault-tolerant design. This technique entails no area overhead and negligible performance

overhead. For sequential circuits, we derive integer linear programs for retiming, which
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move latches to positions where they are less likely to propagate errors to primary outputs.

Chapter IV presents a general matrix-based reliability analysis technique, the proba-

bilistic transfer matrix (PTM) framework, to model faulty gate behavior. PTMs form an

algebra for reasoning about uncertain behavior in logic circuits. The algebra includes sev-

eral specific types of matrices to describe gates and wires, along with matrix operations

that can be used symbolically or numerically to combine the matrices. Several new ma-

trix operations that are useful in modifying and combining PTMs are introduced to derive

information about circuit reliability and output error probabilities, under various types of

faults.

Chapter V develops decision diagram-based methods for compressing and computing

with PTMs. Several heuristics are presented for improving the scalability of PTM-based

computations, including dynamic evaluation ordering, partitioning, hierarchical computa-

tion, and sampling.

Chapter VI introduces a new method to test for probabilistic faults. We discuss the

differences among traditional testing methods geared towards identifying structural defects

and assessing circuit susceptibility to probabilistic faults. We also present algorithms for

compacting the test-vector set.

Finally, Chapter VII summarizes our work and discusses possible directions for future

research.
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compute SER SERA(circuit C, vectors V)

{
for(v ∈V)

for(nodes n ∈C)
for(output o ∈C)

for(sensitized path p ∈ path(n,v))
l = length(p)
Perr(n) = simulate inverter chain(l)
K = Area(n)/Area(C)
Perr(C)+ = Perr(n)∗K

return Perr(C)
}

(a)

compute SER FASER(circuit C)
{

for(n ∈C)
create strike BDD(n)
for(output o ∈C)

for(gate g ∈C
create static BDD(g)
if(g ∈ f anout(n))
modify terminals(g)

sort topological(C)
for(g ∈C)
attenuate(inputs(g))
merge BDD(inputs(g))

Perr(C)+ = (Area(n)/Total)∗Flux∗Perr(BDD(o))
return Perr(C)

}
(b)

compute SER SET(circuit C)
{
sort topological(C)
for(gate g ∈ G)

SERD(g) = calculate strike SERD(g)
SERD(g) = merge input SERD(SERD(g),inputs(g))

for(output o ∈ C)

Perr(C)+ = Perr(SERD(o))
return Perr(C)

}
(c)

Figure 1.10: Algorithms for SER computation used by (a) SERA, (b) FASER, and (c) SET.
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Figure 1.11: The cascaded TMR scheme; M denotes a Majority gate [125].
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Figure 1.12: The NAND-multiplexing scheme [125].
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(a) (b)

Figure 1.13: (a) Normal and (b) dual-port CMOS inverter with two additional transistors
in an isolated well [9].

Figure 1.14: The error-correcting BISER flip-flop design with a C-element and a keeper
circuit [131].
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CHAPTER II

Signature-based Soft-error Analysis

As soft errors become increasingly prevalent in logic circuits, soft-error rate (SER)

prediction becomes important in all phases of design. As discussed in Section 1.2, the SER

depends not only on noise effects, but also on the logical, electrical, and timing-masking

characteristics of the circuit. Each of these types of masking can be predicted with a fair

amount of accuracy after certain phases of the design process—logic masking after logic

design, electrical masking after technology mapping, and timing masking after physical

design—and generally stays in effect through the rest of the design flow. Therefore, it is

important to efficiently and accurately analyze the SER during the actual design process.

This chapter presents the SER analyzer called AnSER. AnSER employs functional-

simulation signatures extensively in order to estimate logic masking and to account for the

input-vector dependence in timing and electrical masking. Signatures provide an efficient

way of computing testability measures like signal probability and observability, which

are, in turn, closely connected to the probability of error propagation. More specifically,

the probability of logic-fault propagation is the same as the testability of the fault. The

testability of a fault is the likelihood of a test vector for the fault being applied at the

27



primary inputs. Enumerating test vectors for a particular fault is known to be a problem

with ]P-hard complexity. In other words, it has the same complexity as counting the

number of solutions to a SAT instance. Since exact analysis is impractical for all but

the smallest of circuits, we estimate testability using a new and efficient signature-based

algorithm.

Figure 2.1 illustrates the flow of computation in AnSER. Functional-simulation signa-

tures are computed from logical information, error-derating factors from gate-characterization

information, and error-latching windows from static-timing analysis. These smaller com-

putations are combined to form an estimate of circuit SER. Since AnSER is intended to be

used alongside logical and physical design tools, we pay particular attention to runtime,

memory requirements and the incremental-use model. Figure 2.1 also shows how AnSER

can be incorporated into a typical RTL-to-GDSII flow through incremental calls after each

change to the netlist or placement.

The remainder of this chapter is organized as follows. Section 2.1 develops our method

for computing the SER of logic circuits by accounting for logic masking. Section 2.2 ex-

tends this methodology to sequential circuits. Finally, Section 2.3 incorporates timing and

electrical masking into our SER estimates. Most of the techniques and results presented in

this chapter also appear in [58, 55, 59, 57].

2.1 SER in Combinational Logic

In this section, we present an SER analysis method for combinational logic which,

by definition, contains no memory. We first develop fault models for soft errors. Then,

we provide background on functional-simulation signatures, which we use extensively in
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Figure 2.1: Computational flow of AnSER.

AnSER. Next, we derive SER algorithms for single- and multiple-fault assumptions using

signal probability and observability measures that are computed using signatures. Finally,

we show how to account for electrical and timing masking.

2.1.1 Fault Models for Soft Errors

For the purposes of logic-level reasoning, we formulate a model for single transient

faults with extensions to account for multiple faults. In general, fault models are abstract,

logic-level representations of defects and are usually employed in automatic test-pattern

generation (ATPG) algorithms. Fault models for soft errors, as we show in Chapter VI,

can be useful for testing. However, in this section their primary use is in SER analysis; the

close connections between testability and SER facilitate this use.

We conceptualize external noise (such as an SEU) as a probabilistic fault. The main
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difference between a permanent fault and a transient fault is its persistence, which we

model as a probability of error per clock cycle. Each circuit node g can potentially ex-

perience a temporary single stuck-at-1 (TSA-1) fault with probability a Perr1(g), and a

temporary single stuck-at-0 (TSA-0) fault with probability Perr0(g).

Definition 1 A transient stuck-at (TSA) fault is a triple, (g,v,Perr(g)) where g is a node

in the circuit, v ∈ {0,1} indicates a stuck-at value, and Perr(g) is the probability of a

stuck-at fault when the node has correct value v.

The advantage of basing a fault model on the stuck-at model is that test vectors for

TSA faults can be derived in the same way as for SA faults. Therefore, the same ATPG

tools can be used for TSA faults as well. The TSA fault model, in particular, assumes that

at most one fault will occur in any clock cycle. This assumption is common in much of

SER research because for most technologies, the intrinsic error rate (due to neutron flux,

for instance) is fairly low. Using the single-error assumption, SER can be computed as the

sum of gate/component contributions. The contribution of each gate to the SER depends

on the SEU rate of the particular gate, as captured by Perr(g), and on the observability of

the error.

In the case of multiple faults, we have to consider the possible sets of gates that experi-

ence faults in the same cycle and the possibility that these faults interfere with each other.

The TSA model can be extended to two types of multiple faults called transient multiple

correlated stuck-at faults, and transient multiple stuck-at faults.

Faults are correlated if the occurrence of one fault changes the probability of another

fault. An example is a multiple-bit upset where a single particle strike causes multiple
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upsets in nearby gates. Such upsets are spatially correlated.

Definition 2 A transient multiple-correlated stuck-at fault (TMCSA) is the triple (G,V,Perr)

where G is a set of node {g1,g2,g3, . . .}, V is a set of binary values {v1,v2,v3 . . .vn} that

correspond to the stuck-at values of nodes in G, and Perr is the joint-fault probability of

nodes in G.

Transient multiple stuck-at faults apply to circuits with independent probabilities of

gate or node failure.

Definition 3 A transient multiple stuck-at fault (TMSA) fault is represented by (G,V,P)

where G is a set of nodes {g1,g2, . . .gn}, V is the set of corresponding binary stuck-at

values {v1,v2, . . .vn} and P is the corresponding vector of independent error probabilities

{p1, p2, . . . pn}.

Unlike TSA and TMSA faults, a circuit may contain only one TMSA fault of interest—

the fault with G containing all the nodes in the circuit. TMSA faults may be used to model

independent device failure probabilities rather than SEU effects.

In the next two sections, we mainly utilize the TSA fault model to compute the SER of

logic circuits. It is sometimes convenient to measure the SER in terms of the probability

of error per cycle. The results can easily be converted into units of FIT, or failures per 109

seconds. If the soft-error probability per cycle is p, then the expected number of failures

per 109 seconds is simply p× f req× 109, where f req is the clock frequency. Assuming

only one error occurs in each cycle, Perr0(g) is the probability that only gate g experiences

an error. Therefore, gate SER in units of FITs can also be used in a similar fashion. In

general, we denote probabilities of error Perr and gate SER as gerr.
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2.1.2 Signatures and Observability Don’t-Cares

We systematically use node signatures for three purposes: 1) to compute the SER, 2) to

identify error-sensitive areas of a circuit, and 3) to identify redundant nodes for resynthesis.

A circuit node g can be labeled by a signature as defined below.

Definition 4 A signature, denoted, sig(g) = Fg(X1)Fg(X2) . . .Fg(XK) is the sequence of

logic values observed at circuit node g in response to applying a sequence of K input

vectors X1,X2, . . . ,XK to the circuit.

Here, Fg(Xi)∈ {0,1} indicates the value appearing at g in response to Xi. The signature

sig(g) thus partially specifies the Boolean function Fg realized by g. Applying all possible

input vectors (exhaustive simulation) generates a signature that corresponds to a full truth

table. In general, sig(g) can be seen as a kind of “supersignal” appearing on g. It is

composed of individual binary signals that are defined by some current set of vectors.

Like the individual signals, sig(g) can be processed by EDA tools such as simulators and

synthesizers as a single entity. It can be propagated through a sequence of logic gates

and combined with other signatures via Boolean operations. This processing can take

advantage of bitwise operations available in CPUs to speed up the overall computation

compared to processing the signals that compose sig(g) one at a time.

Signatures with thousands of bits can be useful in pruning non-equivalent nodes during

equivalence checking [137, 92]. A related speedup technique is also the basis for “parallel”

fault simulation [19]. The basic algorithm for computing signatures is shown for reference

in Figure 2.2. Here, Op < g > refers to the operation gate g. This operation is applied to

the signatures of the input nodes of gate g, denoted inputsigs(g).
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compute sigs(Circuit C, size K)

{
for(all inputs i ∈C)

sig(i) = gen random sig(K)

sort topological(C)
for(all nodes g ∈C)

sig(g) = Op < g > (inputsigs(g))
}

Figure 2.2: Basic algorithm for signature computation.

Figure 2.3 shows a 5-input circuit where each of the 10 nodes is labeled by an 8-bit

signature computed with eight input vectors. These vectors are randomly generated, and

conventional functional simulation propagates signatures to the internal and output nodes.

In a typical implementation such as ours, signatures are stored as logical words and ma-

nipulated with 64-bit logical operations, ensuring high simulation throughput. Therefore

64 vector simulations are conducted in parallel with each signature processed. Generating

K-bit signatures in an N-node circuit takes O(NK) time.

Observability don’t-cares (ODCs) occur at a node g for input vectors for which the

value at g does not affect the primary outputs. For example, in the circuit AND(a,OR(a,b)),

the output of the OR gate is inconsequential when a = 0. Hence, input vectors 00 and 01

are ODCs for b.

Definition 5 Corresponding to the K-bit signature sig(g), the ODC mask of g, denoted

ODCmask(g), is the K-bit sequence whose ith bit is 0 if input vector Xi is in the don’t-care

set of g; otherwise the ith bit is 1, i.e., ODCmask(g) = X1 6∈ODC(Fg)X2 6∈ODC(Fg) . . .XK 6∈

ODC(Fg).
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Figure 2.3: Signatures, ODC masks, and testability information associated with circuit
nodes.

The ODC mask is computed by bitwise inverting sig(g) and re-simulating through the

fan-out cone of g to check if the changes are propagated to any of the primary outputs.

This algorithm is shown as compute odc exact in Figure 2.4a and has complexity O(N2)

for a circuit with N gates. It can be sped up by recomputing signatures only as long as

changes propagate.

We found that the heuristic algorithm for ODC mask computation presented in [92],

which has only O(N) complexity, particularly convenient to use. This algorithm, shown in

Figure 2.4b, traverses the circuit in reverse topological order and, for each node, computes

a local ODC mask for its immediate downstream gates. The local ODC mask is derived by

inverting the signature in question and checking if the signature at the gate output changes.

The local ODC mask is then bitwise-ANDed with the respective global ODC mask at the
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compute odc exact(Circuit C, size K)

{
compute sigs(C,K)

sort reverse topological(C)
for(all nodes g ∈C)

newsig(g) =∼ sig(g)
recompute sigs(C,K,g)
for(each output o ∈C)

ODCmask(g)| = newsig(o)⊕ sig(o)
restore computed sigs(C)

}
(a)

compute odc approx(Circuit C, size K)

{
compute sigs(C,K)

sort reverse topological(C)
for(all nodes g ∈C)

newsig(g) =∼ sig(g)
for(each fan-out branch f ∈ f anout(g))

sig( f ) = Op < f > (inputsigs( f ))
localodc(g, f ) = newsig( f )⊕ sig( f )
globalodc(g, f ) = localodc(g, f )&ODCmask( f )
ODCmask(g)| = globalodc(g, f )

}
(b)

Figure 2.4: (a) Exact and (b) approximate ODC mask computation algorithms.

output of the gate to produce the ODC mask of the gate for a particular fan-out branch.

The ODC masks for all fan-out branches are then ORed to produce the final ODC mask

for the node. The ORing takes into account the fact that a node is observable for an input

vector if it is observable along any of its fan-out branches. Reconvergent fan-out can

eventually lead to incorrect values. The masks can then be corrected by performing exact

simulation downstream from the converging nodes. This step is not strictly necessary for

SER evaluation as we show later.

Example 1 Figure 2.3 shows a sample 8-bit signature and the accompanying ODC mask
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for each node of a 10-node circuit. The ODC mask at c, for instance, is derived by com-

puting ODC masks for paths through nodes f and g, respectively, and then ORing the two.

The local ODC mask of c for the gate through f is 01110101. When this is ANDed with

the ODC mask of f , we find the global ODC mask 01110001 of c on paths through f .

Similarly, the local ODC mask of c for the gate with output g is 11101100, and the global

ODC mask for paths through g is 01000100. We get the ODC mask of c by ORing the

ODC masks for paths through f and g, which yields 01110101.

2.1.3 SER Evaluation

We compute the SER by counting the number of test vectors that propagate the effects

of a transient fault to the output(s). Test-vector counting was also used in [39] to com-

pute SER, although the algorithm there uses BDD-based techniques. Intuitively, if a large

number of test vectors are applied at the inputs, then faults are propagated to the outputs

often. SER computation is inherently more difficult than test generation. Testing involves

generating vectors that sensitize the error signal on a node and propagate the signal’s value

to the output. SER evaluation involves counting the number of vectors that detect faults

on a signal.

Next, we describe how to compute signatures and ODC masks to derive several met-

rics that are necessary for our SER computation algorithm. These metrics are based on

the signal probability (controllability), observability and testability parameters commonly

used in ATPG [19].

Figure 2.5 summarizes our algorithm for SER computation. It involves two topolog-

ical traversals of the target circuit: one to propagate signatures forward and another to
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compute TSA SER(Circuit C, int K)

{
compute sigs(C,K)

compute odc approx(C,K)

for(all nodes g ∈C)
test0(g) = zeros(sig(g)&ODCmask(g))/K
test1(g) = ones(∼ sig(g)&ODCmask(g))/K
Perr(C)+ = Perr0(g)test1(g)
Perr(C)+ = Perr1(g)test0(g)

return Perr(C)
}

Figure 2.5: Algorithm to compute SER under the TSA fault model.

propagate ODC masks backwards. The fraction of 1s in a node’s signature is an estimate

of its signal probability, while the relative proportion of 1s in an ODC mask indicates ob-

servability. These two measures are combined to obtain a testability figure-of-merit for

each node of interest, which is then multiplied by the probability of the associated TSA to

obtain the SER for the node. This SER for the node captures the probability that an error

occurs at the node, combined with the probability that the error is logically propagated

to the output. Our estimate can be contrasted with technology-dependent SER estimates,

which include timing and electrical masking.

We estimate the probability of signal g having logic value 1, denoted P[g = 1], by the

fraction of 1s in the signature sig(g). This is sometimes called the controllability of the

signal.

Definition 6 The controllability of a signal g, denoted P[g = 1], is the probability that g

has logic value 1.

P[g = 1] = ones
(
sig(g)

)
/K(2.1)
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Definition 7 The observability of a signal g, denoted P[obs(g)] is the probability that a

change in the signals value changes the value of a primary output.

The observability of a node is approximated by the number of 1s in its ODC mask.

P[obs(g)] = ones
(
ODCmask(g)

)
/K(2.2)

This observability metric is an estimate of the probability that g’s value is propagated

to a primary output. The 1-testability of g, denoted P[test1(g)] = P[obs(g),g = 1], is the

number of bit positions where g’s ODC mask and signature both are 1.

Definition 8 The 1-testability of a node g is the probability that the node’s correct value

is 1 and that it is observable.

P[test1(g)] = ones
(
sig(g)&ODCmask(g)

)
/K(2.3)

Similarly, 0-testability is the number of positions where the ODC mask is 1 and the signa-

ture is 0. In other words, 0-testability is an estimate of the number of vectors that test for

stuck-at-0 faults.

Example 2 Consider again the circuit in Figure 2.3. The signature for node g is given

by sig(g) = 01011011 and ODC mask ODCmask(g) = 01000100. Hence, P[g = 1] =

ones(sig(g)) = 5/8, P[g = 0] = 3/8, P[obs(g)] = 2/8, P[test0(g)] = 1/8 and P[test1(g)] =

1/8.

Suppose each node g in a circuit C has fault probabilities Perr0(g) and Perr1(g) for

TSA-0 and TSA-1 faults, respectively, then the SER of C is the sum of SER contributions
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from each gate g in the circuit. Here, we weight gate error probabilities by the testability

of the gate for the particular TSA.

Perr(C) = ∑
g∈C

P[test1(g)]Perr0(g)+P[test0(g)]Perr1(g)(2.4)

Example 3 The test0 and test1 measures for each gate in the circuit are given in Figure

2.3. If each gate has TSA-1 probability Perr0 = p and TSA-0 probability Perr1 = q, then

the SER is given by Perr(C) = 2p+(13/8)q.

The metrics test0 and test1 implicitly incorporate error sensitization and propagation

conditions. Hence, Equation 2.4 accounts for the possibility of an error being logically

masked. Note that the Perr1(g) refers to the 1-controllability of g and so is weighted by

the 0-testability, similarly for Perr1(g).

2.1.4 Multiple-Fault Analysis

In this section, we discuss SER computation for the two multiple-fault models intro-

duced previously: the TMSCA model for multiple correlated faults, and the TMSA model

for multiple independent faults.

The SER for TSA faults requires the computation of signatures and ODC masks for

each node in the circuit. Each node represents the location of a potential TSA fault, and the

ODC mask for each node contains information about the probability of the corresponding

fault being observed. The same process can be generally followed for TMSCA faults.

However, ODC masks must be applied to a set of nodes rather than a single node.

Recall that exact ODC computation of Figure 2.4a requires resimulation of the entire

fan-out cone of the fault location, while the algorithm from [92], shown in Figure 2.4b,
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only resimulates through the immediate successor gate(s). These techniques represent

two extremes in error-propagation analysis. Between these extremes, it is possible to

resimulate the fan-out cone partially. In fact, the farther through the fan-out cone we

resimulate, the more accurate our ODC masks become. For TMSCA faults, we resimulate

through the subcircuit consisting of gates in the set G. We then bitwise invert the signatures

of all the nodes in the subcircuit and resimulate to either the boundary of the subcircuit

(for approximate ODC computation) or through the entire fan-out cone of the subcircuit

(for exact ODC computation). This algorithm is shown in Figure 2.6. In this algorithm,

the nodes in the set G are topologically sorted and resimulated by flipping the signature of

each node sig(g), to the value V [g]. This requires the use of a bit mask called valsig(g)

that contains V [g] in every bit position. After the resimulation is completed through G,

we check for differences that are propagated to the immediate outputs of G (locally) and

combine them with the global ODCs computed at the outputs of G using the bitwise AND

operation.

For TMSA faults, each of the gates in G has an independent probability of error. Thus,

the difference between computing SER for TMSCA faults and TMSA faults is that the sig-

natures of nodes within G are flipped with independent probabilities. In order to represent

this situation, we only flip a fraction of the bits in each signature randomly. The rest of

the algorithm remains the same. Since usually a single TMSA fault is of interest, we can

compute the exact error propagation probability of a TMSA fault by resimulating through

the entire circuit in only linear time. The algorithm for SER computation using a TMSA

fault is given in Figure 2.7. Here, the circuit is resimulated by selectively flipping the bits
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in the signatures of gates in G. The bits are flipped randomly based on the probability of

error P[g] and the value V [g] for each node G. The resimulation is done all the way to the

primary outputs , then the primary outputs are checked for any differences that have been

propagated.

compute TMCSA SER(Circuit C, nodes G, values V, Perr P)
{

T = sort topological(G)

T ′ = find output nodes(T
for(each node g ∈ T ′)

compute sig(g)
if(g ∈ T)

valsig(g) = create sig(V [g])
for(each node g ∈ out put(T ′))

di f f (g) = sig(g)⊕newsig(g)
ODCmask(G)|= (di f f (g)&ODCmask(g))

return Perr×ones(ODCmask(G))/K
}

Figure 2.6: Algorithm to compute SER under the TMCSA fault model.

compute TMSA SER(Circuit C, nodes G, values V, errors P)
{

sort topological(C)
for(each node g ∈C)
compute sig(g)
if(g ∈ G)

flip sig bits(g,V [g],P[g])
for(each node o ∈ out put(C))

di f f (o) = sig(o)⊕newsig(o)
ODCmask(G)|= di f f (g)

return Perr×ones(ODCmask(G))/K
}

Figure 2.7: Algorithm to compute SER under the TMSA fault model.

In practice, random bits of the signature can be bitwise XORed by a mask with p/K

ones where p is the probability of error. Such a mask can be created by forming a bit
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vector with p/K ones that are permuted randomly. Then, when the signature is bitwise

XORed with the mask, p/K of the bits are flipped, corresponding to a fault that occurs

with probability p.

2.2 SER Analysis in Sequential Logic

In this section, we extend our SER analysis to handle sequential circuits, which have

memory elements (D flip-flops) in addition to primary inputs and outputs. Recall that the

values stored in the flip-flops collectively form the state of the circuit. The combinational

logic computes state information and primary outputs as a function of the current state and

primary inputs. Below, we list three factors to consider while analyzing sequential-circuit

reliability.

1. Steady-state probability distribution: It has been shown that under normal operation

most sequential circuits converge to particular state distributions [36]. Discovering

the steady-state probability is useful for accurately computing the SER.

2. State reachability: Some states cannot be reached from a given initial state, therefore

only the reachable part of the state space should account for the SER.

3. Sequential observability: Errors in sequential circuits can persist past a single cycle

if captured by a flip-flop. A single error may be captured by multiple flip-flops and

result in a multiple-bit error in subsequent cycles. Such errors can then be masked

by logic.

The following two subsections develop a simulation-based framework to address these

issues.
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2.2.1 Steady-State and Reachability Analysis

Usually, the primary input distribution is assumed to be uniform, or is explicitly given

by the user, while the state distribution has to be derived. A finite state machine (FSM) is

periodic if its states can be visited only at regular intervals, and, otherwise, is aperiodic.

Periodic FSMs do not reach steady state. Hachtel et al. [36, 23] show that aperiodic

FSMs with strongly-connected state spaces eventually reach a steady-state distribution. A

modulo-d counter is an example of such an FSM. In [23], it is shown that most ISCAS

and other benchmark circuits reach steady-state because they are synchronizable; in other

words, they can be taken to a reset state starting from any state, using a specific fixed-length

input sequence. This indicates that the circuits are aperiodic (otherwise, different-length

sequences would have to be used from each state) and strongly connected (otherwise some

states could not be taken to the reset state).

In order to approximate the steady-state distribution, we perform sequential simulation,

using signatures. Assume that a circuit with m flip-flops L = {l1, l2 . . . lm} is in state SL =

{s0,s1,s2 . . .sm}, where each si ∈ {0,1}. Our method starts in state S0 for each simulation

run (sets of 64 states are processed in parallel in our implementation). Then, we simulate

the circuit for n cycles. Each cycle propagates signatures through the combinational logic

and stops when flip-flops are reached. Primary input values are generated randomly from

a given fixed probability distribution. At the end of each simulation cycle, flip-flop inputs

are transferred to flip-flop outputs, which are, in turn, fed into combinational logic for the

subsequent cycle. All other intermediate signatures are erased before the next simulation

cycle starts. The K-bit signatures of the flip-flops, at the end of n simulations cycles, define
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K states. We claim that for a large enough n, these states are sampled from the steady-state

probability distribution. Empirical results suggest that most ISCAS benchmarks reach

steady-state in 10 cycles or fewer, under the above operating conditions [75].

Additionally, our signature-based SER analysis methods can handle systems that are

decomposable. Such systems pass through some transient states and are then confined to

a set of strongly connected closed (SCC) states. That is, the system can be partitioned

into transient states and sets of SCC states. For such systems, the steady-state distribution

strongly depends on the initial states. We address this implicitly by performing reachability

analysis starting in a reset state. Thus, each bit of the signature corresponds to a simulation

that 1) starts from a reset state and propagates through the combinational logic, 2) moves

to adjacent reachable states, and 3) for a large enough n, reaches steady-state within the

partition.

Figure 2.8 summarizes our simulation algorithm for sequential circuits. Using this al-

gorithm, simulating a circuit with g gates for n simulation cycles and with K-bit signatures

takes time O(Kng). Note that it does not require matrix-based analysis, which is often the

bottleneck in other methods [36, 75]. For example, Markov matrices are used to encode

state-transition probabilities explicitly, and therefore, can be large due to the problem of

state-space explosion [36, 75].

Figure 2.9 shows an example of sequential simulation with 3-bit signatures. The flip-

flops with outputs x and y are initialized to 000 in cycle 0, T0. Then the combinational

logic is simulated. For cycle T1, the input of x and y are transferred to the output, and the

process continues. At the conclusion of the simulation, the values for x and y at T3 are
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simulate sequential(Circuit C, int K)

{
for(all flip-flops l ∈C)

out putsig(l) = inputsig(l)
for(all inputs in0 ∈C)

in0 = new random input()

compute sigs(C,K)

}

Figure 2.8: Algorithm for multi-cycle sequential-circuit simulation.

saved for sequential-error analysis, which is explained in the next subsection.
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Figure 2.9: Illustration of bit-parallel sequential simulation.

Although we only considered aperiodic systems, we observe that for a periodic system

the SER would need to be analyzed for the maximum period D, since the state distribution

oscillates over that period. If the FSM is periodic with period D, then we can average over

the SER for D or more simulation cycles.

2.2.2 Error Persistence and Sequential Observability

In order to assess the impact of soft faults on sequential circuits, we analyze several

cycles through which faults persist, using time-frame expansion. This involves making n
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copies of the circuit, C0,C1 . . .Cn−1, thereby converting a sequential circuit into a pseudo-

combinational circuit. In the expanded circuit, flip-flops are modeled as buffers. The

outputs from the flip-flops of the k-th frame are connected to the primary inputs of frame

k+1 frame (as appropriate) for 0 < k < n−1. Flip-flop outputs that feed into the first frame

(k = 0) are treated as primary inputs, and flip-flop inputs of frame n are treated as primary

outputs. Figure 2.10 shows a three-time-frame circuit that corresponds to Figure 2.9. Here,

the primary inputs and outputs of each frame are marked by their frame numbers. Further,

new primary inputs and outputs are created, corresponding to the inputs from flip-flops for

frame 0 and outputs of flip-flops for frame 3. Intermediate flip-flops are represented by

buffers.

0
0
0

0

0

1

1

1
1

1

2
2

2

2

3
3

2

Figure 2.10: Illustration of time-frame expansion into three frames: C0,C1,C2.

Observability is analyzed by considering all n frames together as a single combina-

tional circuit, thus allowing the single-fault SER analysis described in the previous section

to be applied to sequential circuits. Other useful information, such as the average number

of cycles during which faults persist, can also be determined using time-frame expansion.

After the multi-cycle sequential simulation described in the previous section, we store

the signatures of the flip-flops and use signatures to stimulate the newly created primary

inputs (corresponding to frame 0 flip-flops) in the time-frame expanded circuit. For in-
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stance, the x0 and y0 inputs of the circuit in Figure 2.10 are simulated with the correspond-

ing signatures, marked T3 (the final signature after multi-cycle simulation is finished), from

Figure 2.9. Randomly generated signatures are used for primary inputs not corresponding

to flip-flops (such as a0 and b0 in Figure 2.10).

After simulation, we perform ODC analysis, starting from the primary outputs and

flip-flop inputs of the n-th frame and moving all the way to the inputs of the 0-th frame.

In other words, errors in primary outputs and flip-flops are considered to be observable.

Figure 2.11 gives our algorithm for sequential SER computation. The value of n can

be varied until the SER stabilizes, i.e., it does not change appreciably from an n-frame

analysis to an (n+1)-frame analysis.

The n-frame ODC-analysis can lead to different gates being seen as critical for SER.

For instance, the designer can deem errors that persist longer than n cycles as more critical

than errors that are quickly flushed at primary outputs. In this case, the ODC analysis only

considers the fan-in cones of the primary outputs of Cn.

We denote the ones count of ODCmask(g, f ,n) as seqobs(g, f ,n). The testability is

computed using the signature and ODC mask after n simulations and f frames of unrolling.

P[test0(g, f ,n)] = zeros(sig(g, f ,n)&ODCmask(g, f ,n))/K(2.5)

P[seqobs(g, f ,n)] = ones
(
ODCmask(g, f ,n)

)
/K(2.6)

Perr(C0, f ,n) = ∑
gi∈C0

P[test1(gi, f ,n)]Perr0(gi)+P[test0(gi, f ,n)]Perr1(gi)(2.7)
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compute seq SER(Circuit C,int K,int n,int f)
{

for(i < n)
seq simulate(C,K)

C′ = time frame expand(C, f)
copy flipflop inputs(C′,C)
compute sigs(C′,K)

compute odc approx(C′,K)

for(all nodes g ∈C0)
test0(g) = zeros(sig(g)&ODCmask(g))/K
test1(g) = ones(∼ sig(g)&ODCmask(g))/K
Perr(C′)+ = (Perr0(g)test1(g)+Perr1(g)test0(g))
return Perr(C′)

}

Figure 2.11: Algorithm to compute SER in sequential circuits under TSA faults.

The SER algorithm in Figure 2.11 still runs in linear time, with respect to the size of

the circuit, since each simulation is linear and ODC analysis (even with n time frames)

runs in linear time as well.

2.3 Additional Masking Mechanisms

Due to various physical and electrical properties of circuits, phenomena other than

logic masking can stop error propagation in certain cases. While these factors cannot be

assessed during logic synthesis, they can be considered during technology mapping and

physical design and can serve to guide these processes. It should be noted that timing

and electrical masking are expected to diminish in strength as technology scales. Roughly

speaking, flip-flops can latch SEUs every time the latching clock-edge is triggered. There-

fore, an increase in operating frequency increases the frequency of latching opportunities

[111]. Additionally, as power-supply voltage decreases and gate sizes shrink, fewer SEUs

are expected to be attenuated.
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To capture electrical masking in AnSER, we derate gate-error probabilities (gerr0,gerr1)

by a factor dependent upon characterization of successor gates. Previous research has

shown that electrical masking eliminates low-energy SEUs in 3-4 levels of logic and has

little effect thereafter [100]. This implies that considering paths of limited length starting

from the gate in question is often sufficient to approximate this effect. In the remainder of

this section, we develop a linear-time algorithm in the spirit of static timing analysis (STA)

for computing the error-latching window (ELW) of each gate in a circuit. The size of the

ELW relative to the clock period is an estimate of the circuit’s ability to mask the error

through timing properties. The input-vector dependence of timing masking is incorporated

into our estimates by functional simulation. We also briefly discuss the incorporation of

electrical masking through derating factors that are used to scale the intrinsic error proba-

bility of a gate. We assume sequential circuits with edge-triggered flip-flops separated by

combinational logic blocks.

2.3.1 Static Analysis of Timing Masking

The timing constraints associated with each edge-triggered D flip-flop are as follows:

• The data input D has to receive the data before the start of the setup time preceding

the latching clock-edge. The start of the setup time is denoted Ts.

• The data input must be held steady for the duration of the hold time following the

latching clock-edge. The end of the hold time is denoted Th.

A soft error is usually characterized by a transient glitch of duration d that results from

a particle strike. If such a glitch is present at the data or clock inputs of a flip-flop during
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Figure 2.12: Error-latching windows illustrated.

the interval [Ts,Th], it can result in an incorrect value being latched. If the glitch is present

during the setup or hold time, it can prevent a correct value from being latched. Therefore,

the ELW of the D flip-flop is simply [Ts,Th].

The ELW for a gate is computed by 1) translating the ELWs of each of its fan-out

gates backwards by appropriate path delay and 2) taking the union of the resulting ELWs.

In contrast, during static timing analysis, only the minimum required time is computed

at each gate, even though a similar backwards traversal is used. Figure 2.13 shows the

algorithm that computes the union of such intervals. The union of two intervals can re-

sult in two separate intervals if the respective intervals are disjoint, or one if the intervals

overlap. In general, the latching window for a gate g is defined by a sequence of inter-

vals ELW (g)[0],ELW(g)[1] . . ., where ELW (g)[i] refers to the ith interval in the latching

window. Each interval ELW (g)[i] is itself described by its start and end times [Sgi,Egi].

ELW (g) = ([Sg1,Eg1] , [Sg2,Eg2] , . . . [Sgn,Egn])
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compute ELW(Circuit C)
{
reverse topological sort(C)
for(all latches l ∈C)

ELW (l) = [Ts(l),Th(l)]
for(all gates g ∈C)

for(all fan-outs f)
ELW ′( f ) = translate(ELW( f ),delay(l, f ))

ELW (l) = union(ELW (l),ELW ′( f ))
}

Figure 2.13: Computing error-latching windows (ELWs).

Example 4 Our proposed ELW computation algorithm is illustrated by the circuit in Fig-

ure 2.12. Each wire is marked with a delay, and each gate i is assumed to have delay d(i).

The corresponding ELWs are shown below. Note that f has a larger ELW than other gates

because its two output paths have different delays.

ELW(F1) = ELW(F2) = [Ts,Th]

ELW(i) = [Ts −d2,Th −d2]

ELW(g) = [Ts −d2 −d(i)−d4,Th −d2 −d(i)−d4]

ELW(h) = [Ts −d1,Th −d1]

ELW( f ) = [Ts −d2 −d(i)−d4 −d(g)−d5,Th −d1 −d(h)−d3]

We define the timing masking factor as the ratio of the ELW to the clock cycle time C.

For a node f , the timing masking factor is computed as follows:

Tmask( f ) =
n
∑
i=1

(E f i−S f i)/C

Taking timing masking into account, the SER contribution of each gate is computed by

scaling the testability and error probability by Tmask.

SER(C) = ∑
g∈C

(
P[test1(g)]Perr0(g)+P[test0(g)]Perr1(g)

)
Tmask(g)(2.8)
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union(ELW (g),ELW( f ))
{

for(all intervals ELW (g)[i])
insert interval(ELW (g)[i],ELW( f )[1])

return ELW ( f )
}

insert interval(ELW (g)[i],ELW( f )[ j])
{

if(Egi < S f j)
return insert before(ELW ( f )[ j],ELW(g)[i])

if(Sgi > E f j)
if( j == size(ELW ( f )))
return insert after(ELW ( f )[ j],ELW(g)[i])
else
return insert interval(ELW (g)[i],ELW( f )[ j +1])

Sgi = max(Sgi,S f j))
Egi = min(Egi,E f j))
delete ELW ( f )[ j]
return insert interval(ELW (g)[i],ELW( f )[ j])

}

Figure 2.14: Computing the union of two ELWs.

2.3.2 Statistical-Interval Weighting

The latching windows computed in the previous section were a result of static analy-

sis. Therefore, some intervals (or portions of intervals) correspond to paths that are not

traversed frequently. Our aim is to weight each interval in the ELW by the probability that

an error occurring within the interval latches. In order to compute such a probability, we

use bit-parallel logic simulation. Recall that the ones-count of the signature of a node is a

measure of signal probability, and the one-count of the ODC mask is a measure of signal

observability. Together, these measures give an estimate of the testability of the associated

stuck-at fault.

We extend this test-vector counting method to account for path faults. For such a
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fault, an entire path, rather than a single stuck-at fault, is sensitized. For our purposes,

we consider sets of paths associated with each ELW interval, rather than single paths.

Therefore, we associate an interval ODC mask intODCmask( f , i) with each interval i in

an ELW ( f ).

Definition 9 The interval ODC mask of g, denoted intODCmask(g) is the K-bit sequence

whose ith bit is 0 if input vector Xi is in the don’t-care set of g during interval i; otherwise,

the ith bit is 1.

The one-count of the interval ODC mask is the interval weight.

We compute interval ODC masks in reverse topological order, along with ELWs. We

initially consider gates that feed primary outputs; for such a gate g, all interval ODC masks

are simply equal to ODCmask(g), i.e., for all intervals i in ELW (g), intODCmask(g, i) =

ODCmask(g). For subsequent gates, ELWs are computed by translating and merging the

ELWs of successor gates. Here, each interval ODC mask associated with a successor gate

is ANDed with the ODC mask of the current gate. Intuitively, the interval ODC mask

keeps track of the observability of a signal along a specific path. Therefore, ANDing the

ODC corresponding to a path by the ODC of the additional gate simply adds that gate to

the path.

When intervals from two fan-out cones are merged, the interval ODC masks are com-

bined together using the bitwise OR operation. This operation results in some lack of

accuracy for the weighting algorithm because it averages the weight for both intervals in

the merged interval. However, this operation is necessary for scalability since each gate

can be subject to exponentially many intervals and the loss of accuracy is small.
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Suppose that a gate f has fan-out branches g and h and that during ELW computation,

intervals ELW (g)[i] and ELW (h)[ j] are merged together to form ELW ( f )[k]. In this case,

intODCmask( f ,k) = (intODCmask(g, i)+ intODCmask(h, j))&intODCmask( f )

The SER computation, including timing masking, is simply the sum of interval testa-

bilities weighted by the lengths of the corresponding intervals. The testabilities are in turn

derived using the interval ODC and signal probabilities. These computations are shown

below.

P[test1( f , i)] = ones
(
sig( f )&ODCmask( f , i)

)
/K

Tmask( f , i) = (E f i−S f i)/C

SER(C) = ∑
f∈C

∑
i∈ELW( f )

(
P[test1( f , i)]Perr0( f )+P[test0]( f , i)Perr1( f )

)
Tmask( f , i)(2.9)

2.4 Empirical Validation

We now report empirical results for SER analysis using AnSER and our two SER-

aware synthesis techniques. The experiments were conducted on a 2.4 GHz AMD Athlon

4000+ workstation with 2GB of RAM. The algorithms were implemented in C++.

For validation purposes, we compare AnSER with complete test-vector enumeration

using the ATPG tool ATALANTA [63]. We provided ATALANTA with a list all of possible

stuck-at (SA) faults in the circuit to generate tests in ”diagnostic mode,” which calculates

all test vectors for each fault. We used an intrinsic gate-fault value of gerr0 = gerr1 =

1× 106 on all faults. Since TSA faults are SA faults that last only one cycle, the proba-

bility of a TSA fault causing an output error is equal to the number of test vectors for the
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Circuit No. gates ATALANTA AnSER % Error AnSER Exact-ODC % Error
c17 13 6.96E-7 6.96E-7 0.01 6.96E-7 0.01
majority 21 6.25E-6 6.63E-6 6.05 6.57E-6 4.87
decod 25 2.60E-5 2.62E-5 0.83 2.60E-5 0.83
b1 25 1.28E-5 1.31E-5 2.81 1.27E-5 0.78
pm1 68 2.86E-5 3.00E-5 4.70 2.97E-5 3.5
tcon 80 5.30E-5 5.39E-5 1.67 5.35E-5 0.94
x2 86 3.78E-5 3.87E-5 2.38 3.93E-5 3.97
z4ml 92 5.29E-5 5.37E-5 1.50 5.41 E-5 2.20
parity 111 7.60E-5 7.69E-5 1.24 7.71E-5 1.45
pcle 115 5.38E-5 5.34E-5 0.75 5.35E-5 0.56
pcler8 140 7.06E-5 7.24E-5 2.52 7.23E-5 2.41
mux 188 1.58E-5 1.38E-5 12.54 1.63E-5 3.16
Ave. 3.06 2.65

Table 2.1: Comparison of SER (FIT) data for AnSER and ATALANTA.

corresponding SA fault, weighted by their frequency. Assuming a uniform input distribu-

tion, the fraction of vectors that detect a fault provides an exact measure of its testability.

Then, we computed the SER by weighting the testability with a small gate fault proba-

bility, as in Equation 2.4. While the exact computation can be performed only for small

circuits, Table 2.1 suggests that our algorithm is accurate to about 3% for 2,048 simulation

vectors. More test vectors can be used if desired.

We isolate the effects of the two possible sources of inaccuracy: 1) sampling inaccu-

racy, and 2) inaccuracy due to approximate ODC computation. Sampling inaccuracy is due

to the incomplete enumeration of the input space. Approximate ODCs computed using the

algorithm from [92] incur inaccuracy due to mutual masking. When an error is propagated

through two reconvergent paths, the errors may cancel each other. However, the results in

Table 2.1 indicate that most of the inaccuracy is due to sampling, not approximate ODCs.

The last two columns of Table 2.1, corresponding to exact ODC computation, show an av-
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erage error of 2.65%. Therefore, only 0.41% of the error is due to the approximate ODC

computation. On the other hand, while enumerating the entire input space is intractable,

our use of bit-parallel computation enables significantly more vectors to be sampled than

other techniques [134, 100, 3] given the same computation time.

To characterize the gates in the circuits accurately, we adapted data from [100], where

several gate types are analyzed in a 130nm, 1.2VDD technology via SPICE simulations. We

use an average SER value of gerr0 = gerr1 = 8× 10−5 for all gates. However, the SER

analyzers from [134, 135, 100] report error rates that differ by orders of magnitude. SERA

tends to report error rates on the order of 10−3 for 180nm technology nodes, and FASER

reports error rates on the order of 10−5 for 100nm. Furthermore, although our focus is

logic masking, we also approximate electrical masking by scaling our fault probabilities

at nodes by a small derating factor to obtain trends similar to those of [100]. In Figure

2.15, we compare AnSER and SERD when computing SER for inverter chains of varying

lengths. Since there is only one path that is always sensitized in this circuit, it helps us

estimate the derating factor.

Table 2.2 compares AnSER with the previous work on ISCAS 85 benchmarks, using

similar or identical host CPUs. While the runtimes in [24] include 50 runs, the runtimes

in [100] are reported per input vector. Thus, we multiply data from [100] by the number

of vectors (2,048) used there; our runtimes appear better by several orders of magnitude.

We believe that this is due to the use of bit-parallel functional simulation to determine

logic masking, which has a strong input-vector dependency. Most other work uses fault

simulation or symbolic methods.

56



Figure 2.15: Comparison of SER trends on inverter chains produced by SERD [100] and
AnSER.

Time (s)
Circuit No. gates AnSER SERD[100] FASER [135] [24]
c432 246 <0.01 10 22 —
c880 591 <0.01 10 — —
c1355 746 0.014 20 40 2.09
c1908 760 0.015 20 66 0.781
c3540 1951 <0.01 60 149 5m42s
c6280 4836 1.00 120 278 —

Table 2.2: Runtime comparisons of four SER analyzers.

Table 2.3 shows SER and runtime results for the IWLS benchmarks, which were eval-

uated when we implemented AnSER within the OAGear package. Note that our algorithm

scales linearly in the size of the circuit, unlike the majority of prior algorithms. We assume

a uniform input distribution in these experiments, although AnSER is not limited to any

particular input distribution. An input distribution supplied by a user, a sequential gate-

level simulator, or a Verilog simulator can be used directly, even if it includes repeated

vectors. SER and runtime results with exact and approximate ODCs are shown for the

ISCAS-85 benchmarks in Table 2.4. Again, the results show that approximate ODCs are
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No. SER Time
Circuit gates (FIT) (s)
pci conf cyc addr dec 97 4.89E-3 0.23
steppermotordrive 226 8.00E-3 0.27
ss pcm 470 1.68E-2 0.3
usb phy 546 1.53E-2 0.28
sasc 549 2.10E-2 0.26
simple spi 821 2.50E-2 0.3
i2c 1142 2.7E-2 0.34
pci spoci ctrl 1267 0.029 0.342
des area 3132 0.019 0.782
spi 3227 0.118 0.68
systemcdes 3322 0.127 0.55
tv80 7161 0.104 0.91
systemcaes 7959 0.267 0.97
mem ctrl 11440 0.494 1.36
ac97 ctrl 11855 0.409 1.38
usb funct 12808 0.390 1.42
pci bridge32 16816 0.656 1.78
aes core 20795 0.550 2.1
wb conmax 29034 1.030 4.18
ethernet 46771 1.480 5.77
des perf 98341 3.620 9.34
vga lcd 124031 4.800 11.7

Table 2.3: SER (in FITs) and runtime for AnSER on the IWLS 2005 benchmarks.

sufficient for most benchmark circuits, since the loss of accuracy due to ODC approxima-

tion is negligible.

Table 2.5 compares the multi-cycle simulation runtimes of AnSER with those of MARS-

S, the sequential circuit SER analyzer from [75]. MARS-S employs symbolic simulations,

using a BDD/ADD-based method to compute steady-state probability distributions, while

we use signature-based bit-parallel functional simulation. The number of cycles needed to

reach steady-state is also listed in the table. Table 2.6 shows the results of SER analysis on

sequential circuits from the ISCAS-89 benchmark suite under time-frame expansion. The

listed runtimes in Table 2.6 are for processing signatures and ODCs on 10 frames. These
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No. SER Time SER Time
Circuits gates (FIT) (s) (FIT) (s)
alu4 740 1.13E-2 0.227 1.19E-2 0.004
b9 14 4.67E-3 0.007 4.69E-3 0.005
b1 114 6.79E-3 0.050 6.69E-3 0.000
C1355 536 1.93E-2 2.010 1.93E-3 0.034
C3540 1055 3.06E-2 0.409 3.07E-2 0.080
C432 215 5.70E-3 0.056 5.71E-3 0.016
C499 432 1.75E-2 0.291 1.71E-2 0.260
C880 341 1.50E-2 0.54 1.51E-2 0.23
cordic 84 9.43E-2 0.007 9.43E-2 .004
dalu 1387 2.18E-2 0.535 2.17E-2 0.225
des 4252 2.04E-1 5.283 2.03E-1 4.87
frg2 1228 3.61E-1 0.217 3.65E-1 0.169
i10 2824 1.03E-1 1.063 1.04E-1 0.315
i9 952 5.07E-2 2.237 5.06E-2 2.044

Table 2.4: SER evaluation of various benchmarks with exact and approximate ODCs.

Time(s)
Circuit No. gates No. cycles MARS-S AnSER
s208 112 10 1000 1
s298 133 10 6900 0
s444 181 10 365 4
s526 214 5 551 11
s1196 547 5 68 8
s1238 526 4 70 8

Table 2.5: Comparison of multi-cycle simulation runtimes.

results indicate that the SER obtained by considering only one time frame is 62% higher

than the 2-frame SER. After this point, increasing the number of frames has little effect

on the SER. This indicates that most faults, if at all propagated, are usually observable at

primary outputs in the current cycle. This result is supported by observations in [39]. In

other words, flip-flops propagate few errors to the outputs in later cycles, due to sequential

circuit masking. The latched errors tend to quickly dissipate after a few cycles. This leaves

the SER for multiple-cycle analysis close to the error rate of the current cycle’s primary
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No. Time SER for n time frames
Circuit gates (s) n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
s208 112 9 2.40E-3 2.34E-3 2.34E-3 2.33E-3 2.32E-3 2.33E-3
s298 133 9 2.97E-3 2.75E-3 2.69E-3 2.67E-3 2.65E-3 2.62E-3
s400 180 14 4.24E-3 3.00E-3 2.38E-3 2.23E-3 2.23E-3 2.05E-3
s444 181 14 4.69E-3 3.06E-3 2.43E-3 2.18E-3 2.02E-3 1.98E-3
s526 214 9 3.87E-3 2.97E-3 2.65E-3 2.52E-3 2.46E-3 2.44E-3
s1196 547 18 6.35E-3 3.87E-3 3.71E-3 3.68E-3 4.05E-3 3.89E-3
s1238 526 14 6.09E-3 3.54E-3 3.42E-3 3.47E-3 3.72E-3 3.62E-3
s1488 659 5 1.02E-1 1.11E-2 1.03E-2 1.06E-2 1.15E-2 1.07E-2
s1423 731 47 1.43E-2 8.48E-3 5.08E-3 3.47E-3 2.78E-3 2.54E-3
s9234 746 4 1.31E-2 1.24E-2 1.22E-2 1.18E-2 1.07E-2 9.78E-2
s13207 1090 15 3.07E-2 2.66E-2 3.14E-2 3.62E-2 3.61E-2 4.39E-2

Table 2.6: Change in SER for sequential circuits with increasing number of time frames.

outputs.

Table 2.7 shows SER results under the TMSA model, which represents single-event

multiple-bit upsets. In this experiment, we included as TMSA faults, sets of topologi-

cally adjacent gates 2-3 levels away from a central gate. The results under exact SER

are obtained by resimulating the entire fan-out cone. The results under approximate ODC

computations, given in Figure 2.4b, are shown with analysis of 10 levels of logic. The

runtime is shown for the exact algorithm. To evaluate our algorithms involving timing

masking, we use the IWLS 2005 benchmark suite [46], with design utilization set to 70%

to match recent practice in industry. Our wire and gate characterizations are based on a

65nm technology library. We perform static timing analysis using the D2M delay metric

[5] on rectilinear steiner minimal trees (RSMTs) produced by FLUTE [25]. These designs

are placed using Capo, version 10.2 [20, 121], and relocations are legalized, i.e., gates

are moved to the nearest empty or legal locations, using the legalizer provided by GSRC

Bookshelf [121].
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Circuits Exact Time (s) Exact SER (FIT) Approx SER (FIT)
alu4 0.492 2.56e-2 1.00e-2
b1 0.001 2.56e-4 4.62e-4
b9 0.008 2.72e-3 3.30e-3
C1355 0.843 1.82e-2 1.44e-2
C3540 0.992 3.95e-2 2.29e-2
C432 0.129 7.93e-3 6.24e-3
C499 0.589 1.45e-2 1.45e-2
C880 0.087 7.79e-3 7.30e-3
cordic 0.014 2.30e-3 1.25e-3
dalu 0.857 3.89e-3 1.76e-3
des 1.201 0.113e-3 0.139e-3
frg2 0.332 2.75e-2 3.26e-3
i10 0.212 8.07e-2 7.83e-2
i9 0.496 1.87e-3 2.57e-3

Table 2.7: SER under single-event multiple-bit upsets.

No. Clock Logic SER Time Timing SER Time Potential
Circuit gates Period (s) (FIT) (s) (FIT) (s) % improvement
aes core 20265 5.68E-07 0.1654 6 9.33E-05 3 37.57
spi 2998 3.19E-07 0.05722 1 4.23E-05 1 15.28
s35932 5545 6.18E-07 0.1363 2 6.03E-05 1 26.73
s38417 6714 3.56E-07 0.1360 2 1.22E-04 1 37.83
tv80 6802 6.79E-07 0.05602 2 2.64E-05 1 37.50
mem ctrl 11062 6.44E-07 0.2185 2 8.45E-05 3 19.64
ethernet 36227 1.46E-06 0.7010 9 1.31E-04 9 91.68
usb funct 10357 5.06E-07 0.1852 3 8.79E-4 3 36.59

Table 2.8: SER evaluation with logic and timing masking.

Table 2.8 shows changes in SER when timing masking is considered. Incorporating

timing masking into SER can be useful in guiding physical synthesis operations, while

only considering logic masking is sufficient for technology-independent logic synthesis

steps in the design flow. Table 2.8 also shows the potential for improvement in timing

masking, i.e., the improvement in reliability when the ELW of each gate is made as small

as possible (equal to the ELW of a latch). This shows that SER can be significantly de-
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creased by manipulating timing masking.

2.5 Summary

Efficient analysis methods are necessary for assessing and reducing the SER of a cir-

cuit. This chapter presented AnSER, our linear-time method for the logic-level soft-error

analysis. AnSER achieved its low runtimes by functional simulation signatures, which en-

abled a fast and accurate method for computing signal probability and observability, even

in the presence of reconvergent fan-out. We analyzed sequential circuits using AnSER and

employing multicycle simulation and time-frame expansion. In addition, we incorporated

timing masking through error-latching windows which where computed using timing anal-

ysis information. We derived results on IWLS and ISCAS benchmarks, which generally

showed 2-3 orders of magnitude speed-up over previous SER analyzers and high accuracy

when validated against the ATALANTA ATPG tool.

62



CHAPTER III

Design for Robustness

At the gate level, soft errors have traditionally been eliminated through the use of time

or space redundancy. The cascaded-TMR scheme illustrated in Figure 1.11 [125] is one

example. Here, the circuit is replicated three times, and the majority value is taken as

the result. To protect against faults in the majority voter, this entire circuit ensemble is

replicated three times, a process which can be recursively applied until the desired level

of fault tolerance is reached. However, as we demonstrate in this chapter, it is possible to

achieve improvements in reliability without resorting to explicit or massive redundancy.

In combinational logic, an SEU only affects the primary outputs if it is propagated

through the intermediate gates. For instance, in Figure 1.7, the error does not propagate

if A = 0. In this case, A controls the output of the AND gate, and stops error propaga-

tion. Recall that this phenomenon is known as logic masking. A basic way that designers

can improve a circuit’s reliability is to ensure that faults are logically masked, with high

probability. We target logic and timing masking to obtain soft-error-tolerant circuits in the

following ways: 1) by identifying and using partial redundancy already present within the

circuit, to mask errors; 2) by selecting error-sensitive areas of the circuit for replication
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or hardening; 3) by generating a large number of candidate rewrites for each subcircuit

and selecting among them for improvements in area and SER; and 4) by increasing timing

masking during physical design.

Section 3.1 presents a signature-based method for identifying partial redundancy in the

circuit. Section 3.2 develops an impact metric for selecting error-sensitive gates. Section

3.4 describes a gate-relocation technique which increases timing masking. Finally, Section

3.5 offers empirical validation of these techniques. Most of the techniques and results

described in this chapter also appear in [58, 55, 59].

3.1 Signature-Based Design

In this section, we describe a technique called signature-based design for reliability

(SiDeR). Using functional simulation, SiDeR identifies redundancy already present in the

circuit and utilizes it to increase logic masking. As discussed in Chapter II, signatures

provide partial information about the Boolean function of a node. Therefore, candidate

nodes with similar functionality can be identified by matching signatures.

We take advantage of the fact that nodes need not implement identical Boolean func-

tions to bolster reliability. Any node that provides predictable information about another

can be used to mask errors. For instance, if two internal nodes x and y satisfy the prop-

erty (y = 1) ⇒ (x = 1), where ⇒ denotes “implies”, then y gives information about x

whenever y = 1. More generally, if f (x0,x1,x2, . . .xn) = x, then x can be replaced by f to

logically mask errors that are propagated through x. However, errors at x are only masked

in cases where x does not control f . The probability that x controls f can be determined

by reevaluating the SER, with the modified node in place.
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Figure 3.1: (a) Rewriting a subcircuit to improve area. (b) Finding a candidate cover for
node a.

Additionally, we can increase the number of potential candidates that can replicate x,

by taking ODCs into account. Instead of searching for candidates where f (x0,x1,x2, . . .xn) =

x, we search for candidates such that f (x0,x1,x2, . . .xn)&care(x) = x&care(x). Here,

care(x) is the function representing the care-set of x. In terms of signatures, this corre-

sponds to bitwise ANDing sig( f ) and sig(x) by ODCmask(x) to check for the following

relation:

sig( f )&ODCmask(x) = sig(x)&ODCmask(x)

Figure 3.1a shows an example of replicated logic for node a, derived by utilizing don’t-

care values and signatures.

In order to limit area overhead, the function f must be efficiently constructed from

x0,x1, . . .xn. Therefore, we only consider cases where f is implemented by a single AND

or OR gate. We add redundant logic by transforming node x into OR(x,y). This means

that either (y = 1) ⇒ (x = 1) or (x = 1) ⇒ (y = 1), which makes candidate pairs x and y

easy to identify.

When OR(x,y) = x, it follows that sig(x) > sig(y), lexicographically; otherwise, sig(y)
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is 1 in a position where sig(x) is not. Therefore, lexicographically sorting the signatures

can narrow the search for candidate signals y. Also, sig(x) must contain more 1s than

sig(y), i.e., |sig(x)|> |sig(y)|, where |sig(x)| is the size of the signature. Thus, maintaining

an additional list of size-sorted signatures and intersecting the two lists can prune the

search. Multiple lexicographical sorts and multiple size sorts of signatures starting from

different bit positions can further narrow the search. For instance, if we sort the signatures

lexicographically from the ith bit, sig(x) must still occur before sig(y), for the same reason.

As a result of these properties, signature-based redundancy identification can efficiently

perform logic-implication analysis.

Generally, several candidates satisfy implication relations for each node x. Among the

candidates, we choose a node y: 1) that most often controls the output of the additional

OR/AND gate, and 2) whose fan-in cone is maximally disjoint from that of x. Errors in the

mutual fan-in cone can be propagated both through x and y. Hence, the additional OR or

AND gate would not stop propagation in these cases. However, in order to decide exactly

between candidates, it is necessary to evaluate the SER for each potential modification.

The high speed of our linear-time SER computation algorithm allows for this, in most

cases.

Once we find candidates for resynthesis, a SAT solver can can be used to verify the

implication relation. The basic process of verifying circuit optimizations with SAT is as

follows [17]. Two copies of the circuit are constructed, the original C and the modified

version C′. To check if C = C′, each output of C and corresponding output of C′ are

connected to a so-called miter (XOR gate). The outputs of all the miters are fed into an
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OR gate. This entire ensemble (containing C, C′, the miters, and the OR gate) is converted

into a SAT instance. A SAT engine checks if the output of the OR gate is ever 1 (satisfied).

If it is, the two circuits cannot be equal. In our case, the modified circuit contains f (x,y)

in place of x. ODCs are taken into account by feeding the primary outputs (rather than

earlier signals) into the miters. In this case, only those differences between C and C ′ that

are observable from the primary outputs result in a 1 at the output of the miters. However,

it is possible to decrease the size of the SAT instance by using cuts that are closer to f and

x as the inputs of the miters. In [92], verification is done incrementally, starting from f

and x, and moving closer to the primary outputs if the relation is unverified.

3.2 Impact Analysis and Gate Selection

Gate selection is important in many optimizations that improve SER. For instance, gate

selection is used by SiDeR to limit the area overhead, and the same is true of techniques

that harden gates [77]. Gate hardening refers to the use of larger gates with higher critical

charge, Qcrit , in order to electrically mask more errors. When a gate is hardened, it does not

just change the SER contribution of that particular gate but can also mask errors propagated

from its fan-in cone. For instance, if a gate f is hardened, and a gate f ′ ∈ f an-in( f ) is

smaller than f , then errors occurring in f ′ can also be stopped by f . Therefore, in deciding

which gates to harden, it is important also to account for the error probability of gates in

the fan-in cone. In the case of multiple faults, hardening a gate can affect the whole circuit.

For instance, if f masks certain errors, they can alter the propagation of other errors in the

fan-in of the fan-out cone of f .

We define the improvement in SER, when a subcircuit c (possibly consisting of a single
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gate) is changed to a subcircuit c′, as the impact of c with respect to the change (c,c′).

Formally, impact(c,(c,c′)) = Perr(C′
c)−Perr(Cc), i.e., the difference in the SER of the

entire circuit C when c is replaced by c′. However, this is not an efficient method for

practically identifying high-impact gates. For instance, evaluating the impact of each gate

with respect to replication takes time O(n2) for a circuit with n gates. Therefore, we

provide an approximate algorithm to assess the impact of gates. Our algorithm, given in

Figure 3.2, runs in linear time and employs a notion of the observability of one node g

relative to another node f .

relODCmask(g, f ) = ODCmask(g)&ODCmask( f )(3.1)

The algorithm works by keeping a running signature called, impactsig( f ), at each node

f , which is an indication of the faults propagated to f through paths from its fan-out cone.

In general, nodes closer to the primary outputs are more observable than those closer

to the primary inputs. However, a node g in the fan-in cone F of node f may be more

observable than f , due to fan-out in F . For the circuit in Figure 2.3, relODCmask(g,h) =

01000100&01110110) = 01000100. If Perr = p, then when including faults on h itself,

the impact of h is 5p/8+2p/8 = 7p/8. In cases where some gates have higher intrinsic-

error probabilities than others, an average value of p can be used. For gate hardening, this

measure can also be modified by weighting each node f with the width of its ELW, as in

Equation 2.8.
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approx impact(Circuit C)
{
sort topological( f ,C)
for(all gates f ∈C)

for(all g ∈ inputs( f ))
impactsig( f )|= impactsig(g)&ODCmask( f )

impactsig( f )|= relODCmask(g, f )
impact( f ) = p∗ones(impactsig( f ))/K

}

Figure 3.2: Algorithm to approximate impact.

3.3 Local Rewriting

Rewriting is a general technique that optimizes small subcircuits to obtain overall

area improvements [73]. We optimize circuits for SER and area simultaneously by us-

ing AnSER to accept or reject rewrites. This technique relies on the fact that different

irredundant circuits corresponding to the same Boolean function can exhibit different SER

characteristics. For instance, the balanced AND tree in Figure 3.3a is more error-tolerant

than the imbalanced one of Figure 3.3b, if the input vectors are distributed uniformly.

However, when P[a = 0] = 0.8, the imbalanced tree actually has lower SER. Due to this

dependence on signal probability, choosing such cases is difficult—this is precisely where

AnSER’s speed can aid in deciding between certain optimizations for a particular subcir-

cuit.

We use the implementation of rewriting reported in [1, 73], which, first, derives a

4-input cut for a selected node, defining a one-output subcircuit. Next, replacement can-

didates are looked-up in hash tables that store several alternative implementations of each

function. We rewrite 4-input subcircuits to both improve area and reliability. To ensure

global reliability improvement, we resimulate the circuit and update SER estimates. Com-
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Figure 3.3: Two different realizations of an 8-input AND.

putational efficiency is achieved through fast incremental updates by AnSER. As shown

in Figure 3.1a, the original subcircuit with three gates can be rewritten with two gates.

New nodal equivalences for the rewritten circuit can quickly be identified using structural

hashing to further reduce area.

3.4 Gate Relocation

In this section, we consider ways to enhance timing masking, rather than logic or

electrical masking. The timing-masking characteristics of a circuit can be improved by

reducing the width of gate ELWs. Gates with many different-length paths to outputs have

the largest latching windows, due to uneven path delay. Therefore, timing masking can be

improved if some fan-out paths are eliminated or if the paths are modified such that the

ELWs from the paths have greater overlap.

Embedding an SER analyzer within a placement tool or closely coupling a placement

algorithm with reliability goals is one way of tackling this problem. However, in order to

be compatible with all placement algorithms, we take a less intrusive approach, by making

local changes to pre-placed designs. Specifically, we relocate nodes within the bounding

box defined by their adjacent gates; global characteristics of the placement are maintained
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in this way.

If a gate f has two fan-out branches g and h, then ELW ( f ) can be translated by adding

or subtracting delay from the g-to- f path and the g-to-h path in such a way that the overlap

is maximized when ELW (g) and ELW (h) are merged to form ELW ( f ). The problem of

computing a locally optimal position for a gate f , i.e., an (x,y) position such that the ELWs

of its successor gates maximally overlap, is a nonlinear constrained optimization problem

that can be difficult to solve for even one gate. We conjecture that the best location is

likely to be near the center of gravity of the sources and sinks of the gate; neighboring

locations should be tried as well. We move in reverse-topological order because the latch-

ing windows of gates near primary outputs affect the latching windows of earlier gates,

but not vice versa. Our results suggest that these gate relocations can improve reliability

while maintaining delay. When interconnect delay forms a large portion of circuit delay,

we expect this technique to decrease SER even more.

Figure 3.4 illustrates an example of a gate relocation. Here, gate h is moved from

the position shown in Figure 3.4a to the position shown in Figure 3.4b such that ELW ( f )

is smaller. Recall that ELW ( f ) is computed by translating and merging ELW (g) and

ELW (h). The relocation results in the ELW (h) being translated by the new path delay

between f and h, which has greater overlap with ELW (h) when translated and merged.

3.5 Empirical Validation

We now report empirical results for the various design techniques presented in this

section. Our experiments were conducted on a 2.4 GHz AMD Athlon 4000+ workstation

with 2GB of RAM, and the algorithms were implemented in C++.
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Figure 3.4: (a) Original circuit with ELWs; (b) Modified circuit with gate h relocated to
decrease the size of ELW ( f ).

Table 3.1 shows SER and area overhead improvements obtained by SiDeR. The first

set of results is for exact implication relationships, i.e., not considering ODCs. The sec-

ond column shows the use of ODCs to increase the number of candidates. In both cases,

AND/OR gates are added based on the functional relationship satisfied. We see an average

29% improvement in SER with only 5% area overhead without ODCs. The improvements

for the ODC covers are 40% with area overhead of 13%, suggesting a greater gain per

additional unit area than the partial TMR techniques in [76], which achieve a 91% im-

provement but increase area by 104% on average.

Table 3.2 illustrates the use of AnSER to guide the local rewriting method implemen-

tated in the ABC logic-synthesis package [1]. AnSER calculates the global-SER impact of

each local change to decide whether or not to accept the change. After checking hundreds

of rewriting possibilities, those that improve SER and have limited area overhead are re-

tained. The data indicate that, on average, SER decreases by 10.7%, while area decreases

by 2.3%. For instance, for alu4, a circuit with 740 gates, we achieve 29% lower SER,
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With exact covers With approx. covers
% SER % Area % SER % Area

Circuit Area decrease increase decrease increase
cordic 84 1.7 1.2 27.3 45.2
b9 114 18.1 14.9 30.7 31.6
C432 215 37.6 14.0 38.7 14.9
C880 341 9.6 0.9 13.1 2.3
C499 432 1.0 3.2 32.2 20.6
C1908 432 5.9 9.0 32.4 24.1
C1355 536 25.3 9.0 30.7 8.6
alu4 740 55.9 0.9 55.9 1.6
i9 952 65.4 6.6 65.4 6.6
C3540 1055 31.1 2.2 49.4 3.6
dalu 1387 74.3 1.2 74.3 1.2
i10 2824 40.4 5.4 40.4 5.6
des 4252 11.4 2.9 26.7 4.4
Ave. 29.1 5.5 39.8 13.1

Table 3.1: Improvements in SER obtained by SiDeR.

while reducing area by 0.5%. Although area optimization is often thought to hurt SER,

these results show that carefully guided logic transformations can eliminate this problem.

Table 3.3 shows the results of combining SiDeR and local rewriting. In this experi-

ment, we first used SiDeR, followed by two passes of rewriting (in area-unconstrained and

area-constrained modes), to improve both area and reliability. This particular combination

of the two techniques yields 68% improvement in SER with 26% area overhead.

We evaluated our gate relocation and gate-hardening techniques on circuits from the

IWLS 2005 benchmark suite [46], with design utilization set to 70% to match recent prac-

tice in industry. Our wire and gate characterizations are based on a 65nm technology

library. We perform static timing analysis using the D2M delay metric [5] on rectilinear

steiner minimal trees (RSMTs) produced by FLUTE [25]; these designs are placed using

Capo, version 10.2 [20, 121], and relocations are legalized (i.e., gates are moved into the
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Circuits No. No. % SER % Area Time
gates rewrites decrease decrease (s)

alu4 740 13 29.3 0.5 24.5
b1 14 0 0.0 0.0 0.2
b9 114 8 6.8 0.9 0.3
C1355 536 97 1.2 9.0 37.6
C3540 1055 23 5.8 0.9 51.5
C432 215 68 5.5 1.4 12.1
C499 432 37 0.0 0.5 13.0
C880 341 7 0.2 0.0 5.4
cordic 84 5 1.2 1.2 0.5
dalu 1387 58 24.0 3.2 35.0
des 4252 282 11.2 0.1 12.3
frg2 1228 96 27.9 2.0 8.9
i10 2824 143 5.0 0.6 16.7
i9 952 83 31.4 11.7 35.3
Ave. 10.7 2.3 18.1

Table 3.2: Improvements in SER and area with local rewriting.

Circuit % SER % Area
decrease increase

alu4 95.33 55.41
b1 8.08 14.29
b9 19.88 25.44
C1355 99.49 19.40
C3540 96.02 39.72
C432 96.81 22.79
C499 86.74 14.58
C880 59.58 24.93
cordic 58.34 33.33
dalu 92.68 41.17
des 40.41 -1.69
frg2 46.42 27.85
i10 80.67 2.16
i9 78.05 49.26
Ave. 68.46 26.33

Table 3.3: Improvements in SER, by a combination of rewriting and SiDeR.
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nearest empty cells) using the legalizer provided by GSRC Bookshelf [121].

Table 3.4 shows improvements achieved by guiding gate hardening. Hardening the

top 10% of the most susceptible gates leads to an average of 43% decrease in SER. Gates

were selected using the impact measure discussed in Section 3.2. The first column of this

table shows the percentage of most-susceptible gates that were not identified using logic

masking alone. This indicates that guiding hardening with a timing masking model leads

to different gates being hardened.

% New critical SER % SER
Circuit gates (FIT) decrease
aes core 21.86 5.57E-05 40.29
spi 53.51 3.15E-05 25.43
s35932 57.03 3.80E-05 36.92
s38417 87.63 7.34E-05 40.30
tv80 33.67 1.39E-05 47.42
mem ctrl 64.54 5.80E-05 31.36
ethernet 83.51 8.28E-05 36.67
usb funct 88.96 8.70E-05 90.11
Ave. 61.34 43.56

Table 3.4: SER improvements through gate hardening.

Table 3.5 shows the results of locally relocating gates within the bounding box of

adjacent gates. We only accept changes that affect delay and SER positively. However,

the process of legalization, which moves gates into valid empty slots in the layout, can later

slightly increase delay. Our results indicate a 14% improvement at the 65nm technology

node, where average intrinsic gate delay is approximately a 100 times larger than (unit)

interconnect RC delay. The second two columns project results to smaller technology

nodes where wire delay is expected to become comparable to gate delay. Such trends are

indicated in the ITRS 2005 chapter on interconnect, which projects that at 32nm, wiring
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65nm < 45nm
Circuit %SER % Delay %SER % Delay

decrease increase decrease increase
aes core 11.83 3.00 21.15 -3.10
spi 18.87 4.8 41.62 -2.90
s35932 10.74 -0.13 44.02 3.40
s38417 10.10 1.38 14.35 -11.57
tv80 4.89 1.45 43.62 17.50
mem ctrl 7.75 1.14 78.43 -1.70
ethernet 19.07 0.43 75.17 6.04
usb funct 28.50 -5.26 14.29 -9.09
Ave. 13.97 0.55 41.59 2.10

Table 3.5: Improvements in SER, through gate relocation.

will contribute 90% of the circuit delay. The first set of results indicates a 14% decrease

in SER, while the second set shows a 41.59% decrease. Therefore, as technology scales,

timing masking can offer greater potential for improvement in SER.

3.6 Summary

We have developed several novel design techniques to improve circuit SER with low

area and performance overhead. Our techniques are based on the careful analysis of the

interplay between signal probability, observability, and masking mechanisms. The first

technique, called SiDeR, finds logical implications between signals, through signature

matching, and adds a few gates to decrease SER. In our second technique, several alternate

non-redundant realizations of the same subcircuit are assessed for global SER improve-

ment and selected based on an objective function that accounts for both SER and area.

Our third technique provides a better method for selecting gates to harden or replicate, by

accounting for errors propagating through the gate. Our fourth technique takes advantage

of improvements in timing masking, by relocating gates (post placement) to minimize their
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error latching windows. Our results generally show significant improvements in SER, at

low cost.
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CHAPTER IV

Probabilistic Transfer Matrices

Thus far, we have concentrated on soft-error analysis. Soft errors are a result of rela-

tively rare external-particle strikes or disturbances in circuit behavior. In this chapter, we

move to a more general reliability-analysis framework that treats circuits entirely proba-

bilistically. While this is useful for analyzing soft errors, it is also useful for analyzing

devices that periodically fail or behave probabilistically during regular operation. Quan-

tum dot cellular automata (QCA), where gates and wire are made from ”quantum dots”,

are examples of such devices. Each dot consists of a pair of electrons that can be config-

ured in two different ways to represent a single bit of information. In QCA, both gates and

wires are created from planar arrangements of dots. QCA have an inherent propensity for

faults because the electrons can easily be absorbed into the atmosphere or arrange them-

selves in an ambiguous configuration [62, 104]. Other examples of probabilistic devices

include probabilistic CMOS, molecular logic circuits, and quantum computers.

Historically, the probabilistic analysis of circuits has centered around signal-probability

estimation, which was motivated by random-pattern testability concerns [91], [32], [109].

In short, the probability of a signal being a 0 or 1 gives some indication of the difficulty in
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controlling (and therefore testing) the signal. In this chapter, we treat circuits probabilisti-

cally to analyze circuit reliability. As opposed to signal probability estimation, reliability

analysis deals with complex probabilistic failure modes and error propagation conditions.

In general, accurate reliability analysis involves computing not just a single output dis-

tribution but, rather, the output error probability for each input pattern. In cases where each

gate experiences input-pattern dependent errors—even if the input distribution is fixed—

simply computing the output distribution does not give the overall circuit error probability.

For instance, if an XOR gate experiences an output bit-flip error, then the output distribu-

tion is unaffected, but the wrong output is paired with each input. Therefore, we need to

separately compute the error associated with each input vector.

Consider the circuit in Figure 4.1. Given that each gate experiences an error with prob-

ability p = 0.1, the circuit’s output error probability for the input combination 000 is 0.244.

The input combination 111 leads to an output error probability of 0.205. The overall error

rate of the circuit is the sum of the error probabilities, weighted by the input combination

probabilities. The probability of error for the circuit in Figure 4.1, given the uniform input

distribution, is therefore 0.225. Note that joint probabilities of input combinations, rather

than individual input probabilities, are necessary to capture correlations among inputs.

We analyze circuit reliability and other aspects of non-deterministic behavior, using

a representation called probabilistic transfer matrix (PTM). A PTM for a gate (or a cir-

cuit) gives the probability of each output combination, conditioned upon the input com-

binations. PTMs can model gates exhibiting varying input-dependent error probabilities.

PTMs form an algebra—a set closed under specific operations—where the operations in
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question are matrix multiplication and tensor products. These operations may be used to

compute overall circuit behavior by combining gate PTMs to form circuit PTMs. Ma-

trix products capture serial connections, and tensor products capture parallel connections.

Also, PTM-based computations implicitly capture signal correlations that are caused by

fan-out. Most of the concepts and results described in this chapter also appear in [60, 61].

4.1 PTM Algebra

In this section, we describe the PTM algebra and some key operations needed to ma-

nipulate PTMs. First, we discuss the basic operations needed to describe circuits and to

compute circuit PTMs from gate PTMs. Next, we define additional operations to extract

reliability information, eliminate variables, and handle fan-out efficiently. Consider a cir-

cuit C with n inputs and m outputs. We order the inputs for the purposes of PTM represen-

tation and label them in0, . . . inn−1; similarly, the m outputs are labeled out0, . . .outm−1. The

circuit C can be represented by a 2n ×2m PTM M. The rows of M are indexed by an n-bit

vector whose values range from 000 . . .0
︸ ︷︷ ︸

n
to 111 . . .1

︸ ︷︷ ︸

n
. The row indices correspond to input

vectors, i.e. 0/1 truth assignments of the circuit’s input signals. Therefore, if i = i0i1 . . . in

is an n-bit input vector, then row M(i) gives the output probability distribution for n input

values in0 = i0, in1 = i1 . . . inn−1 = in−1. Similarly, column indices correspond to truth as-

signments of the circuit’s m output signals. If j is an m-bit vector, then entry M(i, j) is the

conditional probability that the outputs have values out0 = j0,out1 = j1 . . . outm−1 = jm−1

given input values in0 = i0, in1 = i1 . . . inn−1 = in−1, i.e, P[out puts = j|inputs = i]. There-

fore, each entry in M gives the conditional probability that a certain output combination

occurs given a certain input combination.
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(F2 ⊗F2 ⊗ I)(I⊗ swap⊗NOTp ⊗ I)(NAND2p⊗NAND2p ⊗ I)(XOR3p)

Figure 4.1: Sample logic circuit and its symbolic PTM formula.
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Figure 4.2: (a) ITM for the circuit in Figure 4.1; (b) circuit PTM, where each gate experi-
ences error with probability p = 0.01

Definition 10 Given a circuit C with n inputs and m outputs, the probabilistic transfer

matrix for C is a 2n ×2m matrix M whose entries are M(i, j) = P[out puts = j|inputs = i].

Definition 11 A fault-free circuit has a PTM called an ideal transfer matrix (ITM) in

which the correct logic value of each output occurs with probability 1.

The PTM for a circuit represents its functional behavior for all input and output com-

binations. An input vector for an n-input circuit is a row vector with dimensions 2n × 1.

Entry v(i) of an input vector v represents the probability that the input values in0 = i0, in1 =

i1 . . . inn−1 = in−1 occur. When an input vector is right-multiplied by the PTM, the result is

an output vector of size 1×2m. The output vector gives the resulting output distribution.
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4.1.1 Basic Operations

PTMs can be defined for all the gates of a logic circuit by taking into account errors

affecting the gates. A PTM for the entire circuit can then be derived from the PTMs of

the gates and their interconnections. The basic operations needed to compute the circuit

PTM from component PTMs are the matrix and tensor products. Consider the circuit C

formed by connecting two gates g1 and g2 in series, i.e., the outputs of g1 are connected

to the inputs of g2. Suppose these gates have PTMs M1 and M2; then the entry M(i, j)

of the resulting PTM M for C represents the probability that g2 produces output j, given

g1 has input i. This probability is computed by summing over all values of intermediate

signals (outputs of g1 which are also inputs of g2) for input i of g1 and output j of g2.

Therefore, each entry M(i, j) = ∑all l M1(i, l)M2(l, j) This operation corresponds to the

ordinary matrix product M1M2 of the two component PTMs.

Now suppose that circuit C is formed by two parallel gates g1 and g2 with PTMs M1 and

M2. Each entry in the resulting matrix M should represent the joint conditional probability

of a pair of input-output values from g1 and a pair of input-output values from g2. Each

such entry is therefore a product of independent conditional probabilities from M1 and M2,

respectively. These joint probabilities are given by the tensor product operation.

Definition 12 Given two matrices M1 and M2, with dimensions 2k × 2l and 2m × 2n, re-

spectively, the tensor product M = M1 ⊗M2 of M1 and M2 is a 2km × 2ln matrix whose

entries are:

M(i0 . . . ik+m−1, j0 . . . jl+n−1) = M1(i0 . . . ik−1, i0 . . . jl−1)×M2(ik . . . ik+m−1, jl . . . jl+n−1)

.
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(b)

Figure 4.3: Illustration of the tensor product operation: (a) circuit with parallel AND and
OR gates; (b) circuit ITM formed by the tensor product of the AND and OR
ITMs.

Figure 4.3 shows the tensor product of an AND ITM with an OR ITM. Note that the OR

ITM appears once for each occurrence of a 1 in the AND ITM; this is a basic feature of

the tensor product.

Besides the usual logic gates (AND, OR, NOT , etc.), it is useful to define three special

gates for circuit PTM computation. These are (i) the n-input identity gate, with ITM

denoted In; (ii) the n-output fan-out gate Fn; and (iii) the swap gate, swap. These wiring

PTMs are shown in Figure 4.1.

An n-input identity gate simply outputs its input values with probability 1. It cor-

responds to a set of independent wires or buffers and has the 2 × 2 identity matrix as

its ITM. Larger identity ITMs can be formed by the tensor product of smaller identity

ITMs. For instance, the ITM for a 2-input, 2-output identity gate is I2 = I ⊗ I. More

generally, Im+n = Im ⊗ In. An n-output fan-out gate, Fn, copies an input signal to its n
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Figure 4.4: Wiring PTMs: (a) identity gate (I) ; (b) 2-output fan-out gate (F2); (c) adjacent
swap gate (swap).
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(F2 ⊗F2 ⊗ I)(I⊗ swap⊗NOTp ⊗ I)(NAND2p⊗NAND2p ⊗ I)(XOR3p)

Figure 4.5: Circuit to illustrate PTM calculation; vertical lines separate levels of the cir-
cuit; the parenthetical subexpressions correspond to logic levels.

outputs. The ITM of a 2-output fan-out gate, shown in Figure 4.1b, has entries of the form

F2(i0, j0 j1) = 1, where i0 = j0 = j1 and all other entries are 0. Therefore, the 5-output fan-

out ITM, F5, has entries F5(0,00000) = F5(1,11111) = 1, with all other entries 0. Wire

permutations, such as crossing wires, are represented by swap gates. The ITM for an ad-

jacent wire swap (a simple two-wire crossover) is shown in Figure 4.1c. Any permutation

of wires can be modeled by a network of swap gates.

Example 5 Consider the circuit in Figure 4.5—this is the same circuit as in Figure 4.1,

with the wiring gates made explicit. The PTMs for the gates with error probability p are

as follows:
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NAND2p XOR3p NOTp

The circuit PTM is expressed symbolically by the formula in Figure 4.5. Each parenthe-

sized term in the equation corresponds to a level in the circuit. The advantage of evaluat-

ing the circuit PTM using such an expression is that the error probabilities for the entire

circuit can be extracted from it.

4.1.2 Additional Operations

In addition to the basic operations of matrix multiplication and tensor product, we

introduce the following three operations to increase the scope and efficiency of PTM-based

computation:

• fidelity: This operation measures the similarity between an ITM and a corresponding

PTM. It is used to evaluate the reliability of a circuit.

• eliminate variables: This operation computes the PTM of a subset of inputs or out-

puts, starting from a given PTM. It can also be used to compute the probability of

error of individual outputs.

• eliminate redundant variables: This operation eliminates redundant input variables

that result from tensoring matrices of gates that are in different fan-out branches of

the same signal
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We now formally define and describe these operations in more detail. First, we define

the element-wise product used in computing fidelity.

Definition 13 The element-wise product of two matrices A and B, both of dimension n×m,

is denoted A.∗B = M and defined by M(i, j) = A(i, j)×B(i, j).

To obtain the f idelity, the element-wise product of the ITM and the PTM is multiplied

on the left by the input vector, and the norm of the resulting matrix is computed. In the

definition below, ||v|| denotes the l1 norm of vector v.

Definition 14 Given a circuit C with PTM M, ITM J, and input vector v, the fidelity of M

is given by

f idelity(v,M,J) = ||v(M.∗ J)||

The fidelity of a circuit is a measure of its reliability. Figure 4.6 illustrates the f idelity

computation on the circuit from Figure 4.1. The ITM, shown in Figure 4.2a, is denoted J,

and the PTM, shown in Figure 4.2b, is denoted M.
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Figure 4.6: Matrices used to compute f idelity for the circuit in Figure 4.1: (a) input vector;
(b) result of element-wise multiplication of its ITM and PTM; (c) result of left-
multiplication by the input vector.
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Example 6 Consider the circuit C from Figure 4.1, with inputs {w,x,y} and output {z} .

The circuit PTM is calculated using the PTMs from Example 5, with probability of error

p = 0.05 at each gate, on all inputs. Figure 4.6 shows intermediate matrices needed for

this computation. The quantity f idelity(v,M,J) is found by first element-wise multiplying

J and M, then left-multiplying by an input vector v. The l1 norm of the resulting matrix is

f idelity(v,M,J)= (0.567+0.177)= 0.743. The probability of error is 1−0.743 = 0.257.

The eliminate variables operation is used to compute the ”sub-PTM” of a smaller set

of input and output variables. We formally define it for 1-variable elimination.

Definition 15 Given a PTM matrix M that represents a circuit C with inputs in0 . . . inn−1,

eliminate variables(M, ink) is the matrix M′ with n−1 input variables

in0 . . . ink−1ink+1 . . . ink+1 . . . inn−1 whose rows are

M′(i0 . . . ik−1ik+1 . . . in−2, j) = M(i0 . . . ik−1 0 ik+1 . . . in−2, j)+M(i0 . . . ik−1 1 ik+1 . . . in−2, j)

The eliminate variables operation is similarly defined for output variables. 1 The

elimination of two variables can be achieved by eliminating each of the variables individ-

ually, in arbitrary order. Figure 4.7 demonstrates the elimination of column variables from

a subcircuit C′ of the circuit in Figure 4.5, formed by the logic between inputs w,x and

outputs g,h. The PTM for C′ with probability of error p = 0.05 on all its gates is given by:

(F2 ⊗F2)(swap⊗NOTp)(NAND2p⊗NAND2p)

1The eliminate variables operation is analogous to the existential abstraction of a set of variables x in
a Boolean function f [37], given by the sum of the positive and negative cofactors of f , with respect to x:
∃x f = fx + fx. The eliminate variables operation on PTMs relies on arithmetic addition of matrix entries
instead of the Boolean disjunction of cofactors.
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Figure 4.7: Example of the eliminate variables operation: (a) ITM of subcircuit C ′ from
Figure 4.5; (b) PTM of C′; (c) Output variable h eliminated; (d) Output variable
g eliminated.

If we eliminate output h, then we can isolate the conditional probability distribution of

output g, and vice versa. Output h corresponds to the second column variable of the PTM

in Figure 4.7b. To eliminate this variable, columns with indices 00 and 01 of Figure 4.7b

are added, and the result is stored in the column 0 of the resultant matrix (Figure 4.7c).

Columns 10 and 11 of M are also added, and the result is stored in column 1 of the resultant

matrix. The final PTM gives the probability distribution of output variable g in terms of

the inputs w and x. A similar process is undertaken for elimination of g in the PTM of

Figure 4.7d. However, this time the first column variable is eliminated.

Often, parallel gates have common inputs, due to fan-out at an earlier level of logic. An

example of this appears in level L3 of Figure 4.5 due to fan-out at level L1. The fan-out gate

was introduced to handle such situations; therefore, the PTM for level L1 in Example 5 is

composed of two copies of the fan-out PTM F2 tensored with an identity PTM I. However,
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this method of handling fan-out can be computationally inefficient because it requires

numerous matrix multiplications. Therefore, in either inputs or outputs we introduce a

new operation called eliminate redundant variables to remove redundant signals that are

due to fan-out or other causes. This operation is more efficient than matrix multiplication

because it is linear in PTM size, whereas matrix multiplication is cubic.

Definition 16 Given a circuit C with n inputs in0, . . . inn−1, and PTM M, let ink and inl be

two inputs that are identified with (connected to) each other. Then

eliminate redundant variables(M, ink, inl) = M′, where M′ is a matrix with n− 1 input

variables whose rows are

M′(i1 . . . ik . . . il−1 il+1 . . . in−1, j) = M(i1 . . . ik . . . il−1 ik il+1 . . . in−1, j)

The definition of eliminate redundant variables can be extended to a set of input variables

that are redundant. Figure 4.8 shows an example of the eliminate redundant variables

operation.

PTMs yield correct output probabilities despite reconvergent fan-out because the joint

probabilities of signals on different fan-out branches are computed correctly using the

tensor product and eliminate redundant variables operations. Suppose two signals on

different fan-out branches reconverge at the same gate in a subsequent circuit level. Since

the joint probability distribution of these two signals is computed correctly, the serial com-

position of the fan-out branches with the subsequent gate is also correct, by the properties

of matrix multiplication. On the other hand, if the individual signal probabilities are com-

puted separately, then these probabilities cannot be recombined into the joint probability

without some loss of accuracy.
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Figure 4.8: Signal forwarding using eliminate redundant variables: (a) circuit with sig-
nal b fanning out to two different levels; (b) NAND⊗ I, adding b as an input
and output; (c) final ITM for circuit computed by removing rows in boldface.

The eliminate redundant variables operation can efficiently handle fan-out to differ-

ent levels by ”signal forwarding,” as seen in Figure 4.8. Signal b is required at a later level

in the circuit; therefore, b is added to the ITM as an output variable by tensoring the AND

ITM with an identity matrix. However, tensoring with the identity ITM adds both an input

and output to the level. Hence, the additional input is redundant with respect the second

input of the AND gate and is removed using eliminate redundant variables. Note that

the removed rows correspond to assigning contradictory values on identical signals.

4.1.3 Handling Correlations

There are many cases of errors where input and output values cannot be separated

and combinations of these values must be taken into account. For example, using the

eliminate variables operation, the conditional probabilities of the inputs or outputs cannot

always be stored separately in different matrices. While such storage can alleviate the

input-space explosion inherent in storing all possible combinations of inputs and outputs,

it may not capture correlations within the circuit.

Example 7 Suppose two wires have a 0.25 probability of swapping. The matrix corre-
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Figure 4.9: Example of output inseparability: (a) PTM for a probabilistic wire-swap; (b)
PTM for each individual output after applying eliminate variables; (c) incor-
rect result from tensoring two copies of the PTM from part (b) and applying
eliminate redundant variables.

sponding to this error is given in Figure 4.9a. If we try to separate the probability of each

output, using eliminate variables, the output probabilities both have the PTM of Figure

4.9b. If these outputs are tensored (with redundant inputs eliminated), they result in the er-

roneous combined matrix of Figure 4.9c. This demonstrates that these two outputs cannot

be correctly separated; their joint conditional distributions are, in fact, inseparable.

Just as some errors cannot be separated, some faults affect multiple gates simultane-

ously. In this case, the combined PTM cannot be built from individual PTMs, and the joint

probabilities must be obtained (or the exact correlation determined). This same effect can

occur with input vectors, which cannot always be separated into probabilities of individual

inputs. An example is given below.

00 01 10 11
[

0.5 0 0 0.5
]T

PTMs have the advantage that, at every level, they can represent and manipulate joint

probabilities from the inputs to the outputs. If necessary, individual output distributions

can be obtained using the eliminate variables operation.
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So far, we have introduced the PTM representations of gate and wire constructs, and

the operations needed to combine them into circuit PTMs. In the next section, we give

examples of the various kinds of faults that PTMs can capture, as well as the application

of PTMs in soft-error analysis and error-threshold computation.

4.2 Applications

In this section, we discuss applications of PTMs to various fault types as well as in

determining the error-transfer behavior of logic circuits.

4.2.1 Fault Modeling

The PTM model can represent a wide variety of faulty circuit behaviors, including

both hard and soft errors. The fact that there are separate probabilities for each input and

output, and the fact that they are propagated simultaneously make this possible. Figure

4.10 lists some errors that can be represented by PTMs.
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Figure 4.10: PTMs for various types of gate errors: (a) a fault-free ideal 2-1 MUX gate;
(b) first input signal stuck-at 1; (c) first two input signals swapped; (d) prob-
abilistic output bit-flip with p = 0.05; (e) wrong gate: MUX replaced by
3-input XOR gate.

Figure 4.10a shows the ITM for a fault-free ideal 2-1 multiplexer (MUX). Figure
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4.10b shows the first data input signal of the MUX stuck-at 1, i.e., row 000 is replaced

with row 100 of the ITM, row 010 with row 111, and so forth. Figure 4.10c shows an

example with the first two wires swapped; this is captured by permuting the rows of the

ITM, accordingly. Figure 4.10d shows the first example of a probabilistic error, an output

bit-flip where the wrong value occurs with probability p = 0.05 in each row. Figure 4.10e

shows a design error where a MUX has been replaced by an XOR gate. As these examples

indicate, PTMs can capture both gate errors and wiring errors.

PTMs can also represent errors that are likely to occur in nanoscale circuits. For in-

stance, in QCA, the wires themselves are made of ”quantum dots,” and so, like gates, wires

can experience bit-flips. Bit-flips on wires can be represented by the 1-input identity gate

I, with probabilistic errors as shown below.

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1 1−q






As mentioned in Chapter I, adjacent wires in nanoscale CMOS circuits can suffer

from crosstalk. When two adjacent wires run parallel to each other, there is capacitive

and inductive coupling, which can cause neighboring signals to erroneously switch [96].

Crosstalk can be represented by a faulty 16×2 matrix, which takes transitions rather than

signal values into account. Hence, we need circuit information for two consecutive time

units.

Consider the circuit shown in Figure 4.11. Let a0,b0, . . .y0,z0 denote signals at time

unit t0 and a1,b1, . . .y1,z1 denote the same signals at time t0. Suppose we identify f and g

as likely candidates for crosstalk faults, with f being the aggressor signal and g being the

victim. If f transitions from 0 to 1, then due to crosstalk, g also has a chance of erroneously
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Figure 4.11: Circuit to illustrate crosstalk faults.
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Figure 4.12: Representing a crosstalk error using PTMs.

transitioning similarly. This is represented by the PTM with inputs f0, f1,g0,g1 and output

g′1 which contains an erroneous transition with probability p, as shown in Figure 4.12.

While we have explicitly modeled various types of errors in conventional CMOS

nanoscale circuits, we have not modeled errors whose probabilities change dynamically.

For instance, we do not model time-varying error probabilities or errors whose probabil-

ities are described by probability-distribution functions (PDFs). However, in the future,

using PTMs it may be possible to model such cases. For instance, in order to use PTMs
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with entries formed by PDFs, the tensor and matrix multiplications operations will need

to be redefined to handle sums (convolutions) and products of probability distributions.

However, as we show in the next section, if error probabilities depend on specifically iden-

tifiable discrete variables, apart from the input variables, these too can be incorporated into

PTMs.

4.2.2 Modeling Glitch Attenuation

Thus far, signals have been described by their logic value, with each signal represented

by a 1× 2 vector that indicates the probability of it being 0 or 1. While retaining the

discreteness of our model, we now expand signal representation to incorporate necessary

electrical characteristics.

For instance, we can differentiate between signals of long and short duration just

as we differentiate between signals with high and low amplitude (by their logic value).

We can represent a signal by a vector w which has four entries instead of two, w =

[p0s p0l p1s p1l ]. The second bit of the row index represents short (“s”) or long (”l”) du-

ration, so p0s is the probability of a logic 0 with short duration. Extraneous glitches, such

as those induced by SEUs, are likely to have short duration, while driven logic signals are

likely to have relatively long duration.

Each gate in a circuit has a probability of an SEU strike that depends upon various

environmental factors, such as neutron flux and temperature. We call this the probability

of occurrence for a gate (or node) g, and denote it by poccur(g). However, SEU strikes cre-

ate glitches which can be differentiated by a combination of shape and amplitude. These

differentiations are important in the propagation of a glitch through circuit gates. There-
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fore, we utilize a modified identity matrix known as I1,n(poccur) to represent a probability

distribution on a glitch induced by an SEU strike.

We use the specific glitch-propagation model from [88] to determine which signal

characteristics to capture; a different model might require other characteristics to be repre-

sented. In [88], glitches are classified into three types, depending on their duration D, and

amplitude A, relative to the gate propagation delay Tp, and threshold voltage Vt . Glitches

are assumed to change only logic-0 to logic-1 when they strike (but can later be inverted).

• Glitches of type 1 have amplitude A > Vt and duration D > 2Tp. Glitches of this type

are propagated without attenuation.

• Glitches of type 2 have amplitude A > Vt and duration 2Tp > D > Tp. Glitches of

this type are propagated with an attenuated amplitude of A′ < A.

• Glitches of type 3 have A < Vt . Glitches of this type are not propagated, i.e., they

are electrically masked.

Since amplitude is already indicated by the logic value, we need an additional bit

to indicate whether the duration is larger or smaller than the propagation delay of the

gate (when the amplitude is higher than the threshold voltage). The duration is irrelevant

for glitches with amplitude lower than the threshold voltage, since these are likely to be

attenuated. Figure 4.13a shows the probability distribution of an SEU strike when the

correct logic value is 0. Glitches of type 1 are indicated by row labels 11, glitches of types

2 are indicated by labels 10, and glitches of type 3 are indicated by 01. In particular, Figure

4.13a assumes uniform distribution, with respect to glitches.
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Once an SEU strikes a gate and induces a glitch, the electrical characteristics of the

circuit gates determine whether the glitch is propagated. Glitches with long duration and

high energy relative to the gate propagation delay and threshold voltage are generally prop-

agated; other glitches are normally quickly attenuated. We call the probability that a glitch

is propagated pprop(g). The glitch-transfer characteristics of a logic gate are described by

a modified gate PTM that represents relevant characteristics of the glitch. For instance,

Figure 4.13b shows a modified AND PTM, denoted AND2,2(pprop).

In the selected glitch model [88], attenuation acts by transforming sensitized glitches

of type 2, with a certain probability, into glitches of type 3. All other signals retain their

original output value given by the logic function of the gate. This transfer function can be

described by the PTM of Figure 4.13b. This PTM shows an AND gate which propagates

an input glitch (only if the other input has a non-controlling value), with certainty if the

glitch is of type 1 (in which case it is indistinguishable from a driven logic value) or with

probability pprop if the glitch is of type 2.

When using 2-bit signal representations, the probability of a logic 1 value for a signal is

computed by marginalizing, or summing-out, over the second bit. For instance, if a signal

has 2-bit distribution [.2 .1 .3 .4], since the second bit indicates duration, the probability

of a logic 0 is .2+ .1 and the probability of a logic 1 is .3+ .4. Figure 4.14 shows a circuit

with the corresponding ITM and PTMs with multi-bit signal representations.

Example 8 For the circuit in Figure 4.15, suppose an SEU strike produces a glitch at

input b. By inspection, we see that this glitch will only propagate to primary output e

for the primary input combination 101. In other words, the glitch propagates if the input
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(b)

Figure 4.13: PTMs for SEU modeling where the row labels indicate input signal type: (a)
I2,2(poccur) describes a probability distribution on the energy of an SEU strike
at a gate output, (b) AND2,2(pprop) describes SEU-induced glitch propaga-
tion for a 2-input AND gate. The type-2 glitches become attenuated to type
3 with a probability 1− pprop.
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CircuitITM = (I1,2 ⊗F2,2 ⊗ I1,2)(AND2,2(pprop)⊗AND2,2(pprop))(F2,2⊗ I1,2)(I1,2⊗AND2,2(pprop))
CircuitPTM = (I1,2 ⊗F2,2 ⊗ I1,2)(AND2,2(pprop)I1,2(poccur)⊗AND2,2(pprop)I1,2(poccur))

(F2,2 ⊗ I1,2)(I1,2⊗AND2,2(pprop)I1,2(poccur))

Figure 4.14: Circuit with ITM and PTMs describing an SEU strike and the resultant prop-
agation with multi-bit signal representations.

Figure 4.15: Circuit used in Example 8 to illustrate the incorporation of electrical masking
into PTMs.

sensitizes the appropriate path to d and then e. If we let poccur = 0.001 and pprop = 0.5,

and AND2,2(pprop) is as shown in Figure 4.13, then the circuit PTM is given by:

(I2 ⊗ I2,2(poccur)⊗ I2)(AND2,2(pprop)⊗ I2)(AND2,2(pprop))

The corresponding PTM and fidelity are given in Figure 4.16.

f idelity = .99994791

Perror = 1− f idelity = .000052083

4.2.3 Error Transfer Function

In this section, we analyze circuit reliability as a function of gate reliability. Using data

points for various gate error values, we derive low-degree polynomial approximations for
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Figure 4.16: PTM for the circuit used in Example 8 which incorporates electrical proper-
ties of the gates.

the error transfer functions of standard benchmark circuits. Such functions can be used to

derive upper bounds for tolerable levels of gate error.

Definition 17 The error transfer function e(x) on 0 ≤ x ≤ 1 of a circuit C is the fidelity of

C with output-error probability x on all gates.

Figure 4.17 illustrates the error-transfer functions for several standard benchmark cir-

cuits, determined by introducing varying amounts of error into gates and then calculating

the circuit fidelity according to Definition 14. Generally, such error transfer curves can

be described by polynomials. If two gates have error p, then their composition (series,

parallel, or a combination of both) has terms that are linear combinations of p2 and p,

100



the overall probability of error O(p2). If a circuit has n gates, each with error p, then its

fidelity is a polynomial in p of degree n. Realistically, only gate error values under 0.5 are

useful since the gate can simply be viewed as its negated version for higher error values.

However, Figure 4.17 has probabilities of gate error up to 1 to make the polynomial nature

of the curves evident.
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Figure 4.17: Circuit error probability under various gate error probabilities.

Table 4.1 gives low-degree polynomials that estimate error transfer functions with high

accuracy. Such functional approximations are useful in determining the upper bounds on

gate error probability necessary to achieve acceptable levels of circuit error. For instance,

it has been shown that replication techniques such as TMR or NAND-multiplexing only

decrease circuit error if the gate error is strictly less than 0.5 [94]. However, Figure 4.17

suggests that for most circuits, replicating the entire circuit at gate errors of 0.20 or more

will only increase circuit error.
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Polynomial coefficients
Circuit Error a0 a1 a2 a3 a4 a5 a6
majority 2.5 E-7 0.2080 0.1589 0 0 0 0 0
mux 6.6 E-6 0.0019 1.9608 -2.8934 1.9278 0 0 0
parity 0.0040 0.0452 5.4892 -21.4938 31.9141 -4.2115 -30.3778 19.5795
tcon 0.0019 0.0152 6.2227 -13.5288 7.1523 9.2174 -9.0851 0
9symml 0.0010 0.0250 2.4599 -3.7485 1.5843 0 0 0
xor5 0.0043 0.0716 5.9433 -26.4666 51.1168 -44.6143 14.4246 0

Table 4.1: Polynomial approximations of circuit error transfer curves and residual errors.
The fitted polynomials are of the form e(x) ≈ a0 +a1x+a2x2 +a3x3 . . ..

4.3 Summary

In this chapter, we proposed the probabilistic transfer matrix (PTM) to capture non-

deterministic behavior in logic circuits. PTMs provide a concise description of both nor-

mal and faulty behavior and are well-suited to reliability analysis. A few simple composi-

tion rules based on connectivity can be used to recursively build larger PTMs representing

entire logic circuits from smaller gate PTMs. PTMs can accurately calculate joint output

probabilities in the presence of reconvergent fan-out and inseparable joint input distri-

butions. In addition, we defined new matrix operations to eliminate variables, remove

redundancy, and compute the overall probability of circuit error. We showed how PTMs

can be used to capture various sorts of errors inherent in nanocircuits, including soft errors.

We also used PTMs to derive polynomial approximations for circuit error probabilities in

terms of gate error probabilities for the purpose of determining thresholds of acceptable

gate error for specific circuits.
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CHAPTER V

Computing with PTMs

Circuit PTMs have exponential space complexity because they contain information

about all possible input vectors. Their complexity makes numerical computation with

PTMs impractical for circuits with more than 10-15 inputs. In order to improve scala-

bility, we develop an implementation of the PTM framework that uses algebraic decision

diagrams (ADDs) to compress matrices. We also derive several ADD algorithms to com-

bine PTMs directly in their compressed forms.

Figure 4.2 gives a PTM for the circuit in Figure 4.1 along with the corresponding ADD,

representing the case where all gates experience output bit-flips with probability p = 0.1.

As the figure shows, the same values occur multiple times in the matrix and suggest a

possibility of compression. Due to the canonicity of ADD/BDD representation, identical

subgraphs, corresponding to identical submatrices, can be identified and eliminated dur-

ing the process of ADD-construction. In some cases, ADDs contain exponentially fewer

nodes than the number of entries in the explicit matrix representation. In such cases,

linear-algebraic transformations can be applied exponentially faster to the ADD than to

the matrix.
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Developing efficient ADD algorithms for PTM operations is a significant technical

challenge that we address in this chapter. We adapt previous ADD algorithms from [8]

and [123] for tensor and matrix products. The original versions of their algorithms handle

only square matrices, while PTMs are generally rectangular. In addition, we develop ADD

algorithms for the new operations defined in Chapter IV. These operations are necessary

for computing marginal-probability distributions, reconciling dimensions, and estimating

overall circuit-error probabilities.

In the second part of this chapter, we develop several methods to further improve the

scalability of PTM-based analysis. These methods employ the following techniques: parti-

tioning and hierarchical computation, dynamic evaluation ordering, and input-vector sam-

pling. Most of the techniques and results described in this chapter also appear in [60, 61].

5.1 Compressing with Decision Diagrams

This section discusses the compression of PTMs using algebraic decision diagrams

(ADDs), and develops a procedure for computing circuit PTMs from gate PTMs.

Recall that a binary decision diagram (BDD) is a directed acyclic graph representing a

Boolean function f (x0,x1,x2, . . .xn) with root node x0. The subgraph formed by the outgo-

ing edge labeled 0 represents the negative cofactor fx′0(x1 . . .xn), or the else BDD. The sub-

graph formed by the outgoing edge labeled 1 represents the positive cofactor fx0(x1 . . .xn),

or the then BDD. Boolean constants are represented by terminal nodes.

ADDs are variants of BDDs in which terminal nodes can take on any real value. Bahar

et al. [8] present a method of encoding a matrix, using an ADD. The ADD encoding of a

matrix M is a rooted directed acyclic graph whose entries depend on the row- and column-
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index variables (r0,c0,r1,c1 . . .rn,cn) of M; branches of the ADDs correspond to portions

of the matrix. The root of the ADD is the node labeled r0. The subgraph formed by the

outgoing edge labeled 0 represents the top half of M, i.e., the half corresponding to r0 = 0.

The subgraph formed by the outgoing edge labeled 1 represents the bottom half of M,

which has r0 = 1. As in BDDs, the same path can encode several entries if variables are

skipped. The input variables are queried in a pre-defined order and facilitate reductions,

through the use of a single subgraph for identical submatrices.

We use the QuIDDPro library [123] to encode PTMs as ADDs. We also added func-

tions to this library for perform operations on PTMs. QuIDDPro includes the CUDD

library [117] and uses interleaved row and column variable ordering, which facilitates fast

tensor products and matrix multiplications—key operations in the quantum-mechanical

simulations for which QuIDDPro was designed. The basic ADD functions used in PTM

computations are as follows.

• topvar(Q) : returns the root node of an ADD Q

• then(Q) : returns the 1 branch

• else(Q) : returns the 0 branch

• ite(Q,T,E): refers to the i f -then-else operation, which takes a node Q correspond-

ing to the root and two ADDs, T and E, corresponding to the then and else branches,

and combines them into a larger ADD.

All matrix algorithms for ADDs, that we are aware of, assume square matrices but can

represent non-square matrices using zero padding [8, 26]. Zero-padding is necessary in

105



ADDs to distinguish between missing row (or column) variables and those that do not exist

because of matrix dimensions—a non-square matrix has fewer row variables than column

variables, or vice versa. Recall that ADD variables are ordered, and nodes are levelized

by decision variables. Any variable missing from the ADD can be wrongly interpreted

as marking replicated matrix entries; Figure 5.1 illustrates a situation in which missing

variables can create ambiguity.
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(a) (b)

Figure 5.1: PTMs with identical ADDs without zero-padding: (a) matrix with only one
column variable; (b) matrix without dependency on the second column vari-
able.

Figure 5.2 describes an algorithm for padding matrices with zeros. This algorithm

assumes that there are more row variables than column variables but can easily be modified

to handle cases with more column variables than row variables. Suppose a PTM with

ADD A has 2m+1 rows and 2m columns. The zero padding of A is done by introducing a

new node, q, with then(q) pointing to the original ADD and else(q) pointing to the zero

terminal. In Figure 5.2, the function shi f t col var labels, by shifting the column variable

number up to facilitate the introduction of missing variables into the ADD, renames nodes

representing column variables.

The introduction of zero padding is sufficient to implement the matrix multiplication

operation. However, the tensor products of zero-padded PTMs are generally incorrect.
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pad with zeros(Q)

{
di f f = num row vars(Q)− num col vars(Q)

shift col var labels(Q,di f f)
R = Q
for(i = 0; i < di f f ; i++)

R = add missing var(R, i)
return R

}

add missing var(Q, i)
{

ci = create new node(i)
if(topvar(Q)< ci&& then(Q)> ci)

T = ite(ci,0,else(Q))
E = ite(ci,1, then(Q))
R = ite(topvar(Q),T,E)

else
T = add missing var(then(Q), i)
E = add missing var(else(Q), i)
R = ite(topvar(Q),T,E)

return R
}

Figure 5.2: Algorithm to pad matrices with zeros.

Figure 5.3 shows an example of an ideal NOT gate tensored with an ideal zero-padded

NAND gate that yields an incorrect resultant PTM. Columns 3 and 4 of this matrix erro-

neously consist entirely of zeros carried over from the zero-padding of the NAND PTM.

To reconcile tensor products with zero-padding, we add dummy outputs to a gate PTM

to equalize the number of inputs and outputs. In order to add a dummy output to a gate

matrix, we can simply ”forward” one of its input signals to the output, as is done in Figure

4.8. Dummy outputs can be subsequently removed by eliminating the corresponding col-

umn variable. Since eliminate variables removes a variable, it may be necessary to re-pad

the matrix with zeros. In such cases, the zero-padding is restored using the algorithm given
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Figure 5.3: (a) NOT gate ITM; (b) zero-padded NAND gate ITM; (c) their tensor product
with incorrect placement of all-zero columns.

in Figure 5.2.

5.1.1 Computing Circuit PTMs

We present an algorithm for computing the ADD of a circuit’s PTM in Figure 5.4,

following the method illustrated in Example 5 of Chapter IV. First, a gate library is

specified in the form of a set of gate PTMs. The circuit (in BLIF format) is read into

a data structure that stores its individual gates and wiring structure. The gates are reverse-

topologically sorted, from primary outputs to primary inputs, and the subsequent compu-

tation proceeds by topological level. Next, the gate PTMs are converted to ADDs. The

ADDs for gates at each level are tensored together, zero-padding is performed, and finally,

the eliminate redundant variables operation is applied to eliminate dummy outputs. The

ADD representing each level, called levelADD in Figure 5.4, is multiplied with the accu-

mulated circuit ADD computed thus far, which is called circuitADD. After all levels are

multiplied together, the computation of the circuitADD is complete. An added subtlety is

that the signals of adjacent levels have to be properly aligned, i.e., the outputs of current

level have to match with the inputs of the previous level in order for the multiplication to

108



be performed correctly; this can be done by appropriately permuting the row and column

variables of the ADDs.

A detail not shown in Figure 5.4 is that when a circuit has fan-out branches to multiple

levels, the gate is placed at the first level at which it is needed, and its output is forwarded

to other levels using the method shown in Figure 4.8. The intermediate-level ADDs are

discarded after they are multiplied with the circuitADD. This is important for the scalabil-

ity of the implementation because levelADDs are the tensor products of several gate ADDs

and can have large memory complexity.

In place of fan-out gates, we use the eliminate redundant variables operation (Defini-

tion 16), whose ADD implementation is given in Figure 5.5. By removing each duplicated

(due to fan-out) input signal, the number of levels decreases and multiplications are saved.

Previously computed partial results of the eliminate redundant variables operation are

stored in a common hash table, which is searched first to avoid traversing common paths

or recomputing existing results.

In Figure 5.5, capitalized variables refer to ADDs, and lower-case variables refer to

nodes. This algorithm searches the ADD, starting from the root, for the first of two re-

dundant variables v1,v2 with v1 < v2 in the ADD node ordering. Whenever v1 is found on

a path, it traverses down then(v1) until v2 is found. It eliminates the v2 node and points

the preceding node to then(v2). Next, it traverses down else(v1) and searches for v2; this

time it eliminates v2 and points the preceding node to else(v2). This process can be re-

peated in cases where there are more redundant variables. Both eliminate variables and

eliminate redundant variables are operations that can disturb the equality between row
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struct gate

{
PTM[][]

node *ADD

DDmanager M

}

compute circuit ADD(circuit C, errors E)
{

gatemap = read into gates(C)
sort topological levels(gatemap)
add errors(gatemap,E)
for(each gate g ∈ gate map)

gatemap[g].ADD = convert to ADD(gatemap[g].PTM)

pad with zeros(gatemap[g])
for(each level l ∈ gatemap)

levelgates = order outputs by previous level inputs(l)
for(each gate h ∈ levelgates)

levelADD = tensor ADD(levelADD,h.ADD)

zero track(levelADD)

redvars = find redundant inputs(levelADD)

eliminate redundant variables(levelADD,redvars)
circuitADD = multiply ADD(circuitADD, levelADD)

delete(levelADD)
return circuitADD

}

Figure 5.4: Algorithm to compute the ADD representation of a circuit PTM. The gate
structure stores a gate’s functional information, including its PTM, input
names, output names, and ADD.

and column variables, since they both remove variables. Therefore, it may be necessary to

introduce zero-padding. (Figure 5.2).

Once the ADD for the PTM and ITM of a circuit is known, we can compute the f idelity

of the circuit to extract reliability information (see Figure 5.6). The f idelity algorithm first

takes the element-wise product of the ADD for the ITM with the ADD for the PTM, and

then performs a depth-first traversal to sum probabilities of correctness. The traversal

of the ADD sums the terminal values while keeping track of skipped nodes. A skipped
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node in an ADD is an indication that the terminal value is repeated for 2x times, where

x depends on the skipped variable’s ordering. Note that the ADD implementations of

eliminate redundant variables, f idelity, and eliminate variables run in linear time in

the size of the ADDs in their arguments.

Characteristics Reliability, p = 0.05 No. Stats., p = 0 Stats., p = 0.05
Circuit No Width Two One ADD Mem. Time Mem. Time

gates -way -way nodes (MB) (s) (MB) (s)
C17 6 5 0.846 0.880 2.00E3 1.090 0.002 0.071 0.313
mux 6 23 0.907 0.939 1.35E4 26.13 3.109 8.341 2.113
z4ml 8 20 0.670 0.817 7.01E3 6.594 1.113 3.030 0.8400
x2 12 23 0.150 0.099 2.85E4 11.015 2.344 237.9 10.52
parity 15 23 0.602 0.731 1.96E3 1.060 0.113 0.337 0.262
pcle 16 16 0.573 0.657 5.46E5 28.59 6.160 4.196E1 4.300
decod 18 13 0.000 0.000 2.76E4 30.15 1.020 5.690E2 11.80
cu 23 23 0.461 0.579 1.06E5 13.39 2.176 2.155E1 3.430
pm1 24 27 0.375 0.596 4.55E5 77.66 5.031 2.155E2 13.34
9symml 44 37 0.327 0.534 1.05E7 4445 552.7 5.341E3 696.2
xor5 47 19 0.067 0.071 4.67E4 46.72 3.539 10.556E3 19.58

Table 5.1: Statistics on various small benchmarks.

Results from the calculation of circuit ITMs, PTMs, and f idelity are listed in Table

5.1. We used the smaller LGSynth 91 and LGSynth 93 benchmarks with uniform input

distributions. These simulations were conducted on a Linux workstation with a 2GHz Pen-

tium 4 processor. In these experiments, CPU time was limited to 24 hours. The runtimes

and memory requirements are sensitive to the width of a circuit, i.e., the largest number

of signals at any level. Empirically, circuits with widths of around 40 signals can be eval-

uated. In these experiments, we calculate entire circuit PTMs, i.e., output probabilities

for all input combinations. If we separated output cones and calculated individual output

probabilities, the results would scale much further. However, as discussed before, individ-

ual output probabilities cannot always be accurately combined to obtain the overall error

probability of a circuit. The number of ADD nodes required for the f idelity computation
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eliminate redundant variables(Q,v1,v2)
{

if(isconstant(Q)) return Q
if(topvar(Q)== v1)

T = comp remove branch(then(Q),v2,1)
E = comp remove branch(else(Q),v2,0)

else
if(topvar(then(Q))≤ v1)

T = comp remove branch(then(Q),v2,1)
else

T = eliminate redundant variables(then(Q),v1,v2)
if(topvar(else(Q))≤ v1)

E = comp remove branch(else(Q),v2,0)
else

E = eliminate redundant variables(else(Q),v1,v2)
R = ite(topvar(Q),T,E)
return R

}

comp remove branch(Q,v2,const)
{

if(table lookup(Q,v2,const) ! = NULL)
return table lookup(Q,v2,const)

if(topvar(Q)== v2)
if(const == 1)return then(Q)

else return else(Q)

else if(topvar(Q) ≤ v2)
return Q

else
T = comp remove branch(then(Q),v2,const)
E = comp remove branch(else(Q),v2,const)
R = ite(topvar(Q),T,E)
table insert(R,Q,v2,const)

return R
}

Figure 5.5: Algorithm to eliminate redundant variables.

is also listed in Table 5.1, including intermediate computations.

Table 5.1 gives the overall probability of correctness for circuits with gate error proba-

bilities of 0.05 and also for one-way gate errors with probability 0.05. In CMOS gates, an

112



compute fidelity(Q1,Q2,v)
{

Q3 = apply(Q1,Q2,∗)
R = multiply ADD(v,Q3)
P = sum probs(R,1)
return P

}

sum probs(Q,mult)
{

if(table lookup(Q,mult) ! = NULL)
return table lookup(Q,mult)

sum = 0
mult∗= 2
if(isconstant(Q))

return value(Q)∗mult
if(topvar(Q)+1! = topvar(then(Q)))

multt = multt +2
sum+ = sum probs(then(Q),multt)

if(topvar(Q)+1! = topvar(else(Q)))
multe = mult +2
sum+ = sum probs(else(Q),multe)
table insert(sum,Q,mult)
return sum

}

Figure 5.6: Algorithm to compute f idelity.

erroneous output value 0 is more likely than an erroneous value 1 because SEUs typically

short-circuit power to ground. PTMs can easily encode this bias since error probabilities

can be different for different input combinations. Relevant empirical results are given in

the ”one-way” column of Table 5.1. Circuits with a high output-to-input ratio, such as

decod.blif, tend to magnify gate errors at fan-out stems and, therefore, have higher error

probabilities.

PTM computation for p = 0.05 requires more memory and longer runtime because less

compression is possible. Ideal transfer matrices have large blocks of 0s, which lend them-
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selves to greater compression. When gate PTMs with error probabilities are composed in

various ways, PTMs with a greater number of distinct entries are created, thus yielding

less compression. Compare the values in the ITM and PTM shown in Example 6. Our

results indicate that, while exact and complete circuit-PTM computation cannot be used

to evaluate industry-sized circuits, it can be used to calibrate or validate other reliability

evaluation tools.

5.2 Improving Scalability

We have presented ADD algorithms for PTM-based computation, but their scalability

appears limited due to the possibility of combinatorial explosion in PTM size. Scalability

can be improved in a variety of different ways. In this section, we cover several techniques,

starting from methods of speeding up exact-PTM computation and moving to heuristic

methods that approximate the circuit’s error probability.

In Section 5.2.1, we propose to improve the efficiency of PTM computation by pre-

scheduling an evaluation order for combining gate PTMs into circuit PTMs. While the

evaluation order does not affect the final result, it can decrease the sizes of intermediate

matrices. Good evaluation orders compute PTMs for clusters of gates with a small number

inputs and outputs in between the clusters. In effect, such an ordering would enclose fan-

out branches and reconvergences within the clusters.

In Section 5.2.2, we use exact-PTM computations for partitions in a circuit (instead of

the whole circuit) and propagate signal and error probabilities between the partitions. This

method allows exact computations to be maximally used while approximating the overall

error rate. In Section 5.2.3, we briefly discuss methods of sampling, i.e., computing the
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average error probability of a randomly generated set of input vectors to estimate the true

error probability.

5.2.1 Dynamic Evaluation Ordering

The ADD-based multiplication algorithm used in our PTM algebra implementation,

from [8], has a major impact on the efficiency of PTM computations. The worst-case time

and memory complexity of the multiplication operation is O((|A||B|)2), for two ADDs A

and B. The PTM evaluation algorithm described in Figure 5.4 first tensors gates for each

level to form level PTMs and then multiplies the level PTMs, thereby creating relatively

large multiplication instances. Smaller instances can be created by rescheduling the order

of evaluation and delaying the tensor product as long as possible.

Figure 5.7: Tree of AND gates used in Example 9 to illustrate the effect of evaluation
ordering on computational efficiency.

Example 9 Consider the tree of AND gates in Figure 5.7. Suppose we wish to compute its

circuit PTM. The algorithm of Figure 5.4 requires topologically sorting the gates, calculat-
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ing the PTM for each level, and multiplying together the levels in order. The levels are L4 =

{G15},L3 = {G14,G13},L2 = {G12,G11,G10,G9},L1 = {G8,G7,G6,G5,G4,G3,G2,G1}.

The corresponding level PTMs have dimensions 22 × 2,24,22,28 × 24, and 216 × 28, re-

spectively. We denote the Li PTM as Mi. First, we compute M3×M4, which is of dimension

24×2; next, M2 is multiplied by M3 ×M4, yielding a matrix of size 28×2; and so on. The

dimensions of the matrix product instances are as follows: (22 ×2,24 ×22),(24×2,28 ×

24),(28×2,216×28). In the worst case, when ADD sizes are close to matrix sizes (in gen-

eral, they are smaller, as ADDs provide compression), the total memory complexity of the

multiplications is 250 +234 +218. On the other hand, separating the gates (not tensoring)

for as long as possible, starting from the primary inputs, yields the matrix multiplication

instances of the following sizes: 4(24 × 22,22 × 2),2(24 × 2,22 × 2),and(28 × 2,22 × 2).

Here, the total memory complexity is only 220 +227 +242. Therefore, carefully scheduling

matrix multiplication leads to a more efficient PTM computation algorithm.

If the output of a source gate is connected to more than one sink gate, there are two

possibilities for evaluation ordering: the first is to tensor gates PTMs and eliminate the

redundant variables; the second possibility is to process gates and logic cones separately

until they need to be tensored at a different level to facilitate a multiplication. We choose

the latter approach, which exchanges multiplications for tensor products. This is advan-

tageous, as the tensor product has lower complexity than multiplication. Determining the

optimal order to multiply levels is similar to solving the matrix chain multiplication prob-

lem [27], which can be solved by a dynamic programming algorithm in O(n3) time. Our

application can use the same algorithm; the cost of multiplying two matrices is estimated
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based on their dimensions, without taking ADD compression into account.

Improved ordering Levelized ordering
Circuit Time(s) Memory(MB) Time(s) Memory(MB)
C17 0.212 0.000 1.090 0.004
mux 18.052 2.051 26.314 3.109
z4ml 3.849 1.004 6.594 1.113
x2 11.015 2.344 193.115 12.078
parity 1.060 0.113 1.07 0.133
pcle 28.810 3.309 98.586 6.160
decod 5.132 1.020 30.147 24.969
cu 23.700 2.215 13.385 2.176
pm1 72.384 3.734 77.661 5.031
cc 57.400 4.839 1434.370 155.660
9symml 89.145 6.668 4445.670 552.668
xor5 3.589 0.227 46.721 3.539
b9 9259.680 165.617 23164.900 295.984
c8 35559.500 930.023 mem-out mem-out

Table 5.2: Comparison of runtimes and memory usage for levelized ordering and ordering
computed by dynamic programming.

The results of applying the improved ordering for multiplication of levels are given

in Table 5.2. The data in this table were produced on a Pentium 4 processor running at

2GHz. In general, this ordering method uses less memory, with only a modest increase

in runtime. The runtime increase seen in Table 5.2 is partially due to the overhead of the

dynamic programming. However, this tradeoff is acceptable since memory was the main

bottleneck.

5.2.2 Hierarchical Reliability Estimation

In this section, we extend PTM analysis hierarchically to estimate the reliability of

larger circuits partitioned into subcircuits. This allows for the use of exact PTM com-

putation for smaller partitions, and provides a way of estimating the error on the entire

circuit.

117



First, the ITMs and PTMs of all subcircuits are calculated. Then, in topological order,

we calculate the fidelities and output probabilities on each subcircuit output individually.

We call the individual fidelity of an output bit its bit- f idelity. Since evaluation proceeds in

topological order, input bit- f idelities are already calculated for the previously processed

subcircuits.

In order to formally define bit-fidelity, we introduce the abstract operation for nota-

tional convenience.

Figure 5.8: Circuit used in Example 10 to illustrate hierarchical reliability estimation .

Definition 18 For a PTM M and an output variable ok, M′ = abstract(M,k) is the matrix

which results from the elimination of all variables except ok from M. Therefore, M′ =

eliminate variables(M,0,1,2 . . .k−1,k +1 . . .m)

Definition 19 The bit-fidelity of output ok of circuit C, with ITM J, PTM M, and input dis-

tribution v, is the probability of error of the kth output bit. It is given by bit f idelity(k,v,J,M) =

f idelity(vk,Jk,Mk), where Jk = abstract(J,k), Mk = abstract(M,k), and vk = abstract(v,k)
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Suppose the input bit-fidelities for the inputs of a particular subcircuit are p1, p2, p3 . . . pn.

Then, in order to account for input error, the subcircuit PTM is multiplied by Ip1⊗Ip2 . . . Ipn ,

where Ip has the form






p 1− p

1− p p




.

The probability distribution of each signal is also calculated by multiplying the input distri-

bution of each subcircuit by its ITM and then abstracting each of the output probabilities.

The algorithm details are given in Figure 5.9, where SubCircArray is the topologically

sorted array of subcircuits, PIs is the list of primary inputs, POs is the list of primary

outputs, Distro stores the separated probability distribution of intermediate variables, and

the Bfid array contains the bit-fidelities of previously processed signals. At each iteration,

Bfid is updated with output bit-fidelities of the current subcircuit. At the termination of the

algorithm, Bfid contains the bit-fidelities of the primary outputs.

This algorithm has several interesting features. First, it only calculates PTMs of sub-

circuits and, thus, avoids the state-space explosion associated with directly computing the

entire circuit’s PTM. For instance, if a circuit with n inputs and m outputs is partitioned

into two subcircuits each with n/2 inputs and m/2 outputs, the PTMs of the two subcircuits

together are of size 2(2(n+m)/2), which is significantly smaller than the circuit PTM, which

has size 2n+m. Second, the algorithm approximates joint probability distributions, using

marginal probability distributions, and averages local error probabilities at each subcircuit.

Any loss of accuracy is a result of the abstract operation and the averaging effect which oc-

curs in bit-fidelity calculations. Therefore, the estimation technique will be very accurate

in cases where there is no reconvergent fan-out between the subcircuits. In fact, the error

probabilities are exact when each output bit has the same error on all input combinations
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estimate bit fidelity(input V, circuit C)
{
topological sort(C)
for(each primary input in ∈C)

B f id[in] = 0
Distro[in] = abstract(V, in)
partition circuit(C)
for(each partition S ∈C)

J = calc itm(S)
M = calc ptm(S)
for(each input in ∈ S)
Vin[S] = tensor ADD(Vin[S],Distro[in])
Vout[S] = multiply ADD(Vin[S],J)

for(each output out ∈ S)
Distro[out] = abstract(Vout[S], j)

for(each input in ∈ S)
I′ = tensor ADD(M′,create I matrix(B f id[in]))

M′ = multiply ADD(I ′,M)

for(each output out ∈ S)
B f id[out] = bit fidelity(out,Distro[out],J,M′)

}

Figure 5.9: The Bit f idelity estimation algorithm.
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because, in such cases, averaging does not cause a loss of information. In other cases, the

accuracy will depend on the amount of correlation between signals and the variation in

signal errors.

Example 10 We apply the algorithm of Figure 5.9 to the circuit in Figure 5.8. Assume

that each of the AND gates in Figure 5.8 has the following PTM and ITM:

AND20.1 =













0.9000 0.1000

0.9000 0.1000

0.9000 0.1000

0.1000 0.9000













AND2 =













1 0

1 0

1 0

0 1













Suppose that primary inputs are uniformly distributed and have no errors. Initialize

B f id[a] = B f id[b] = B f id[c] = B f id[d] = BFid[e] = B f id[ f ] = 1 and Distro[a] = Distro[B] =

Distro[c] = Distro[e] = Distro[ f ] = [0.5 0.5]. The input vector for subcircuit 1 is given

by:

vin1 = [0.0625 0.0625 .0625 0.0625 . . .0.0625]

The PTM and ITM for subcircuit 1 are calculated as follows:

ITM1 = AND2⊗AND2

PT M1 = AND20.1 ⊗AND20.1
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ITM1 =
































1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
































PTM1 =
































0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.09 0.81 0.01 0.09
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.09 0.81 0.01 0.09
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.09 0.81 0.01 0.09
0.09 0.01 0.81 0.09
0.09 0.01 0.81 0.09
0.09 0.01 0.81 0.09
0.01 0.09 0.09 0.81
































The fidelity and probability distribution for each output of subcircuit 1 are calculated

as follows:

vout1 = vin1 ∗ ITM1 = [0.5625 0.1875 0.1875 0.0625]

Distro[g] = abstract(vin1,g) = [0.75 0.25]

Distro[h] = abstract(vin1,h) = [0.75 0.25]

PT M1′ = (I(1)⊗ I(1)⊗ I(1)⊗ I)∗PTM1 = PT M1

B f id[g] = bit f idelity(g,Distro[g],PTM1′, ITM1) = 0.9

B f id[h] = 0.9

Similarly for subcircuit 2:

IT M2 = (I ⊗AND2⊗ I)(I⊗F2 ⊗ I)(AND2⊗AND2)(AND2)

PT M2 = (I ⊗AND20.1 ⊗ I)(I⊗F2 ⊗ I)(AND20.1 ⊗AND20.1)(AND20.1)

PT M2′ = (I⊗ I0.9 ⊗ I0.9 ⊗ I)(PTM2)

vin2 = [0.5 0.5]⊗ [0.75 0.25]⊗ [0.75 0.25]⊗ [0.5 0.5]
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ITM2 =
































1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
































PTM2 =
































0.8920 0.1080
0.8856 0.1144
0.8920 0.1080
0.8856 0.1144
0.8920 0.1080
0.8856 0.1144
0.8920 0.108
0.8344 0.1656
0.8856 0.1144
0.8280 0.1720
0.8856 0.1144
0.8280 0.1720
0.8856 0.1144
0.8280 0.1720
0.8344 0.1656
0.3160 0.6840
































PTM2′ =
































0.8920 0.1080
0.8851 0.1149
0.8920 0.1080
0.8810 0.1190
0.8920 0.1080
0.8810 0.1190
0.8920 0.1080
0.8441 0.1559
0.8851 0.1149
0.8229 0.1771
0.8810 0.1190
0.7819 0.2181
0.8810 0.1190
0.7819 0.2181
0.8441 0.1559
0.4133 0.5867
































vout2 = [0.9922 0.0078]

Distro[l] = [0.9922 0.0078]

BFid[l] = bit f idelity(l,Distro[l],PTM2′, ITM2) = 0.869

Alternatively, using the circuit PTM to calculate the fidelity gives f idelity = 0.862. This

has an error of only 0.003 for gate errors in the range 0.1.

The f idelity of the entire circuit (rather than just its output bits) can be further esti-

mated by using the binomial probability distribution to calculate the probability that any

output signal has an error. This once again assumes that output signals are independent.

5.2.3 Approximation by Sampling

Reliability estimation requires computing the error associated with each input combi-

nation. Like SER analysis, reliability analysis can also be approximated by sampling input

vectors. This sampling can be done in several ways. We briefly discuss two methods of

sampling which yield estimates of the overall circuit error probability.
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The first method is to sample input and output vectors without computing circuit or

component PTMs. This method is akin to replacing the TSA/TMSA fault models of Chap-

ter II with a more general PTM-based fault model (where the error probabilities depend on

the input values) and then using the same methods of bit-parallel sampling. This provides

a link between signature-based approximate analysis and PTM-based exact analysis. The

algorithm from Figure 2.7 can be used to compute the error probability, with a slight mod-

ification. Instead of flipping bits of signatures with constant probabilities at each gate, we

can flip signatures with probabilities conditioned on the input values (as indicated by the

appropriate row of the gate PTM).

A second method of sampling involves computing the exact output distribution for

each input vector but generating the set of input vectors to sample randomly. Computing

the exact output vector for an input vector is fairly complicated in and of itself. However,

it does scale to much larger circuits than circuit PTM computation. The algorithm for

computing the output vector for a given input vector, using vector-PTM multiplication and

tensoring, is described in Chapter VI.

5.3 Summary

To improve computational efficiency, we encoded PTMs as algebraic decision dia-

grams (ADDs). We also developed equivalent ADD algorithms for our newly defined

matrix operations that can be used to compute circuit fidelity and to obtain marginal error

probabilities for subsets of outputs. We also developed methods to handle non-square ma-

trices, which were not represented as decision diagrams in past literature. In addition, we

presented several heuristic methods for improving the scalability of PTMs, including sam-
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pling, partitioning, evaluation ordering, and hierarchical computations which allow PTM

computations to scale to larger circuits.
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CHAPTER VI

Testing for Probabilistic Faults

After circuits are manufactured, it is important to insure that they do not have unusually

high sensitivity to soft errors. While the SER of a circuit can be analyzed during or after

design, the error rate can be significantly increased because of variability in the manufac-

turing process. Therefore, circuits have to be tested in order to ensure that their soft error

rates do not exceed an acceptable threshold. To estimate the expected soft error rate in the

field, chips are typically tested while exposed to intense beams of protons or neutrons, and

the resulting error rate is measured. However, these types of tests often take a long time

to conduct because random patterns may not be sensitive to vulnerabilities in the circuit.

In this section, we develop methods selecting test vectors such that test application time is

minimized.

Generating tests for probabilistic faults is fundamentally different from previous test-

ing techniques. Traditionally, the goal of testing has been to detect the presence of defects.

A set of test vectors is normally applied to the inputs of a circuit and the resultant outputs

are compared to correct pre-computed outputs to determine whether a fault is present. In

contrast, the goal of probabilistic testing is the estimation of error probability. Probabilistic
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testing requires a multiset (a set with repetitions) of test patterns, since a given fault is only

present for a fraction of the computational cycles. Another difference is that some test

vectors detect transient faults with higher probability than others due to path-dependent

effects like electrical masking. Therefore, one can consider the likelihood of detection, or

the sensitivity, of a test vector to a fault. Table 6.1 summarizes these differences.

Attribute Deterministic Testing Probabilistic Testing
Fault type Deterministic Transient or intermittent
Fault model Stuck-at, bridging, etc Probabilistic generalization
Test inputs Set of input vectors Multiset of input vectors
Coverage Faults detected with certainty Faults detected with varying probabilities
Goal Detect fault presence Estimate fault probability

Table 6.1: Key differences between deterministic and probabilistic testing.

In Section 6.1, we define and provide computation methods for test-vector sensitivity to

faults. Section 6.2 provides integer linear programming (ILP) formulations for generating

a compact set of test vectors for probabilistic faults. Most of the concepts and results in

this chapter also appear in [53, 54].

6.1 Test-Vector Sensitivity

In this section, we discuss the sensitivity of test vectors to transient faults. We be-

gin with an example and then present a PTM-based algorithm for test-vector sensitivity

computation.

Example 11 Consider the circuit in Figure 6.1. If an SEU occurs with a certain proba-

bility at input b, then the test vectors that propagate the induced error to the outputs are:

t1 = 001 (to output Y ), t2 = 100 (to output Z), and t3 = 101 (to both Y and Z).
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Figure 6.1: Circuit to illustrate test-vector sensitivity computation.

In deterministic testing, any test vector that detects a fault can be chosen. However,

error attenuation along sensitized paths affects the propagation of probabilistic faults. If

the propagation probability is pprop at each gate, then t1 has probability pt1 = p2
prop of

propagating the error to an output, t2 has probability pt2 = pprop, and t3 has probability

pt3 = pt1 + pt2 − pt1 pt2 . For a fault that occurs with probability p f , a vector ti has to be

repeated d1/(pti ∗ p f )e times for one expected detection. Therefore, test application time

will be shortest for test vector t3. Vector t3 is said to be the most sensitive to the transient

fault in question.

Since PTMs can encode a wide variety of faults, including faults with path-based

effects, test-vector sensitivity computed with PTMs can take these effects into account.

There are two ways to compute the sensitivity of a test vector. The first is by circuit-PTM

computation, which is explained in Chapter IV. Here, the gate PTMs are combined to

form a circuit PTM, and the most sensitive test vectors correspond to the PTM rows with

the lowest probability of correctness.

We can formally define the sensitivity of a test vector to faults in the circuit using

PTMs. The sensitivity of a test vector t to a multi-fault set F = { f1, f2, . . . fn} which occurs
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with probability P = {p1, p2, . . . pn} in circuit C with PTM MF and ITM M is defined as

the total probability that the output under t is erroneous, given that faults F exist with

probability P. A test vector t can be represented by the vector vt , with 0’s in all but the

index corresponding to t’s input assignments. For instance, if a test vector t assigns 0’s

to all input signals and C has 3 inputs, then vt = [1 0 0 0 0 0 0 0]. The sensitivity

of t is the probability that the ideal and faulty outputs are different, and this is computed

by taking the norm of the element-wise product (Definition 13) of the correct and faulty

output vectors. This operation is similar to the f idelity operation of Chapter IV, defined

for vectors rather than matrices.

sens(F, t) = 1−||(vtM f ).∗ (vtM)||l1(6.1)

The sensitivity of test vector

vt = [1 0 0 0 0 0 0 0]

for the circuit in Figure 6.1, with the probability of error p = 0.1, can be computed from

the circuit’s ITM M, and PTM MF , as shown in Figure 6.2. Here, both the correct and

faulty output vectors are computed and the results are compared to obtain the sensitivity.

Note that vtM f and vtM need to be marginalized if there is a multi-bit signal represen-

tation. For instance, in the case of the SEU model of Chapter IV, the second bit needs to

be summed out for both of the vectors to obtain the correct sensitivity.

The second method of sensitivity computation is through output vector computation

for a particular test vector. Here, we begin with a pre-selected complete set of test vectors

for the permanent stuck-at faults corresponding to those in F . For each test vector in this
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vt ×MF = vt ×
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sens(F, t) = 1−||[1 0 0 0].∗ [0.81 0.09 0.082 0.018]||

= 1−||[0.81 0 0 0]|| = 1− (.81) = 0.9

Figure 6.2: Sensitivity computation on the circuit of Figure 6.1.
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set, we compute the faulty output at each gate using vector-PTM multiplication through

intermediate gates. We also compute the ideal output at each gate. The ideal output is

vtM, and the faulty output vector is vtM f . The advantage of this method is that we do not

have to explicitly compute the circuit PTM and ITM, processes which are computationally

expensive. We then use Equation 6.1 to compute the sensitivity.

A caveat in output vector computation is that fan-out branches result in inseparable

probability distributions of the branch signals. If these signals are marginalized or treated

as separate, then inaccuracies can occur in the output probabilities. A simple method of

handling this problem is to jointly store the probabilities of these signals and then enlarge

any gate PTM the signals encounter. We accomplish gate enlarging by adding inputs to the

gate that pass through unchanged, i.e., tensoring the gate matrix with an identity matrix I.

The example below shows the processing, in topological order, of input vectors through the

circuit to obtain intermediate and output vectors. At each step, we compute the appropriate

joint input probability distribution for the next gate in topological order. However, due to

inseparable signal distributions, gates often have to be enlarged with identities.

Example 12 Consider the circuit in Figure 6.1. Suppose the primary input vectors are

va,vb,vc, and the 2-input AND gates have PTM AND2(p). The faulty output vector is

given by computing as follows.
vd,e = vb ×F2
enlargedAND2(p) = (AND2(p)⊗ I1)
va,d,e = (va ⊗ vd,e)
v f ,e = va,d,e × enlargedAND2(p)
v f ,g = (v f ,e ⊗ vc)× (I1 ⊗AND2(p))
vy,h,g = v f ,g × (F2 ⊗ I1)
vy,z = vy,h,g × (I1 ⊗AND2(p))
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Additionally, note that signal probabilities incorporate the effects of reconvergent fan-

out from b to z, since signals in the fan-out branch (d,g, f ,x,z) were always jointly rep-

resented and processed. However, storing joint probability distributions can be computa-

tionally expensive; therefore, in some cases a loss of accuracy may be traded in favor of

memory complexity reduction.

An algorithm for computing the output of a test vector under probabilistic faults (en-

coded in gate PTMs) is shown in Figure 6.3. The primary input values, determined by the

given test vectors, are converted into input vectors. Then, in topological order, the inputs

for each gate are tensored together to form the input vector for the gate. If any of the

input signals are stored jointly with other signals, the gate in question is enlarged by the

number of additional signals. The gate PTM is multiplied by the input vector to obtain

the output vector. In the case of a multiple-output gate such as a fan-out gate, the output

vector stays as a joint probability distribution. In practice, output distributions can become

very large, through the accumulation of correlated signals. However, the joint signals can

be separated by using the eliminate variables operation, which may entail some loss of

accuracy.

This process can be repeated with gate ITMs (or functional simulation) to obtain the

ideal output vector. Finally, test vector sensitivity is computed according to Equation 6.1,

using the f idelity algorithm of Figure 5.6 applied to the ideal and faulty primary-output

vectors. Table 6.2 shows average runtime and memory usage statistics for test vector

sensitivity computation for various input vectors on standard benchmark circuits from the

ISCAS85 suite. These simulations were conducted on a Linux workstation with an Intel
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compute faulty output(Circuit C, testvector T)
{

for(all inputs i ∈C)
vector[i] = create row vector(T [i])
insert fanout gates(C)
sort topological(C)
for(each node g ∈C)

for(each input j ∈ inputs(g))
inputvector[g] = inputvector[g]⊗PTM[ j]
enlarge(g,size( j)−1)

out putvector[g] = inputvector[g]×PTM[g]
for(each outputs o ∈ out puts(g))

vector[o] = out putvector[g]
}

Figure 6.3: Algorithm for output-vector computation.

Xeon CPU 2.0GHz processor and cache size 512 KB. Here, the faulty circuit consisted of

gates with output bit-flip probabilities of 0.05.

Circuit Characteristics Ideal circuits Erroneous Circuits
Inputs Outputs Gates Time (s) Memory (MB) Time (s) Memory (MB)

C432 36 7 160 0.28 0.7 0.73 0.8
C499 41 32 202 0.30 0.2 0.36 1.2
C880 60 26 383 0.47 0.4 52.50 124.0
C1355 41 32 546 1.44 0.1 0.22 0.6
C1908 33 25 880 0.76 1.1 11.70 42.2
C3540 50 22 1669 1.48 2.2 131.50 547.1
C6288 32 32 2416 2.12 3.3 50.90 44.8

Table 6.2: Runtime and memory usage for sensitivity computation for benchmark circuits.
Faulty gates all have error probability 0.05 for all inputs.

6.2 Test Generation

Next, we use the test-vector sensitivity information computed in the previous section

to generate compact multisets of test vectors for transient-fault detection. Test-set com-

paction is closely related to the standard SET COVER problem [49]. In the set cover prob-
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lem, elements of a set S are covered by subsets {t1, t2, . . .tn}. A minimal set of subsets

is chosen such that every member of S belongs to least one of the chosen subsets. In the

context of test generation, the set S consists of all possible faults and each test vector ti

represents a subset of faults, namely the subset of faults that it detects. In the context of

testing for soft errors, tests may have to be repeated to increase the probability of fault

detection and therefore multisets of tests are selected.

This connection between the SET COVER and test compaction allows us to modify

algorithms designed for SET COVER and introduce related ILP formulations whose LP

relaxations can be solved in polynomial time. Furthermore, modifying the test-multiset

objective simply amounts to altering the ILP objective function. We first describe the case

of a single fault in a circuit and then extend our argument to two multiple error assumptions

often used in the literature. Then, we give algorithms for multiset test generation with the

goal of high probabilities of fault detection and resolution.

Suppose a single fault f in a circuit C has an estimated probability p of occurrence.

We confirm its probability as follows:

1. Derive a test vector t with high sensitivity sens( f , t).

2. Apply t to C k = b1/sens( f , t)c times for one expected detection.

3. If we have d( f ) � 1 detections, we can conclude that the actual probability of f

is higher and reject the estimated probability. We can estimate the probability that

there are d( f ) detections in k trials using the binomial theorem. If the probability of

d( f ) detections is low, then it is likely that the actual sensitivity sens( f , t) is higher

than the estimate.

134



4. If sens( f , t) is higher than estimated, we can update our estimate and repeat this

process.

In order to extend the above method to multiple faults, we consider two fault cases:

• Assumption 1: There are several probabilistic faults, yet the circuit experiences only

a single fault in any given clock cycle. This is the standard single-error assumption,

which is justified by the rarity of particle strikes.

• Assumption 2: Each circuit component (gate) has an independent fault probability,

i.e., multiple faults at different locations can occur in the same clock cycle. This

assumption is applicable to nano-technologies where random device behavior can

lead to multiple faults in different locations of the circuit. Here, the probability of

two faults is given by the product of individual fault probabilities.

Our goal in either case is to pick a multiset of vectors T ′ taken from T = {t1, t2, . . .tm}

such that |T ′| is minimal. Recall that each test vector ti represents a subset of F , i.e., each

test vector detects a subset of faults. Under Assumption 1, we minimize the size of the

multiset by using test vectors that are either especially sensitive to one fault or somewhat

sensitive to many faults. Therefore, to obtain a detection probability of pth we need n tests,

where n satisfies (1− p)n ≤ 1− pth. Figure 6.4 gives the greedy algorithm for generating

such a multiset of test vectors, starting from a compacted set of test vectors.

Intuitively, compacted test sets are likely to contain many sensitive test vectors since

each test vector must detect multiple faults. However, better results can be obtained if we

start with a larger set of test vectors, such as the union of different compact test sets. The
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set UF used in the algorithm stores the uncovered faults in any iteration, i.e., faults not

detected with a probability of pth. As before, T is the set of tests {t1, t2 . . .tn}, and F is the

set of faults.

select test multiset(faults F, tests T, prob pth)
{
UF = F
while(!isempty(UF))

T max = find maximal test(UF,T, pth)
add selected test(ST,T max)
UF = remove new covered(UF,ST, pth)

return ST
}

remove new covered(faults UF, test ST, prob pth)
{

for(each fault f ∈UF)
for(each test t ∈ ST)
Pdet+ = ∏i(1− sens( f , t))
if(1−Pdet = pth)
remove fault(UF, f)

return UF
}

Figure 6.4: Greedy algorithm for minimizing the number of test vectors (with repetition)
required for fault detection.

Kleinberg and Tardos [49] prove that a similar algorithm for the SET COVER algorithm

produces covers that have size within O(log(|testmultiset|)) of the minimal size. Note the

runtime is lower-bounded by the size of the multiset, as this is the number of iterations

through the while loop.

Our ILP problem for minimal test multiset generation is shown in Figure 6.5a. The

challenge in adapting the ILP solution algorithms for SET COVER or SET MULTICOVER is

that there is no notion of a probabilistic cover. In our case, each test detects each fault with

a different probability, sens( f j, ti). If we were to require a minimum detection probability
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Minimize ∑m
i=0 xi

subject to:

∀ j,(∑0
i=1 xi × sens( f j, ti)) ≥ n

∀i,xi ≥ 0, xi is an integer

Minimize ∑n
j=0 ∑m

i=0 xi × sens( f j, ti)
subject to:

∀ j,(∑m
i=1 xi × sens( f j, ti)) ≥ n

∀i,xi ≥ 0, xi is an integer

(a) (b)

Figure 6.5: ILP formulations for test-set generation for a fixed number of expected detec-
tions: (a) to minimize the number of test vectors required (b) to maximize fault
resolution (minimize overlap).

pth, as in Figure 6.4, the constraint that for all f j, ∏ j(1− sens( fi, t j)) < 1− pth would not

be linear. We therefore alter this constraint and linearize it by observing that the number

of repetitions of each test ti is an independent identically distributed binomial random

variable for each fault f j. Therefore, if a test is repeated xi times, the expected number of

detections for a fault f j is xi × sens( f j, ti), i.e., the expected value of a binomial random

variable with parameters (xi,sens( f j, ti)). Since the expectation is linear, we can add the

contributions of all test vectors for each fault f j as ∑i(xi × sens( f j, ti)), leading to the

constraint in Line 3 of Figure 6.5a. It can be shown that this ILP formulation reduces to

MULTISET-MULTICOVER, a variant of the set-cover problem previously discussed. The

LP-relaxation, along with randomized rounding, gives a solution of this problem, which is

within a log factor of optimal [122]. In randomized rounding, each xi is rounded up, with

a probability equal to the fractional part of xi.

Assumption 2 generalizes the single-fault case we described above. We can treat the

set of faults as a single fault with multiple locations and introduce fault probabilities into

all gate PTMs simultaneously; we denote this fault F ′. Then, we can simply pick the test

vector t that is most sensitive to the combination of simultaneous faults, using methods

from the previous section. We can repeat t a total of k/sens(F ′, t) times for k expected
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detections. In Table 6.3, we consider a situation in which each gate in the circuit has a

small probability of error p = 10−5. The difference in the number of repetitions needed

between a random vector and the most sensitive test vector is 53.3%, on average. This

implies a proportional decrease in test application time.

Circuit Ave. No. Max No. % improvement
sensitivity repetitions sensitivity repetitions

9symml 3.99E-5 2.51E+4 7.99E-5 1.25E+4 50.0
alu4 5.78E-4 1.73e+03 1.82E-3 549 68.2
i1 6.65E-5 1.50e+04 9.99E-5 1.00e+04 33.4
b9 7.70E-5 1.30e+04 1.10E-4 9.09e+03 30.0

C880 5.38E-4 1.86e+03 9.39E-4 1.07e+03 42.7
C1355 1.03E-3 970 1.27E-2 78 91.8
C499 2.76E-4 3.62e+03 1.27E-3 787 78.27

x2 3.39E-5 2.95e+04 4.99E-5 2.00e+04 32.1
Ave. 53.3

Table 6.3: Number of repetitions required using random vectors versus maximally sensi-
tive test vectors.

In addition, we can diagnose the probabilistic faults under Assumption 1. In other

words, we can select test vectors such that ambiguity about which fault is detected is

minimized. For this purpose, we modify the objective to that of Figure 6.5b. Intuitively,

once the required detection probability is achieved, we minimize the total number of extra

detections. This is equivalent to minimizing the overlap in the subsets represented by the

test vectors. In contrast to the previous formulation, this problem is related to MULTISET

EXACT MULTICOVER, and the approximation is also within a log factor of optimal.

In practice, the number of test vectors needed is often quite small because testers are

likely to be primarily concerned with the faults that occur the most. The number of repe-

titions of a test vector for n expected detections is n/p f , where p f is the fault probability.

Therefore, the multiset size decreases with the expected fault probability.
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Additionally, if application time is limited, we can select test vectors to maximize the

expected detection rate. Here, we use a binary search for the largest value of n which can

be achieved with m test vectors. Since the program in Figure 6.5a attempts to minimize

the number of test sets selected, it also maximizes the number of faults covered by each

test.

In summary, test generation for probabilistic faults requires the following steps:

• Generate a set of tests T for the corresponding deterministic faults in F .

• Evaluate the sensitivity of each test in T , with respect to each fault in F .

• Execute the greedy algorithm in Figure 6.4 or solve the ILP shown in Figure 6.5.

Table 6.4 shows the number of test vectors required to detect probabilistic stuck-at

faults using the method of Figure 6.4, and assuming probability p f = 0.05. These results

show that our algorithm requires 53−64% fewer test vectors than random selection, even

with a small complete test vector set (generated by ATALANTA) used as a base set.

pth = .05 pth = .75 pth = .85 pth = .95 pth = .99
Circuit Rand Our Rand Our Rand Our Rand Our Rand Our
c6288 377 56 782 112 1034 148 1266 236 1998 360
c432 731 462 1415 924 1771 1221 2696 1947 3797 2970
c499 1643 518 2723 1036 3085 1369 4448 2183 8157 3330
c3540 907 411 1665 817 2256 1078 3589 1716 4975 2615
c5315 2669 854 4691 1708 6531 2557 8961 3599 13359 5490
c7552 3729 1680 6824 3364 8352 4445 12210 7082 18314 10805
c2670 3650 884 5699 1770 7755 2339 11104 3729 15961 5682
% improv. 64.5 59.7 57.26 53.71 53.05

Table 6.4: Number of test vectors required to detect input signal faults with various thresh-
old probabilities pth. Rand is the average number of test vectors selected during
random test generation.
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Once a multiset of test vectors is generated, the actual probability of error can be

estimated using Bayesian learning. This well-established AI technique uses observation

(data) and prior domain knowledge to predict future events [29]. In our case, the prior

domain knowledge is the expected or modeled fault probabilities in a circuit, and the data

comes from testing.

6.3 Summary

Probabilistic faults, like SEUs, require a reformulation of test-generation methods to

account for faults occurring with varying probabilities and for test vectors detecting faults

with varying probabilities. The same fault can be detected by several test vectors, each of

which has its own detection probability or sensitivity with respect to the fault. We called

this probability the sensitivity of a test vector to a fault. We showed that test vector sen-

sitivity can be computed by an efficient PTM-based algorithm. We also proposed several

test generation and compaction methods for probabilistic faults, with the goals of bound-

ing and estimating fault detection probabilities. These methods use ILP to optimize test

sets. Results show that our methods can generate tests quickly and require only half as

many (repeated) vectors as random pattern testing.
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CHAPTER VII

Conclusions

In this dissertation, we have performed in-depth analysis of non-deterministic behav-

ior in logic circuits, behavior that is due to soft faults and inherent device unreliability.

Unlike memories, logic circuits experience several masking mechanisms that can stop the

propagation of soft errors. Estimating the circuit soft-error rate (SER) involves carefully

analyzing the logical, electrical, and timing masking properties of the design. Beyond soft

errors, we analyzed general stochastic behavior in digital circuits. When components in a

circuit (gates, at the logic level) behave probabilistically, their effects interact in complex

ways and determine overall circuit behavior.

A major computational problem in SER and reliability analysis is the input-vector de-

pendence of the error probability. For a circuit with N inputs, there are 2N input vectors

to consider. In the case of SER estimation, different input vectors can lead to different

logically viable paths for error propagation and to different masking conditions. In the

case of probabilistic circuits, different input vectors trigger different failure probabilities

in gates, which accumulate into different overall probabilities of error. Our SER analyzer,

AnSER, and our PTM-based reliability analysis methods offered two different solutions to
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this problem. The first solution involved analyzing SER on a random sample of input vec-

tors. Unlike previous methods, which use fault simulation on a vector-by-vector basis, we

related the SER to testability measures, like observability and signal probability in logic,

and determined these by sampling. Our second solution involved completely enumerating

input vectors, using a PTM-based representation of probabilistic circuit behavior.

Our analysis led us to design techniques that improve SER by enhancing error mask-

ing. An accurate SER analyzer can simply be used as a black box to approve or reject

circuit optimizations. However, our SER analyzer can do more than black-box analysis.

Observability and node functionality computations done during SER analysis allow us to

identify circuit flexibility and inherent redundancy, which can be used to bolster the re-

liability of the circuit. Further, error-latching window computations can guide physical

design changes to improve timing masking, in addition to logic masking.

We also presented methods to test circuits for probabilistic faults, which can be applied

to SER testing. SER testing is normally done by irradiating devices with neutron or α-

particle sources. We improve on such methods by generating test vectors that maximally

sensitize high-impact faults in the design. This is akin to test acceleration by pattern

selection rather than irradiation. This type of acceleration can be useful in the field testing

of devices to determine the SER in normal operating conditions rather than under heavy,

artificially induced radiation. Our main contributions are listed and explained in Section

7.1. We discuss directions for future work in Section 7.2.

7.1 Summary of Contributions

The main contributions of this dissertation are as follows:
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• A functional-simulation signature-based SER analyzer for logic circuits, known as

AnSER.

• Several logic synthesis techniques that improve the SER of a design, with low area

and performance overhead.

• The development of probabilistic-transfer matrix (PTM) algebra into a useful com-

putational technique for CAD.

• A reliability analyzer that uses a PTM-based framework to model logic circuits.

• Test-generation methods for probabilistic faults, with the goal of estimating fault

probabilities.

AnSER uses functional-simulation signatures to analyze the SER of logic designs.

Simulation signatures are generated by randomly sampling input vectors from a given

distribution and propagating resultant logic values throughout the circuit. Observability

don’t cares (ODCs) are also computed for each node by flipping bits of the signature and

propagating changes. Together, signatures and ODCs can be used to estimate testability

measures that directly relate to the SER of a circuit. We also incorporated the effects of

timing masking with STA-like algorithms to determine the error-latching windows of gates

in a circuit. The fraction of the cycle within the error-latching window is a measure of the

timing masking capability of the circuit.

We proposed several novel techniques for SER-aware design. Our first technique is

known as Signature-based Design for Reliability (SiDeR). Here, signature-comparison is

used to identify partial redundancy in circuits. Partially redundant nodes can increase
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logic masking with the addition of a small number of gates. Our second technique is

known as local rewriting. Here, we generate various alternative, non-redundant topologies

for sub-circuits and choose among them for maximal reliability. Third, we propose a

technique that targets timing masking instead of logic masking, through a post-placement

gate-relocation technique that decreases the size of error-latching windows for critical

gates.

We developed a matrix-based algebraic framework, known as the PTM framework, to

model stochastic behavior in logic gates. We also introduced several matrix operations that

are required for reliability analysis. To improve scalability, PTMs were compressed into

algebraic decision diagrams (ADDs). Matrix operations were directly applied to the com-

pressed ADD representations of PTMs. We also presented several heuristics that improve

the scalability of the PTM model, including hierarchical computation and input vector

sampling.

Finally, we presented a method for testing circuits for multiple probabilistic faults.

Using PTMs, we showed how to identify test vectors that are highly affected by errors in

the circuit. Then, we select a multiset of test vectors to generate tests optimized, through

ILP-based optimization, for the goals of maximizing fault-detection and fault-resolution

probabilities. In the next section, we discuss future directions and possible extensions of

our work, so as to meet further challenges in design, analysis and test.

7.2 Directions for Future Work

There are several ways to extend our work to accommodate emerging concerns in cir-

cuit reliability. First, we propose to continue tackling the central problem of improving the
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scalability of exact reliability computations, using edge-valued decision diagrams. Next,

we propose to improve the SER of sequential circuits by taking advantage of the increased

resynthesis opportunities available. Third, we discuss possible methods of improving SER

estimates, by accounting for process variations. Finally, we discuss the possibility of us-

ing our probabilistic circuit analysis methods to make design decisions in future device

technologies such as QCA and CNTs.

7.2.1 Scalability of PTM-Based Analysis

By enumerating all possible input combinations, PTMs can be used to analyze the error

probability of a circuit dependent upon gate-error probabilities. However, their scalability

is limited by the exponentially many input vectors that are possible. In Chapter V, we

combated this problem by compressing PTMs using ADDs. ADDs are multi-terminal

decision diagrams with nodes deciding on matrix row and column variables and terminals

encoding real values (probabilities, in the case of PTMs). However, ADDs only recognize

structure in the form of identical matrix entries. The size of an ADD can explode if there

are many different matrix entries.

Large circuit matrices are constructed by tensoring smaller matrices and eliminating

(summing out) common variables. While computing the tensor product of two matrices,

pairs of entries, one from each operand, are multiplied together to generate entries in

the resultant matrix. Therefore, entries in the resultant matrix can have several common

multiplicative factors. One may be able to achieve further compression if each matrix entry

is represented as a product of a smaller set of factors. To capture these types of products,

we can use an alternative data structure calleda binary moment diagram (BMD) [18].
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In a BMD, every edge is labeled with a real value; intermediate nodes and terminal

nodes can have real values associated with them. A path in a BMD encodes an input-

output pair whose value is given by the product of edge-values along the path. Hence, the

tensor product of a set of gate matrices amounts to a chaining of the BMDs. The BMD

chain avoids the flattening associated with constructing tensor-product ADDs. We believe

that BMDs and operations on BMDs should be explored further to improve scaling of exact

PTM-based computations. Even if only heuristic methods of error-rate computations are

used, it is important to have exact methods against which the heuristic methods can be

validated, for reasonably sized circuits.

7.2.2 SER-aware Design of Sequential Circuits

We improved the SER of combinational circuits with the SiDeR technique. However,

there may be more opportunities for resynthesis in sequential circuits. For instance, unlike

combinational circuits, whose inputs can take on any value, certain states (flip-flop values)

can be proven unreachable. Such states can serve as additional don’t-cares when searching

for implication or equivalence relations between nodes.

Case et al. [21] recently showed that an average of 10% more nodal equivalences can

be found by using sequential reachability and sequential observability. These additional

equivalent nodes can be used to mask errors, as in SiDeR, through the addition of AND/OR

gates. It is likely that the additional number of related signals we find for improving SER

will be higher than 10%, since our SiDeR method does not require nodes to be equivalent.

Flip-flops are an additional target for errors in a sequential circuit. Protecting flip-

flops from soft errors is vital because latched soft errors cannot be eliminated by electrical
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or timing masking. Several techniques have been proposed to harden latches [101] or

add extra logic to protect latches [131]. However, these techniques tend to incur high

area overhead. We propose to use retiming to enhance logic masking without high area

overhead.

Retiming refers to the process of relocating flip-flops, usually to minimize the area or

the clock period in a given circuit [64]. The minimum-area and minimum-period retiming

problems can both be formulated as linear programs (LPs) and solved using the simplex

method. Therefore, exact optima are achievable using retiming. The idea of SER-aware

retiming is to stop error propagation from latches to any primary outputs by relocating

latches to regions of low observability. Recall that sequential observability is calculated

by transforming latches into buffers and expanding the circuit by several time frames. In

this context, the signatures and ODC masks of the buffers corresponding to latches can be

computed in the same way as any other gate. Therefore, existing retiming formulations

can be modified to jointly optimize for either period and SER or area and SER.

7.2.3 Impact of Process Variations on Soft Errors

There are three main sources of variation in transistor behavior that result from the

difficulty of controlling parameters during manufacture. These are 1) dopant fluctuations,

2) gate length and wire width variations, and 3) varying heat flux across the chip [16].

First, the number of dopant atoms in the channel of a transistor decreases quadratically

with transistor size. For instance, at the 1um technology node, transistors have thousands

of dopant atoms [15]. In the 32nm technology node they only have tens of dopant atoms.

Since the dopant level determines the threshold voltage Vt , even a few extra or missing
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dopant atoms can cause Vt to vary widely. Second, sub-wavelength lithography causes

variations in gate length and wire width. Transistors at the 65nm technology node are

being manufactured with a 157nm lithography wavelength, causing variations of up to

30% [16]. Variations in wire widths normally increase delay, but variations in channel

width can also change the Vt . Third, changes in the switching activity of a chip can cause

varying heat flux and “hot spots” in certain areas of the chip. These hot spots can lead to

sudden drops in power-supply voltage.

While process variations have been analyzed for statistical timing analysis, there has

been little effort in analyzing the impact of these variations on SER. In particular, changes

in Vt alter SEU propagation in several ways. If Vt is increased, fewer SEUs will propagate,

regardless of the cause [28]. If the lower dopant level causes higher Vt , it can sometimes

lead to a higher rate of SEU occurrence (though lower rate of propagation), because of

increased charge-collection efficiency for particle strikes. If the gate length is increased,

then this exposes more area for particles to strike, causing more SEUs [112]. These effects

often counterbalance each other—although not perfectly. Therefore, it becomes important

to model these effects probabilistically in the context of SER. Also, delay variability, es-

pecially due to dynamic changes in heat flux, can cause differences in timing masking.

The results of statistical-timing analysis must be translated into timing masking in order

to accurately estimate the SER.

Interestingly, it may be possible to use accelerated-SER tests to actually determine the

static process parameters (such as Vt and gate length) of a circuit. Since variations can

directly affect the SER, irradiated chips can be used to induce changes in SER that reflect
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the process parameters. Then, a fault resolution method like that in Chapter VI, may be

able to pinpoint locations with anomalous behavior.

7.2.4 Probabilistic Analysis of New Technologies

In our work, we have analyzed circuits probabilistically, without making assumptions

about the actual device technology. However, more specific types of analysis can be carried

out for particular technologies such as QCA and CNTs.

One unique aspect of QCA is that both wires and gates are constructed from quantum

dots. Different arrangements of quantum dots can yield different Boolean functions or

equivalent functions with different fault-tolerance properties. Therefore, layout, function-

ality, and reliability are intimately linked in QCA design. Generally, QCA are designed

modularly, with fixed tile sizes and basic gates. The SQUARES design paradigm [11]

proposes 5×5 tiles; others have proposed 3×3 tiles, orthogonal tiles, etc. Universal gates

can be synthesized in various ways from these tiles. Generally, the MAJORITY gate, the

NAND-NOR-INVERTER gate, or the AND-OR-INVERTER gate are used as universal

gates [110]. Due to the high propensity for error in QCA, each of these structures can

be analyzed and selected for its error tolerance. Dysart et al. [30] have already adopted

our PTM framework to analyze the reliability of adders and other small QCA modules.

However, the analysis can be carried much further to analyze layouts, wire shapes, and

possible gate libraries.

CNT circuits are also generally constructed as regular arrays of gates. The crossbar ar-

chitecture has often been considered in literature. However, recently, other combinational

logic blocks have been studied, including multi-valued logic gates, single-transistor XOR
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gates, etc. [66]. Multi-valued gates are realized by varying the diameter of the nanotube

to change the threshold voltage [105]. Circuits constructed from such gates need built-

in fault tolerance to sustain reliable operation. The optimal number of logic values and

acceptable levels of SER can be determined by either AnSER or PTM-based analysis.

In closing, we have presented methods for analyzing, designing, and testing circuits

that are subject to non-deterministic effects. We hope that our work provides insights and

stimulates future research. Research in this area will be vital to enabling advancements in

device technology and improving IC performance.
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