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Abstract. Isketch an application of a semantically anti-realist understanding of the
classical sequent calculus to the topic of mathematics. The result is a semantically
anti-realist defence of a kind of mathematical realism. In the paper, I begin the
development of the view and compare it to orthodox positions in the philosophy of
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My aim in this paper is to apply a semantically anti-realist under-
standing of (classical) logical consequence, and to then use the change of
perspective from the semantically realist concern of truth-in-a-model to
the semantically anti-realist analysis in terms of propriety-of-assertion
(or denial) as a position from which to view the philosophy of mathe-
matics. The result is not so much a new position in the metaphysics
or epistemology of mathematics, but instead a fresh perspective on
traditional positions.

Let us start with logical consequence.

1. Logic

The relationship between logic and mathematics is remarkably close.
The rise of classical logic, in the work of Frege, Russell, Godel and
Tarski, arose not so much from a desire to give a uniform account of
judgement, to treat problems of quantification in natural languages, to
treat vagueness — target was mathematics. From the development of
the calculus and its rigorisation, to the paradoxes of set theory, the
aim was to clarify, to make explicit the forms of deduction valid in
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2 Greg Restall

mathematical reasoningﬂ How we think of mathematics and how we
think of logic are intertwined. In this paper, a refigured view of logic
will bring along with it a reconfigured position in the philosophy of
mathematics.

1.1. LoGIC WITHOUT VOCABULARY

The logic of Frege, Russell, Godel and Tarski is deductive logic, it is not
only deductive logic, it is classical deductive logic. Our task here will
not be to define a new relation of logical consequence, but to picture
this relation in a distinctive way. We will reframe the central notion
of logical consequence in terms of coherence. Coherence is a normative
notion, making explicit a particular kind of mistake that one can make,
or can avoid making, in a discourse.

The motivation, which will suffice to introduce the concept, is that
coherence is a kind of virtue that a position in a discourse might have.
A position — involving a collection of assertions and denials — is co-
herent when those assertions and denials hang together, when they are
consistent. However, we will not think of coherence as defined in terms
of possible truth or truth-in-an-interpretation. Instead, we will consider
the upshot of taking coherence as a starting point for our analysis, as
opposed to a notion defined in other terms.

Taking coherence as a starting point does not mean that there is nothing
more we can say about it. On the contrary, it can be argued that co-
herence must satisfy certain criteria: there are norms of coherence [22].

NORMS: The norms are straightforward to state, given some individu-
ation of the content of the assertions and denials of the discourse in
question. We will call a collection of assertions and denials a POSITION.
A position [I" : A] is a pair of (finite) sets, I' of things asserted and A of
things denied. Positions are evaluated for coherence. Such an evaluation
must satisfy the following three conditions:

IDENTITY: [A : A] is not coherent.
WEAKENING: If [T, A : A] or [T : A, A] is coherent, then is [T’ : A]
coherent too.

STRENGTHENING: If [I' : A] is coherent, then either [I', A : A] or [I" :
A, A] is coherent too.

There are many different relations satisfying these norms. Perhaps the
coherence relation on our target vocabulary is the smallest relation

! For an enlightening historical account of the development of the mathematical
sciences and logic, along with with the rise of the “Semantic Tradition,” see Coffa’s
The Semantic Tradition from Kant to Carnap [5].
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Anti-Realist Logic, Realist Mathematics 3

satisfying these conditions (the propositional contents are totally in-
dependent of one another; think of atomic statements in some formal
language), or the relation is richer than this (think of the content of
judgements in some particular language; we may say that the position
[this is red : this is coloured] is incoherent).

THESE NORMS ARE SUFFICIENT FOR LOGICAL CONSEQUENCE If we
take a discourse to be governed by a coherence relation satisfying these
norms, then we thereby may evaluate it with respect to deductive va-
lidity. A logical consequence relation is definable in terms of coherence.
For example, if we take a position [[' : A, A] to be incoherent then,
given that an agent has asserted (implicitly or explicitly) I" and denied
(implicitly or explicitly) A and is coherent, then the only coherent
option available concerning A is to assert it. Once the question has
come up, its answer is implicit. A is now undeniable, it follows from
what has already been said. A kind of consequence is implicit in the
notion of coherence.

THESE NORMS ARE NECESSARY FOR LOGICAL CONSEQUENCE We can
make the connection in the other direction too. Consider the kind of
grip a deductive argument from A to B ought have on a discourse. It
is too much to think that an assertion of A need be followed by an
assertion of B, or that anyone who accepts A must accept B. What
we require is that the assertion of A is not to be combined with the
denial of B — that a position in which A is asserted and B is denied is
defective.

So, suppose that we take an argument from premises to a conclusiorﬂ
to have the normative force of rendering ‘defective’ a position in which
the premises are asserted and the conclusion denied in this sense.

What should count as denial, and how is it to be related to assertion?
At the very least, the denial of a propositional content together with
its assertion must count as defective in this salient sense, since the
argument from A to A is valid (so we have the IDENTITY condition for
this sense of ‘defectiveness’). WEAKENING is straightforward too, since if
a position is not defective, any position with fewer assertions or denials
is also not defective in that sense. For STRENGTHENING, note that it is
a condition showing us when adding a denial is coherent. If [I' : A] is
coherent and we cannot coherently assert A, then we must be able to
coherently deny it. We might say then that A has been implicitly denied
in a position in which I' has been asserted and A has been denied.

Taking the necessity and sufficiency of the coherence and logical conse-
quence, we have the following connection between coherence and con-

2 Let us not beg the question in favour of multiple conclusion arguments at this
point.
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4 Greg Restall

sequence: the claim that [T : A] is incoherent can be recast positively
as the endorsement of the sequent I' = A. We will henceforth use this
more familiar notation, but keep in mind that the validity of the sequent
I' = A is to be thought of as the verdict that asserting I' and denying
A is incoherent. With this formulation, the norms of coherence take a
more familiar form as the structural rules of the sequent calculus.

IDENTITY: A= A
'=A I'= A
NA=A T'= AA

WEAKENING:

I'=AA T A=A
'=A

STREGTHENING:

So, the STRENGTHENING rule is a formulation of the usual rule CuT
from the sequent calculus. From bottom to top, we strengthen positions
by adding a statement, either to the left or the right. From top to
bottom, we cut out that statement.

We choose coherence as a starting point, because it enables us to do
logic in such a way as to result in classical logic (as we will see soon),
it coheres with mathematical practice, and it does not require truth
conditional or model theoretic semantics while still managing to be
recognisably semantics. With this perspective, we can ‘do logic’ as
soon as we have a discourse that is recognisably bound by norms of
coherence. Mathematical discourse is clearly such a discourse. So, let us
now consider how to use the notion of coherence to clarify semantics.
We start with the connectives of propositional logic.

1.2. CONNECTIVES

Now consider the sequent rules for the propositional connectives. Here
are the the rules for negation and conjunction.

I'=AA A=A
r-A= A I'=-4A

Negation:

I'NA,B= A '=AA I'=s BA
ILAANB=A I'=AABA

Congunction:

These clauses can be seen as ways to add vocabulary (here, proposi-
tional connectives) to a discourse, and to continue constraining that
with respect to coherence. The negation rules tell you that if denying
A is incoherent (in the context of asserting I' and denying A) then so
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Anti-Realist Logic, Realist Mathematics 5!

is asserting —A, and that if asserting A is incoherent (in the context
of asserting I' and denying A) then so is denying —A. Or to put it
positively, if the assertion of A is coherent (along with asserting I' and
denying A) so is the denial of A, and if the denial of = A is coherent
(along with asserting T' and denying A) so is the assertion of A. The
rules for negation tell you how to treat the assertion of a negation and
the denial of a negation, with respect to coherence.

Similarly the rules for conjunction dictate the behaviour of that con-
nective with respect to coherence. If the assertion of A A B is coherent
(in some context) then so is the separate assertion of A and of B. On
the other hand if the denial of AA B is coherent (in some context) then
either the denial of A is coherent (in that context) or the denial of B is
coherent (in that context).

In this way, the rules for the connective tell you what to do with
them. The traditional natural deduction rules for the connectives (infer
A A B from A, B, and infer both A and B from A A B) are instances
of these rules: By identity, we have A = A and B = B. It follows that
A, B = AAB. Similarly, A, B = A (by weakening the identity A = A)
so it follows that A A B = A. Similarly, we have AA B = B.

The result is classical propositional logic. (For example, we have
—-—A = A, via = A,—A.) As a matter of fact, I take it that there is
a defensible natural deduction system in which proofs allow multiple
premises and multiple conclusions [23], but discussing this would take
us to far away from the present topic.

These rules have the attractive virtue that if we add them alone, then
the relation of coherence defined on the new vocabulary satisfies the
conditions of identity, weakening and strengthening. It follows that the
addition of these rules is conservative over a base vocabulary without
these logical connectives. (However, it is not necessarily conservative
over a base vocabulary already containing logical connectives, such
as a non-distribuitive pair of lattice connectives, or an intuitionistic
conditional. There is significant debate over what this might mean [6].)

These rules tell us something about how to use the connectives. They do
not tell you everything of what ‘=’ or ‘A’ might “mean,” but they do tell
you how to use these connectives when it comes to evaluating assertions
and denials featuring them, for coherence. In other words, rules such
as these give you a starting point for the practice or precisification
of a concept. For example, with these rules at hand we can see that a
dialetheist or an intuitionist or a supervaluationist is not using negation
this way when they diverge from these rules. A dialetheist may take
[p,not p : | to be coherent, and an intuitionist or a supervaluationist
may take [ : p,not p| to be coherent. It follows that they are not using
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their concept ‘not’ in a way that conforms to the rules above. However,
it is another thing entirely to say that in the mouth of an intuitionist
or a dialetheist or a supervaluationist, ‘not’ does not mean not. The
sequent calculus rules are a very useful technique for constraining use,
and for making precise a concept (in just the same way as we might
present a truth table and say that we will take disjunction to behave
like this). Sequent rules facilitate the introduction of connectives by
a kind of definition. However, we well know that definition is not all
that there is to say about meaning, as a definition might introduce a
term into the vocabulary, and the vicissitudes of use might sweep it in
another direction P

This account of coherence and logical consequence does not ap-
peal to truth or to warrant. It is semantically anti-realist in Dum-
mett’s sense [6], in that it does not take the preservation of warrant-
transcendent truth—or indeed, any kind of truth—to be constitutitive
of logical consequence. The approach is normatively inferentialist [3], 4]
as the central notion (coherence) is evaluative, and it is understood in
terms of the category of inference (at least, if we are prepared to under-
stand the inference A = B in terms of the incoherence of the assertion
of A and the denial of B) rather than the category of representationﬂ
This interpretation differs from the usual proof-first interpretation of
intuitionist propositional logic: after all, the result is a defence of clas-
sical logic, and not intuitionist logic. The result is not the traditional
BHK interpretation of intuitionist logic, in which the semantics of propo-
sitions is defined in terms of proof: a proof of a conjunction is a pair
of proofs, one for each conjunct. A proof for a conditional is a function
taking proofs of the antecedent to proofs of the consequent, and so on.
This interpretation is well suited to the interpretation of logical conse-
quence as preservation of warrant, and a conception of proofs according
to which they have a number of premises and a single conclusion. If
we take proofs to have a more rich structure (allowing for multiple
conclusions, as we have seen), or if we allow for richer operations on
proofs (such as continuations [28], for one example), then the clauses
for the connectives in the BHK interpretation motivate classical logic,
rather than intuitionist logic.

1.3. NAMES, VARIABLES AND QUANTIFIERS

If we wish to give an account of the logical features of the first-order
quantifiers (and surely we must if we are to do justice to the logic of
mathematics), then we go beyond the combination of propositions with

3 Consider the changes in the meaning of the terms force and mass in physics [11].
4 For other work on the sequent calculus, assertion and denial: [12} T4 [T9, 24].
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Anti-Realist Logic, Realist Mathematics 7

other propositions and we analyse some of the internal structure of
propositions. In the language of first-order logic, we compose proposi-
tions out of predicates and termsﬁ Some terms are variables, which play
a role in quantified expressions. Some of the terms may play a special
role in mathematical theories, such as the term “0” in arithmetic, or
terms built up using function symbols, such as “x’ 4+ (y x z)”. We wish to
understand the addition of quantificational vocabulary in terms of the
rules for the coherence of packages involving quantifiers. For the rules
of the quantifiers to work, we need one last piece of terminology. We
need arbitrary names, which are able to stand in assertions and denials.
One way to think of arbitrary names is as unbound variablesﬁ Think
of the fragment of discourse: “suppose z is a number, then x is either
even or odd. If x is not odd, then ...” — “z” here can be understood
as an arbitrary name. If we wish to treat the fragment ‘if x is not
odd, then. ..’ as a statement, with its own inferential properties—rather
than as a component of a larger expression in which a quantifier binds
the variable z—then an understanding like this seems appropriate. If
you hold to an understanding of variables according to which they are
always bound, you must choose a stock of names that have no inferential
capacities of their own. What is means is simple: if a is an arbitrary
name then whenever [I' : A] is coherent, it would remain coherent with
the replacement of some term occuring in I' and A by the name a. (So,
in the traditional vocabulary of arithmetic, 0 is not an arbitrary name
but variables such as £ and y behave as arbitrary names. In classical
first-order logic, or higher-order logics, all names are arbitrary.)

Clearly, in mathematical practice, we have arbitrary names. We use
them all of the time in reasoning when we make suppositions and reason
under hypotheses. With this concept in mind, we can now examine the
rules governing the universal quantifier.

I,Bt= A I'= Ba, A
I, (Vz)Br = A I = (Vz)Bz, A

Universal Quantifier:

In the second rule, we require a to be arbitrary and not present in I' =
(Vz)Bz, A. The motivation for these rules is clear. If the assertion of
(Vz) Bz is coherent, then so is the asseriton of Bt, which is a specific case
of the general claim. Conversely, if the denial of Ba is incoherent (where

5 In what follows, we will use the following shorthand notation. For a formula B
with some occurrences of a term ¢ marked out, we will write “Bt”, and we will write
“Bs” for the result of replacing the selected instances of ¢ in Bt by s.

6 Or, as Schiitte calls them, free object variables [25].
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8 Greg Restall

we have assumed nothing about the object @) then it is incoherent to
deny that everything has property B m

These rules give the usual properties of the universal quantifier. We have
(Vx)Bx = Ba by the assertion rule and the identity Ba = Ba. By the
denial rule, if we derive Fa for an arbitrary name a, then this derivation
applies generally. Is there any object which we cannot therefore show
to be B? Suppose there were: call such an object ¢. Run through the
proof for Ba, except with ‘¢’ in place of ‘a.” We can do that since the
name ‘a’ is arbitrary.

You may be concerned that the possiblity of non-denoting terms in-
validate this account. Perhaps we should modify our rules by adding
an “existence” predicate as seen in free logics. Then we would say
that [I',(Vz)Fz : A] is incohrent if [I', Fa, Ela : A] is incoherent,
and [I' : (Vz)Fz,A] is incoherent if [I', Ela : Fa,A] is incoherent for
an arbitrary name a not in [I' : A]. I will ignore this complication,
since non-denoting terms do not seem to play a significant role in
mathematical discourse ]

This kind of account of the quantifier sidesteps the usual debate
between “objectual” and “substitutional” accounts of the quantifiers.
We have not relied upon an “intended domain” of quantification, yet
neither have we given a substitutional account identifying the truth of
all (Vx) Bz with the truth instances of Bx. We have explained the infer-
ential capacity of (Vz)Bz in terms of substitutions, not its truth [15].

You can do the same thing for higher-order quantifiers, using rules
of the same general shape as the quantifier rules we have seen. We can
also add very natural rules for identity [20], using arbitrary predicates,
instead of arbitrary names.

The quantifier rules have the usual harmony properties. For IDENTITY,
we have (Vz)Bz = Ba (if we have at least one name). Since a is
arbitrary, we have (Vz)Bzr = (Vz)Bz. For STRENGTHENING, suppose
[ : (Vz)Bz,A] and [I', (Vz)Bz : A] are both incoherent. This means
that [I', Bt : A] is incoherent for some ¢, and [I" : Ba, A] is incoherent

7 We require the restriction to arbitrary names a, since proving that 0 is even (on
the basis of no assumptions) should not be enough to prove that every number is
even.

8 However, consider % or limy,_9 % If these are not eliminated from the vo-
cabulary, the something like Beeson and Feferman’s logic of ‘definedness’ seems
appropriate [7].

' Xs= Xt,A

9 In sequent form, using X as an arbitrary predicate, the rules are ———

F'=s=tA
I'= Bs, A

and —M8M8M

I's=t= Bt,A
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Anti-Realist Logic, Realist Mathematics 9

for an arbitrary a. Then, [[' : B¢, A] is incoherent (a has no distinctive
coherence properties of its own) and hence, by strengthening for Bt,
[ : A] is coherent.

2. Mathematical Practice and Mathematical Theories

Now, let us turn to mathematical reasoning. Clearly, mathematicians
assert and deny. Mathematical discourse is well suited (perhaps it is
uniquely suited) to evaluation for coherence by the canon of classical
first-order logic. Consider someone who engages in the practice of rea-
soning in the language of arithmetic. Let us be completely agnostic on
the ontology of numbers. However, let us also take it that the discourse
has the kind of form that it appears to take, on face value. A statement
of the form ‘2 + 3 = 5’ contains three terms, one function symbol and
the relation symbol of identity. It is not a disguised statement about
numerical quantifiers, and in the mouth of a mathematical reasoner it
is asserted, and not merely ‘play’-asserted. Accounts of the structure of
mathematical statements that do not take them at something like their
face value must explain what kind of structure they have, and how this
structure suffices for the correctness of classical logic when reasoning
with these statementsm So, we will take the analysis of the structure
of mathematical claims at face value.

2.1. INTRODUCING MATHEMATICAL VOCABULARY

Here is how you can “do arithmetic.” You can join in to the discourse
of arithmetic by adding the term ‘0’, the function symbol “” and the
predicate IV to your vocabulary, and by following the following norms.

=N0O =0=0 2 =0=
= Nz,A T'sz=yA LLr=y=A
'=Ns A I'=2=y A TI'Nd'=¢y=A

Nr=>2z4+0=2 Nz,Ny=z+y =(z+y)

10 For example, consider an approach that uncovers the “meaning” of a mathe-
matical statement in terms of a conditional (if there is an w sequence, then ...).
You must show, for example, that the statement (if there is an w sequence then —A)
should either be equivalent to the negation —(if there is an w sequence then A) or
there should be an explanation of the divergence, for the mathematical statement
=A appears to be the negation of A, but on the conditional analysis of mathematical
statements, appearances are deceiving.
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10 Greg Restall

Nez=zx0=0 Nz,Ny=zxy =zxy+z

['= B(0),A T,Nz,B(z)= B(z'),A
I' Nz = B(z),A

This is a way to add arithmetic vocabulary to your already existing
inferential repertoire. (This is why we included the predicate N for ‘is
a number’.) What we have is a sequent system for Peano Arithmetic,
with one exception. We have placed no restriction on the judgement
B(z) to appear in the induction rule. B(z) can be any statement, as
long as the x is arbitrary.

What is the upshot of treating the new vocabulary as constrainted
by these rules of coherence? The first feature making this differ from
any logic you have already seen is that by following these rules, you
are committed to = (3z)(z = 0). We have proved that there is a
number. What else can you prove? If your vocabulary merely contains
arithmetical terms, then you will be committed to Peano Arithmetic
(PA). If the predicates used in induction rule range more widely, you
may commit yourself to something stronger.

Can we govern coherence in this way? Is it legitimate to “define”
objects (like the number zero) into existence? It makes sense if we recall
the treatment of other ‘definitions’. Recall the connectives. If we find
someone who is prepared to assert A, B but to deny AA B, then we may
be confident that the person is using ‘A’ in a non-standard way. The
same goes with the predicate N and the term 0. If someone rejects N0
(as opposed to eschewing the vocabulary in which the claim is couched),
then we may hold that she either has made a mistake, or she has not
understood the predicate “N” or the term “0”.

Now consider the benefits of understanding mathematical theorising
and practice in this manner. It is telling you something about the
significance of mathematical discourse, without explaining this using
some particular model or class of models. The idea is not ontological
economyE it is the direction of explanation. I shall discuss this further,
below.

So, let us suppose that I teach you how to use arithmetical vocabulary
according to these rules. You now judge arithmetical discourse using
these canons of reasoning. (You take the denial of 2 4+ 2 = 4 to be
incoherent. You are committed to the validity of induction over all

11 Think about it: the formal language itself provides us with an omega sequence
of formulas. We already have enough ontology when we have a language to speak.
Numbers add no more.
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Anti-Realist Logic, Realist Mathematics 11

predicates in the vocabulary, etc.) Is there anything else needed for
you to become a competent user of arithmetical vocabulary?

We can put the point colourfully: suppose we have two users of
arithmetical vocabulary, equally competent with the rules we have con-
sidered, one of whom is in touch with ‘the w sequence’ and the other
who is not. How would this difference manifest itself? How could we
tell that we are reasoning like the one or the other?

Once you have added numerical vocabulary, there is no reason to stop
there. You could add new prinicples to treat analysis, second order
quantification, theroies of sets. I will not go into detail on this, but
the aim ought to be to find a natural smooth axiomatisation of the
extended mathematical theory, that goes as far as possible towards
fixing the behaviour of the new vocabulary.

2.2. CONSISTENCY AND CONSERVATIVITY

This addition of arithmetical vocabulary is not necessarily conservative
over your pre-arithmetical vocabulary. As an extreme case, consider a
finitist, committed to (Vz)(z = a1 V---V& = ay,) for some n. Given that
you can prove the existence of more than n numbers, the theory becomes
inconsistent with the addition of the rules. However, it is possible to
regain conservativity, if you are a little more careful in the way in which
you add your language, even this is possible. Divide the terms into two
types. We have two forms of quantification, one for each type. Add the
numerical vocabulary to the language as inhabitants of a new type, so
you do not substitute an arithmetical name in the positions taken by
names in the original discourse, and you don’t substitute your original
names in your arithmetical positions. You have two kinds of quantifiers,
the quantifiers of arithmetic, and those of the original discourse. If
arithmetic is consistent, then this addition is conservative: adjoin to
any model of the old language, a disjoint domain of numbers, and let
one set of quantifier range over the old domain, and the other over the
new domain of numbers. This is a model of the expanded language,
and the interpretation of the formulas from the original language is
unchanged. So, the addition of numerical vocabulary and arithmetical
theory in this way is conservative, if consistent.

Of course, it is possible to add a truly expansive existential existen-
tial quantifier, that binds an ambiguous variable which may be substi-
tuted into a spot appropriate for a variable of either type. The question
then arises: which of the existential quantifiers is the appropriate one?
Why choose a bifurcated language over one with a single categoy of
object variables and a single category of objectual quantifiers?
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12 Greg Restall

Here is the view concerning the behaviour of mathematical theories and
their semantics. We adopt a mathematical theory by (1) introducing
new vocabulary (2) constraining our patterns of assertion and denial in
that vocabulary in such a way that it (3) remains conservative over the
pre-mathematical vocabulary.

3. Consequences of the View

Now I'll chart out consequences of the view, by comparing it to a number
of extant positions.

3.1. REALISM AND ‘PLATONISM’

On this view, to use arithmetical vocabulary is to commit yourself to
mathematical ontology. Given that you use the vocabulary in this way,
there is no sense in which you need further information as to whether
or not there are any numbers. They exist, mind independently and
necessarily. It is a kind of “thin realism” to use Maddy’s vocabulary [1§],
combined with a semantic anti-realism. Given that existence is what is
expressed by the existential quantifier, this is the natural and default
position if we take the grammar of mathematical claims seriously.

(We have nothing against the project of people who tell us that there
is a stronger notion of existence, which is not shared by mathematical
objects. It remains for the proponent of these positions to articulate the
kind of stronger notion of existence that they have in mind.)

The semantic anti-realism of this position means that we may use
the machinery of the classical sequent calculus without starting with
a notion of a model in which arithmetic must be interpreted, or by
presuming that there is a structure out of which arithmetical claims
inherit their truth. As a matter of fact, there is a model of our arith-
metical theory (at least, you will see that there is, once you adopt the
vocabulary of sets), but to say that arithmetical claims are true because
of their relationship to some particular structure is to get the order of
explanation backwards.

We agree with Platonism about the existence—and even, perhaps the
necessary existence, and mind-independence, etc.—of mathematical ob-
jects. We part from Platonism concerning the direction of explanation of
mathematical truth. One need not explain the significance of mathemat-
ical vocabulary by way of reference or representation of mathematical
objects. To explain the truth of a mathematical claim in terms of the
properties of the mathematical objects referred to in that claim is to
not offer the only kind of explanation ... (and in fact, to leave the core
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concept unexplained at all). Rather, another explanation is possible, in
terms of coherence of the assertion and denial of mathematical claims:
in other words, we take the proof to be the explanation.

3.2. FORMALISM

It might seem to follow that since we have identified mathematical ex-
planation with proof that I am committed to a kind of formalism, since
a proof here is a formal proof in a deductive system. And formalism,
at least as far as the commitment to formally articulated proof as the
means for establishing mathematical truth is concerned, is plausible.

However, the view articulated here does not mean that arithmetic is
merely a particular first-order theory such as Peano Arithmetic (PA).
One can prove facts about arithmetic using non-arithmetic vocabulary,
as predicates in non-arithmetic vocabulary may be substituted into the
induction rule as necessary.

So, for example, if arithmetic is embedded into a reasonably strong
set theory (zF will do), then, substituting sentences involving set mem-
bership and other predicates not definable in arithmetical vocabulary
into the induction scheme will enable us to prove more claims—in
arithmetical vocabulary—than we can otherwise. As one example, we
can prove CON(PA) (which can be expressed in a first-order sentence
in the language of PA) by using stronger induction schemes allowing
for induction over sets as well as first-order sentences in arithmetic
vocabulary.

Similarly, people have objected to logicism on the grounds that
mathematical theorems are typically not proved inside an easily isolated
formal system. Wiles’ proof of Fermat’s last theorem, uses a great deal
of abstract mathematics beyond the first order theory of arithmetic. It
seems that we cannot specify the formal theory in which Wiles proof
obtains [27]. The response is straightforward: the rules of arithmetic
explicitly give you a place to import other vocabulary. Arithmetic as
I have defined it is open ended, depending on what else is in our vo-
cabulary. If we extend our language to contain a new predicate B, and
we did not concede that induction with respect to B worked, then this
would be akin to not adding instances of modus ponens with respect to
our new vocabulary when we expand our language.

The fact that the induction schema contains a space for arbitrary
induction predicates means that our arithmetic theory is not static and
fixed: it grows as our language grows. It cannot be identified with a
particular first-order theory such as Peano arithmetic.

This does not mean that PA does not play a special role. Dan Isaacson
holds that PA delineates the class of genuinely arithmetic truths [13].
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For us, the reasoner who is committed to the vocabulary of arithmetic
(and nothing else, or at least, nothing else that she can import into the
induction rule) can prove only what is provable in PA. By her lights,
denying CON(PA) is coherent, and so is asserting PROV(0 = 1), at least
when these are construed as sentences in the language of arithmetic.

3.3. HILBERT

This view is recognisably in the tradition of David Hilbert, because there
is an important sense in which consistency (together with formality,
which is required for conservative extension) is all that is required for
mathematical existence. We may do for other mathematical theories
what we did for arithmetic. If a mathematical theory (of sets, of cate-
gories, of whatever else) is consistent, we may add the new vocabulary
to our own, giving rise to a richer vocabulary, conservative (if we are
careful) over the old theory. This much of Hilbert’s program is worth
keeping.

Of course, Hilbert’s program of finding certainty through finitist con-
sistency proofs is dead. There are no finitist consistency proofs for any
interestingly strong mathematical theory. This does not mean nothing
to the general Hilbertian insight that there is no more to mathematical
existence than consistency.

3.4. CARNAP

This view is Carnapian, since the perspective of mathematical theo-
ries allows us to distinguish the internal and the external questions
concerning mathematical existence. The question concerning whether
there really are any numbers is answered internally by the user of the
vocabulary (who is genuinely asserting and predicating and the like) in
the affirmative. She can prove that (3z)(z+5 = 12), so 7 ezists. (Unless,
of course, you have a stronger reading of existence claims, according
to which we can existentially quantify over non-existent objects.) The
external question is a different matter, and like Carnap, we answer the
external question of whether or not we ought adopt a mathematical
theory on pragmatic grounds. The nature of your answer will depend
on the precise version of the question asked.

It’s only a modest Carnapianism, and it is not refuted by Gédelian
worries which spelled the end of Carnap’s own program [10, Chapters
7 and 9]. For Carnap, there was taken to be a theory-independent and
neutral analytic—synthetic distinction, a neutral perspective from which
you could judge what was analytic in a theory. As we can see, the
question of what is provable in a theory like PA requires more than PA
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to articulate, not less. Metamathematics is more mathematics, not a
retreat from mathematical commitment.

Is this view beholden to a pernicious or implausible version of the
analytic—synthetic distinction? It does not seem so. We do not need to
identify the meaning of an expression with the rules governing coherence
of assertions and denials involving the expression. We merely need to
say that we can introduce (or explicate) vocabulary by treating it as
constrained by some collection of rules for coherence.

3.5. PLENITUDINOUS PLATONISM, AND FICTIONALISM

Similarly, the more recent view of “plenitudinous platonism” holds that
there the mathematical universe is as full as it can be. It is quite difficult
to characterise ‘plenitudinous platonism’ [2} 2I]. The motivating picture
is that any kind of mathematical structure that can exist does exist. Our
position provides a plausible reconstruction of the idea: any consistent
mathematical theory may (if we like) be adopted, enriching our own
mathematical vocabulary. The universe places no limit to the extent of
mathematical theorising.

As Balaguer notes [2], fictionalism about mathematics is structurally
quite similar to plenitudious platonism. For fictionalism, mathematical
theories are made up, and we never need go to check that there are
objects that the theories are talking about—beyond assuring ourselves
that the theory is consistent [8, O]. So far, we agree with fictionalism.
However, instead of taking the posited theory to be fictional, we can
take them to be true. There is no need to take mathematicians to be
mistaken except for an overactive sense of ontological economy.

3.6. STRUCTURALISM

This view is structuralist [26] because the only general assurance that
a mathematical theory is a conservative addition (if consistent) is when
the new vocabulary is completely disjoint from our old vocabulary.
A mathematical theory cannot be about cows or tables or chairs or
whatever else we are talking about when we are not doing mathemat-
ics. It may, on the other hand, be applied to such things, by taking
deductions and conclusions couched in mathematical vocabulary and
applying them elsewhere. (Arithmetical facts are applied when we count
cows or pay the bills, topological facts may be used in discussions of
the large-scale structure of the universe, and there are many other
applications besides.) Mathematical facts (the kinds of things to which
we are committed in using mathematical vocabulary) are structural
because they are reapplicable. In one sense, any arithmetical claim,
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because it is founded on a very simple base (i.e. the rules of arith-
metic) may be re-applied to any structure on which those rules may be
reinterpreted. In this sense, we have structuralism without having to
give an account of what a mathematical structure is, since we have an
alternative explanation of the meaning of mathematical vocabulary.

4. Miscellaneous Concluding Remarks

4.1. USING AND MENTIONING

The distinction between adopting a mathematical theory and ezploring
a mathematical theory plays an important role. We may not want to
adopt all mathematical theories as they come up, in the same kind of
way as [ urged you to adopt arithmetic. We can, for example, adopt
something rather strong such as zZFC and then interpret claims about,
say non-wellfounded sets as claims about graphs, which themselves are
thought of as particular sets in ZFC (ordered pairs consisting of a carrier
set and a relation on that set) [I]. You learn zrA (zF with the anti-
foundation axiom) by translating it into your native tongue. You can
do this, but you may find that when you do so, you begin to speak zZFA
like a native, and cease to translate it.

On the other hand, there is much to be said for keeping your math-
ematical vocabulary (in essence) very small by adopting a set theory
such as ZFC and translating other vocabulary into it as necessary. This
ensures that the addition of new vocabulary (if interpretable within
your set theory) will not come at the cost of consistency given that you
have already paid the price of adopting your favoured theory of sets.

Similarly, you can do mathematics of particular structures without
adopting the vocabulary of that discourse at all. You can do it by
mentioning the vocabulary and not wusing it. You could (using the
language of formulas and proofs) consider whether or not a particular
sentence follows from some set of axioms. You could, if you wish, say
that “2 4+ 2 = 4 is a theorem of PA” without taking it that 2 4+ 2 = 4.
(This may be the attitude of mathematicians exploring set theoretical
axioms that they do not take to be plausible [16, [I7].)

4.2. ONTOLOGY AND EPISTEMOLOGY

It answers the ontological question of the existence of mathematical
objects in two ways. Firstly, given the vocabulary that we wuse, the
internal question has a straightforward answer. There are numbers.
There are sets. They exist necessarily and independently of us. (That
last claim is not a part of the mathematical theory. It will follow from
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a decent theory of modality and dependence.) However, we do not
need to explain mathematical knowledge by means of “contact” with
the realm of mathematical objects. The general question (what about
new kinds of mathematical objects that we haven’t considered?) can
only be answered piecemeal. It seems that whatever language we adopt,
we can add more. (Reflection principles seem to ensure that whatever
mathematical theory we adopt, it may be extended. CON(T") adds new
sets/structures over 7T'.)

The epistemic question of how we come to know mathematical truths
also has a two-track answer. Given particular mathematical concepts we
may draw consequences on the basis of traditional deductive argument.
The more interesting question is why we use concepts such as the ones
that we have in the ways that we do. For this, different kinds of an-
swers are available. A pragmatic answer will explain the choice of some
vocabulary rather than another. This seems to do justice to the kinds
of discussions set theorists have concerning open questions such as the
continuum hypothesis.

Consider the position of the mathematician exploring the theory of
sets. The best theory commits us to GCH V —=GCH, but it seems that
it leaves open which disjunct is true. Contemporary set theory is a
complicated affair in which the search is on for different considerations
in favour of GCH or =GCH. The set theorist is attempting, in these cir-
cumstances, to articulate and sharpen our account of the concept “set”
in ways that satisfy sensible desiderata, such as the goal to MAXIMISE
the set-theoretical universe [16] [I7, [I8]. This is quite sensible, given the
set-theoretical goal of finding a large home (or ‘vocabulary’) in which
to interpret or translate all different kinds of mathematics. The kind
of freedom involved in this exercise explains both the appeal and the
coherence of staggeringly large cardinal axioms.
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