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Abstract

Full intuitionistic Zermelo-Fraenkel set theory, IZF, is obtained from constructive Zermelo-
Fraenkel set theory, CZF, by adding the full separation axiom scheme and the power set axiom.
The strength of CZF plus full separation is the same as that of second order arithmetic, using
a straightforward realizability interpretation in classical second order arithmetic and the fact
that second order Heyting arithmetic is already embedded in CZF plus full separation. This
paper is concerned with the strength of CZF augmented by the power set axiom, CZFP . It
will be shown that it is of the same strength as Power Kripke-Platek set theory, KP(P), as
well as a certain system of type theory, MLVP, which is a calculus of constructions with one
universe. The reduction of CZFP to KP(P) uses a realizability interpretation wherein a realizer
for an existential statement provides a set of witnesses for the existential quantifier rather than
a single witness. The reduction of KP(P) to CZFP employs techniques from ordinal analysis
which, when combined with a special double negation interpretation that respects extensionality,
also show that KP(P) can be reduced to CZF with the negative power set axiom. As CZF
augmented by the latter axiom can be interpreted in MLVP and this type theory has a types-
as-classes interpretation in CZFP , the circle will be completed.

MSC:03F50, 03F35, 03F25
Keywords: Constructive set theory, Martin-Löf type theory, Mac Lane set theory, realiz-

ability with sets of witnesses, Power Kripke-Platek set theory, calculus of constructions, set
recursion, power recursion, negative power set axiom, proof-theoretic strength

1 Introduction

If the power set operation is considered as a definite operation, but the universe of all sets is
regarded as an indefinite totality, we are led to systems of set theory having Power Set as an axiom
but only Bounded Separation axioms and intuitionistic logic for reasoning about the universe at
large. The study of subsystems of ZF formulated in intuitionistic logic with Bounded Separation
but containing the Power Set axiom was apparently initiated by Pozsgay [27, 28] and then pursued

∗Work on the ideas for this paper started while I was a fellow of SCAS, the Swedish Collegium for Advanced Study,
in the period January-June 2009. SCAS provided an exquisite, intellectually inspiring environment for research. I am
grateful to Erik Palmgren, Sten Lindström, and the people of SCAS for making this possible. Part of the material is
also based upon research supported by the EPSRC of the UK through grant No. EP/G029520/1.
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more systematically by Tharp [39], Friedman [12] and Wolf [43]. These systems are actually semi-
intuitionistic as they contain the law of excluded middle for bounded formulae. Pozsgay had
conjectured that his system is as strong as ZF, but Tharp and Friedman proved its consistency in
ZF using a modification of Kleene’s method of realizability. Wolf established the equivalence in
strength of several related systems.
In the classical context, weak subsystems of ZF with Bounded Separation and Power Set have
been studied by Thiele [40], Friedman [13] and more recently at great length by Mathias [20].
Mac Lane has singled out and championed a particular fragment of ZF, especially in his book
Form and Function [18]. Mac Lane Set Theory, christened MAC in [20], comprises the axioms of
Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Bounded Separation, Foundation, and
Choice. MAC is naturally related to systems derived from topos-theoretic notions and, moreover,
to type theories.
Type theories à la Martin-Löf embodying weak forms of Power Set (such as the calculus of construc-
tions with its impredicative type of propositions) have been studied by Aczel [3, 4] and Gambino
[15].
Intuitionistic Zermelo-Fraenkel set theory, IZF, is obtained from CZF, by adding the full sepa-
ration axiom scheme and the power set axiom. The strength of CZF plus full separation, as has
been shown by Lubarsky [17], is the same as that of second order arithmetic, using a straightfor-
ward realizability interpretation in classical second order arithmetic and the fact that second order
Heyting arithmetic is already embedded in CZF plus full separation. This paper is concerned with
the strength of CZF augmented by the power set axiom, CZFP . It will be shown that it is of
the same strength as Power Kripke-Platek set theory, KP(P), as well as a certain system of type
theory, MLVP, which is a version of the calculus of constructions with one universe. It is perhaps
worth pointing out that KP(P) is not the theory KP plus power set, Pow. An upper bound for
the proof-theoretic strength of KP + Pow is Zermelo’s set theory, Z, so that it doesn’t even prove
the existence of Vω+ω whereas KP(P) proves the existence of Vα for any ordinal α.
The reduction of CZFP to KP(P) uses a realizability interpretation wherein a realizer for an
existential statement provides a set of witnesses for the existential quantifier rather than a single
witness. Tharp [39] also used realizability to give an interpretation of a semi-intuitionistic set theory
closely related to Pozsgay’s system. Tharp’s realizers are codes for ΣP

1 definable partial functions,
i.e., functions whose graphs are Σ1 in the powerset operation P(x), which is taken as a primitive.
For the realizability interpretation he needs a ΣP

1 -definable search operation on the set-theoretic
universe and in point of fact assumes V = L. As it turns out, this realizability interpretation
could be formalized in KP(P) + V = L. However, the assumption V = L is not harmless in this
context since KP(P) + V = L is a much stronger theory than KP(P) (cf. [20, 35]), and therefore
one would like to remove this hypothesis. This paper shows that this can be achieved by using a
notion of realizability with sets of witnesses in the existential quantifier case, and thereby yields a
realizability interpretation of a theory in a theory of equal proof-theoretic strength.
The reduction of KP(P) to CZFP is based on results from [35] whose proofs are obtained via
techniques from ordinal analysis. They can be used to show that KP(P) is reducible to CZF
with the Negative Power Set Axiom. As CZF plus the negative powerset can be interpreted in
MLVP, utilizing work from [4, 15], and the latter type theory has a types-as-classes interpretation
in CZFP , the circle will be completed. We also get a characterization of a subtheory of Tharp’s set
theory [39]. The theory in [39] has the following axioms (cf. section 2.1): Extensionality, Empty
Set, Pairing , Union, Powerset, Infinity, Set Induction, Strong Collection1, Excluded Middle for

1Curiously, Tharp calls this scheme Replacement.
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power bounded formulae2 and an axiom Ord-Im which asserts that every set is the image of an
ordinal, i.e., for every set x there exists an ordinal α and a surjective function f : α→ x.
In the Theorem below we use several acronyms. RDC stands for the relativized dependent choices
axiom. Given a family of sets (Ba)a∈A over a set A we define the dependent product

∏

a∈A Ba and
the dependent sum

∑

a∈A Ba as follows:

∏

a∈A

Ba := {f | Fun(f) ∧ dom(f) = A ∧ ∀z ∈ A f(z) ∈ Ba}

∑

a∈A

Ba := {〈a, u〉 | a ∈ A ∧ u ∈ Ba}

where Fun(f) signifies that f is a function and dom(f) stands for its domain.
Let X be the smallest class of sets containing ω and all elements of ω which is closed under
dependent products and sums. ΠΣ−AC asserts that every set A in X is a base, i.e., if (Ba)a∈A is
family of sets over A such that Ba is inhabited for every a ∈ A then there exists a function f with
domain A such that ∀a ∈ A f(a) ∈ Aa. (For more information on ΠΣ−AC see [2, 30, 34].)
The negative power set axiom, Pow¬¬ for short, asserts that for every set a there exists a set c
containing all the subsets x of a for which ∀u ∈ a(¬¬u ∈ x→ u ∈ x) holds.
The intuitionistic version of KP(P) will be denoted by IKP(P). Both KP(P) and IKP(P)
can be subjected to ordinal analysis which reduces them to theories Z + {‘Vτ exists’}τ∈BH and
IZ + {‘ Vτ exists’}τ∈BH, respectively. Here Z stands for classical Zermelo set theory and IZ for
its intuitionistic version. BH refers to an ordinal representation system for the Bachmann-Howard
ordinal (cf. [37]). For τ ∈ BH the statement ‘ Vτ exists’ expresses that the powerset operation can
be iterated τ times.

Theorem 1.1 The following theories are of the same proof-theoretic strength.

(i) CZFP

(ii) CZFP + RDC + ΠΣ−AC

(iii) KP(P)

(iv) IKP(P)

(v) Tharp’s [39] quasi-intuitionistic set theory but without Ord-Im.

(vi) MLVP

(vii) CZF + Pow¬¬

(viii) Z + {‘Vτ exists’}τ∈BH

(ix) IZ + {‘Vτ exists’}τ∈BH

Presenting a proof of Theorem 1.1 is the main goal of this article.

2The ∆P
0 -formulae of Definition 2.4.
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2 The theories CZF and KP(P)

2.1 CZF

We briefly summarize the language and axioms of CZF, a variant of Myhill’s CST (see [23]). The
language of CZF is based on the same first order language as that of classical Zermelo-Fraenkel
Set Theory, whose only non-logical symbol is ∈. The logic of CZF is intuitionistic first order logic
with equality. Among its non-logical axioms are Extensionality, Pairing and Union in their usual
forms. CZF has additionally axiom schemata which we will now proceed to summarize.

Infinity: ∃x∀u[u∈x↔ (∅ = u ∨ ∃v ∈x u = v + 1)] where v + 1 = v ∪ {v}.

Set Induction: ∀x[∀y ∈ xA(y)→ A(x)]→ ∀xA(x)

Bounded Separation: ∀a∃b∀x[x ∈ b↔ x ∈ a ∧A(x)]

for all bounded formulae A. A set-theoretic formula is bounded or restricted if it is constructed from
prime formulae using ¬,∧,∨,→,∀x∈ y and ∃x∈ y only.

Strong Collection: For all formulae A,

∀a[∀x ∈ a∃yA(x, y) → ∃b [∀x ∈ a∃y ∈ b A(x, y) ∧ ∀y ∈ b ∃x ∈ a A(x, y)]].

Subset Collection: For all formulae B,

∀a∀b∃c∀u [∀x ∈ a∃y ∈ b B(x, y, u) →

∃d ∈ c [∀x ∈ a∃y ∈ d B(x, y, u) ∧ ∀y ∈ d ∃x ∈ a B(x, y, u)]].

The Powerset Axiom, Pow, is the following:

∀x∃y ∀z (z ⊆ x→ z ∈ y).

Remark 2.1 Subset Collection plays no role when we study CZFP since it is a consequence of
Pow and the other axioms of CZF.

To save us work when proving realizability of the axioms of CZF it is useful to know that the
axiom scheme of bounded separation can be deduced from a single instance (in the presence of
strong collection).

Lemma 2.2 Let Binary Intersection be the statement ∀x∀y∃z x ∩ y = z. If CZF0 denotes
CZF without bounded separation and subset collection, then every instance of bounded separation
is provable in CZF0 + Binary Intersection.

Proof : [5, Proposition 4.8] is a forerunner of this result. It is proved in the above form in [6,
Corollary 9.5.7]. ⊓⊔
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2.2 Kripke-Platek set theory

A particularly interesting (classical) subtheory of ZF is Kripke-Platek set theory, KP. Its standard
models are called admissible sets. One of the reasons that this is an important theory is that a
great deal of set theory requires only the axioms of KP. An even more important reason is that
admissible sets have been a major source of interaction between model theory, recursion theory
and set theory (cf. [7]). KP arises from ZF by completely omitting the power set axiom and
restricting separation and collection to bounded formulae. These alterations are suggested by the
informal notion of ‘predicative’. To be more precise, the axioms of KP consist of Extensionality,
Pair, Union, Infinity, Bounded Separation

∃x∀u [u ∈ x↔ (u ∈ a ∧ A(u))]

for all bounded formulae A(u), Bounded Collection

∀x ∈ a∃y B(x, y) → ∃z ∀x ∈ a∃y ∈ z B(x, y)

for all bounded formulae B(x, y), and Set Induction

∀x [(∀y ∈ x C(y))→ C(x)] → ∀x C(x)

for all formulae C(x).
A transitive set A such that (A,∈) is a model of KP is called an admissible set. Of particular interest
are the models of KP formed by segments of Gödel’s constructible hierarchy L. The constructible
hierarchy is obtained by iterating the definable powerset operation through the ordinals

L0 = ∅,

Lλ =
⋃

{Lβ : β < λ} λ limit

Lβ+1 = {X : X ⊆ Lβ; X definable over 〈Lβ,∈〉}.

So any element of L of level α is definable from elements of L with levels < α and the parameter
Lα. An ordinal α is admissible if the structure (Lα,∈) is a model of KP.

Remark 2.3 Our system KP is not quite the same as the theory KP in Mathias’ paper [20], p.
111. There KP does not have an axiom of Infinity and set induction only holds for Σ1 formulae,
or what amounts to the same, Π1 foundation (A 6= ∅ → ∃x ∈ A x ∩A = ∅ for Π1 classes A).

2.3 Power Kripke-Platek set theory

We use subset bounded quantifiers ∃x ⊆ y . . . and ∀x ⊆ y . . . as abbreviations for ∃x(x ⊆ y ∧ . . .)
and ∀x(x ⊆ y → . . .), respectively.
We call a formula of L∈ ∆P

0 if all its quantifiers are of the form Q x ⊆ y or Q x∈y where Q is ∀ or
∃ and x and y are distinct variables.

Definition 2.4 The ∆P
0 formulae are the smallest class of formulae containing the atomic formulae

closed under ∧,∨,→,¬ and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

Definition 2.5 KP(P) has the same language as ZF. Its axioms are the following: Extensionality,
Pairing, Union, Infinity, Powerset, ∆P

0 -Separation and ∆P
0 -Collection.

The transitive models of KP(P) have been termed power admissible sets in [13].

5



Remark 2.6 Alternatively, KP(P) can be obtained from KP by adding a function symbol P for
the powerset function as a primitive symbol to the language and the axiom

∀y [y ∈ P(x)↔ y ⊆ x]

and extending the schemes of ∆0 Separation and Collection to the ∆0 formulae of this new language.

Lemma 2.7 KP(P) is not the same theory as KP+Pow. Indeed, KP+Pow is a much weaker
theory than KP(P) in which one cannot prove the existence of Vω+ω.

Proof : Note that in the presence of full Separation and Infinity there is no difference between
our system KP and Mathias’s [20] KP. It follows from [20, Theorem 14] that Z + KP + AC is
conservative over Z+AC for stratifiable sentences. Z and Z+AC are of the same proof-theoretic
strength as the constructible hierarchy can be simulated in Z; a stronger statement is given in [20,
Theorem 16]. As a result, Z and Z+KP are of the same strength. As KP+Pow is a subtheory of
Z + KP, we have that KP + Pow is not stronger than Z. If KP + Pow could prove the existence
of Vω+ω it would prove the consistency of Z. On the other hand KP(P) prove the existence of Vα

for every ordinal α and hence proves the existence of arbitrarily large transitive models of Z. ⊓⊔

Remark 2.8 Our system KP(P) is not quite the same as the theory KPP in Mathias’ paper [20,
6.10]. The difference between KP(P) and KPP is that in the latter system set induction only
holds for ΣP

1 formulae, or what amounts to the same, ΠP
1 foundation (A 6= ∅ → ∃x ∈ A x ∩ A = ∅

for ΠP
1 classes A).

2.4 Extended E-recursive functions

We would like to have unlimited application of sets to sets, i.e. we would like to assign a meaning
to the symbol [ a ](x) where a and x are sets. In generalized recursion theory this is known as
E-recursion or set recursion (see, e.g., [24] or [38, Ch.X]). However, we shall introduce an extended
notion of E-computability, christened E℘-computability, rendering the functions exp(a, b) = ab
and P(x) = {u | u ⊆ x} computable as well, (where ab denotes the set of all functions from a to
b). Moreover, the constant function with value ω is taken as an initial function in E℘-computability.
E℘-computability is closely related to power recursion, where the power set operation is regarded
to be an initial function. The latter notion has been studied by Moschovakis [21] and Moss [22].
There is a lot of leeway in setting up E℘-recursion. The particular schemes we use are especially ger-
mane to our situation. Our construction will provide a specific set-theoretic model for the elemen-
tary theory of operations and numbers EON (see, e.g., [8, VI.2], or the theory APP as described
in [42, Ch.9, Sect.3]). We utilize encoding of finite sequences of sets by the usual pairing function
〈 , 〉 with 〈x, y〉 = {{x}, {x, y}}, letting 〈x〉 = x and 〈x1, . . . , xn, xn+1〉 = 〈〈x1, . . . , xn〉, xn+1〉. We
use functions ()0 and ()1 to retrieve the left and right components, respectively, of an ordered pair
a = 〈x, y〉, i.e., (a)0 = x and (a)1 = y.
Below we use the notation [ x ](y) rather than the more traditional {x}(y) to avoid any ambiguity
with the singleton set {x}.

Definition 2.9 (CZFP , KP(P)) First, we select distinct non-zero natural numbers k, s, p, p0,
p1, sN, pN, dN, 0̄, ω̄, γ, ρ, υ, π, i1, i2, i3, and ℘̄ which will provide indices for special E℘-recursive
partial (class) functions. Inductively we shall define a class E of triples 〈e, x, y〉. Rather than
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“〈e, x, y〉 ∈ E”, we shall write “[ e ](x) ≃ y”, and moreover, if n > 0, we shall use [ e ](x1, . . . , xn) ≃ y
to convey that

[ e ](x1) ≃ 〈e, x1〉 ∧ [ 〈e, x1〉 ](x2) ≃ 〈e, x1, x2〉 ∧ . . . ∧ [ 〈e, x1, . . . , xn−1〉 ](xn) ≃ y.

We shall say that [ e ](x) is defined, written [ e ](x) ↓, if [ e ](x) ≃ y for some y. Let N := ω. E is
defined by the following clauses:

[k ](x, y) ≃ x

[ s ](x, y, z) ≃ [ [x ](z) ]([ y ](z))

[p ](x, y) ≃ 〈x, y〉

[p0 ](x) ≃ (x)0

[p1 ](x) ≃ (x)1

[ sN ](n) ≃ n + 1 if n ∈ N

[pN ](0) ≃ 0

[pN ](n + 1) ≃ n if n ∈ N

[dN ](n, m, x, y) ≃ x if n, m ∈ N and n = m

[dN ](n, m, x, y) ≃ y if n, m ∈ N and n 6= m

[ 0̄ ](x) ≃ 0

[ ω̄ ](x) ≃ ω

[π ](x, y) ≃ {x, y}

[υ ](x) ≃
⋃

x

[γ ](x, y) ≃ x ∩ (
⋂

y)

[ρ ](x, y) ≃ {[x ](u) | u ∈ y} if [x ](u) is defined for all u ∈ y

[ i1 ](x, y, z) ≃ {u ∈ x | y ∈ z}

[ i2 ](x, y, z) ≃ {u ∈ x | u ∈ y → u ∈ z}

[ i3 ](x, y, z) ≃ {u ∈ x | u ∈ y → z ∈ u}

[ ℘̄ ](x) ≃ P(x).

Note that [ s ](x, y, z) is not defined unless [x ](z), [ y ](z) and [ [x ](z) ]([ y ](z)) are already defined.
The clause for s is thus to be read as a conjunction of the following clauses: [ s ](x) ≃ 〈s, x〉,
[ 〈s, x〉 ](y) ≃ 〈s, x, y〉 and, if there exist a, b, c such that [x ](z) ≃ a, [ y ](z) ≃ b, [ a ](b) ≃ c, then
[ 〈s, x, y〉 ](z) ≃ c. Similar restrictions apply to ρ.

Lemma 2.10 (CZFP , IKP(P)) E is an inductively defined class and E is functional in that for
all e, x, y, y′,

〈e, x, y〉 ∈ E ∧ 〈e, x, y′〉 ∈ E ⇒ y = y′.

Proof. The inductive definition of E falls under the heading of [5, Theorem 11.4]. If [ e ](x) ≃ y the
uniqueness of y follows by induction on the stages (see [5, Lemma 5.2]) of that inductive definition.

2
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Definition 2.11 Application terms are defined inductively as follows:

(i) The constants The constants k, s, p, p0, p1, sN, pN, dN, 0̄, ω̄, γ, ρ, υ, π, i1, i2 i3, and ℘̄
singled out in Definition 2.9 are application terms;

(ii) variables are application terms;

(iii) if s and t are application terms then (st) is an application term.

Definition 2.12 Application terms are easily formalized in CZFP . However, rather than trans-
lating application terms into the set–theoretic language of CZFP , we define the translation of
expressions of the form t ≃ u, where t is an application term and u is a variable. The translation
proceeds along the way that t was built up:

[c ≃ u]∧ is c = u if c is a constant or a variable;
[(st) ≃ u]∧ is ∃x∃y([s ≃ x]∧ ∧ [t ≃ y]∧ ∧ 〈x, y, u〉 ∈ E).

Abbreviations. For application terms s, t, t1, . . . , tn we will use:

s(t1, . . . , tn) as a shortcut for ((. . . (st1) . . .)tn); (parentheses associated to the left);
st1 . . . tn as a shortcut for s(t1, . . . , tn);

t↓ as a shortcut for ∃x(t ≃ x)∧; (t is defined)
(s ≃ t)∧ as a shortcut for (s↓∨ t↓) → ∃x((s ≃ x)∧ ∧ (t ≃ x)∧) .

A closed application term is an application term that does not contain variables. If t is a closed
application term and a1, . . . , an, b are sets we use the abbreviation

t(a1, . . . , an) ≃ b for ∃x1 . . . xn∃y (x1 = a1 ∧ . . . ∧ xn = an ∧ y = b

∧ [t(x1, . . . , xn) ≃ y]∧).

Definition 2.13 Every closed application term gives rise to a partial class function. A partial
n-place (class) function Υ is said to be an E℘-recursive partial function if there exists a closed
application term tΥ such that

dom(Υ) = {(a1, . . . , an) | tΥ(a1, . . . , an) ↓}

and for all for all sets (a1, . . . , an) ∈ dom(Υ),

tΥ(a1, . . . , an) ≃ Υ(a1, . . . , an).

In the latter case, tΥ is said to be an index for Υ.
If Υ1,Υ2 are E℘-recursive partial functions, then Υ1(~a) ≃ Υ2(~a) iff neither Υ1(~a) nor Υ2(~a) are
defined, or Υ1(~a) and Υ2(~a) are defined and equal.

The next two results can be proved in the theory APP and thus hold true in any applicative
structure. Thence the particular applicative structure considered here satisfies the Abstraction
Lemma and Recursion Theorem (see e.g. [11] or [8]).

Lemma 2.14 ( Abstraction Lemma, cf. [8, VI.2.2])
For every application term t[x] there exists an application term λx.t[x] with FV(λx.t[x]) :=
{x1, . . . , xn} ⊆ FV(t[x])\{x} such that the following holds:

∀x1 . . .∀xn(λx.t[x]↓ ∧ ∀y (λx.t[x])y ≃ t[y]).

8



Proof. (i) λx.x is skk; (ii) λx.t is kt for t a constant or a variable other than x; (iii) λx.uv is
(s(λx.u))(λx.v). ⊓⊔

Lemma 2.15 (Recursion Theorem, cf. [8, VI.2.7])
There exists a closed application term rec such that for any f , x,

recf ↓ ∧ recfx ≃ f(recf)x.

Proof. Take rec to be λf.tt, where t is λyλx.f(yy)x. ⊓⊔

Corollary 2.16 For any E℘-recursive partial function Υ there exists a closed application term τfix

such that τfix ↓ and for all ~a,

Υ(ē,~a) ≃ τfix(~a),

where τfix ≃ ē. Moreover, τfix can be effectively (e.g. primitive recursively) constructed from an
index for Υ.

3 Defining realizability with sets of witnesses for set theory

Realizability semantics are a crucial tool in the study of intuitionistic theories (see [41, 31]). We
introduce a form of realizability based on general set recursive functions where a realizer for an
existential statement provides a set of witnesses for the existential quantifier rather than a single
witness. Realizability based on indices of general set recursive functions was introduced in [33] and
employed to prove, inter alia, metamathematical properties for CZF augmented by strong forms
of the axiom of choice in [34, Theorems 8.3,8.4]. There are points of contact with a notion of
realizability used by Tharp [39] who employed (indices of) Σ1 definable partial (class) functions as
realizers, though there are important differences, too, as Tharp works in a classical context and
assumes a definable search operation on the universe which basically amounts to working under
the hypothesis V = L. Moreover, there are connections with Lifschitz’ realizability [16] where a
realizer for an existential arithmetical statement provides a finite co-recursive set of witnesses (see
[25, 9] for extensions to analysis and set theory).
We adopt the conventions and notations from the previous section. However, we prefer to write 0e
and 1e rather than (e)0 and (e)1, respectively, and instead of [ a ](b) ≃ c we shall write a • b ≃ c.

Definition 3.1 Bounded quantifiers will be treated as quantifiers in their own right, i.e., bounded
and unbounded quantifiers are treated as syntactically different kinds of quantifiers.
We use the expression a 6= ∅ to convey that the set a is inhabited, that is ∃x x ∈ a.
We define a relation a w B between sets a and formulae of set theory. a • f w B will be an
abbreviation for ∃x[a • f ≃ x ∧ x w B].

a w A iff A holds for atomic formulae A

a w A ∧B iff 0a w A ∧ 1a w B

a w A ∨B iff a 6= ∅ ∧ (∀d ∈ a)([0d = 0 ∧ 1d w A] ∨

[0d = 1 ∧ 1d w B])

a w ¬A iff ∀c ¬c w A

a w A→ B iff ∀c [c w A → a • c w B]
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a w (∀x ∈ b) A iff (∀c ∈ b) a • c w A[x/c]

a w (∃x ∈ b) A iff a 6= ∅ ∧ (∀d ∈ a)[0d ∈ b ∧ 1d w A[x/0d]

a w ∀xA iff ∀c a • c w A[x/c]

a w ∃xA iff a 6= ∅ ∧ (∀d ∈ a) 1d w A[x/0d]

w B iff ∃a a w B.

In the course of proving that certain formulae are realized, e.g.

(A ∨B)→ [(A→ C)→ ((B → C)→ C)]

or the rule for introducing an existential quantifier in the antecendent of an implication, we will be
faced with the problem that we have a non-empty set of realizers where a single realizer is required.
The next Lemma shows that we can effectively pass from a set of realizers to a single realizer.

Lemma 3.2 Let ~x = x1, . . . , xr and ~a = a1, . . . , ar. To each formula A(~x) of CZF (with all free
variables among ~x) we can effectively assign (a code of) an E℘-recursive partial function χA such
that

IKP(P) ⊢ ∀~a∀c 6= ∅ [ (∀d ∈ c) d w A(~a))→ χA(~a, c) w A(~a)].

Proof : We use induction on the buildup of A.
If A is atomic, let χA(~a, c) := 0.
Let A(~x) be B(~x) ∧ C(~x) and χB and χC be already defined. Then

χA(~a, c) := (χB(~a, {0x | x ∈ c}), χC(~a, {1x | x ∈ c}))

will do the job.
Let A(~x) be B(~x)→ C(~x) and suppose χB and χC have already been defined. Assume that c 6= ∅
and (∀d ∈ c) d w [B(~a)→ C(~a)]. Suppose e w B(~a). Define the E℘-recursive partial function ϑ
by

ϑ(c, e) ≃ {d • e | d ∈ c}.

Then ϑ(c, e) 6= ∅ and hence, by the inductive assumption, χC(~a, ϑ(c, e)) w C(~a ), so that

λe.χC(~a, ϑ(c, e)) w A(~a ).

Now let A(~x ) be of the form ∀y B(~x, y). Suppose that c 6= ∅ and (∀d ∈ c) d w A(~a ). Fixing b, we
then have (∀d ∈ c) d• b w B(~a, b), thus, ∀d′ ∈ ϑ(c, b) d′ w B(~a, b), and therefore, by the inductive
assumption, χB(~a, ϑ(c, b)) w B(~a, b). As a result

λb.χB(~a, ϑ(c, b)) w A(~a ).

The case of A(~x ) starting with a bounded universal quantifier is similar to the previous case.
In all the remaining cases, χA(~a, c) :=

⋃

c will work owing to the definition of realizability in these
cases. ⊓⊔

Lemma 3.3 (IKP(P)) Realizers for equality laws:

(i) 0 w x = x.

(ii) λu.u w x = y → y = x.
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(iii) λu.u w (x = y ∧ y = z) → x = z.

(iv) λu.u w (x = y ∧ y ∈ z) → x ∈ z.

(v) λu.u w (x = y ∧ z ∈ x) → z ∈ y.

(vi) λu.1u w (x = y ∧ A(x))→ A(y) for any formula A.

Proof : (i) - (v) are obvious. (vi) follows by a trivial induction on the buildup of A. ⊓⊔

Lemma 3.4 (IKP(P)) Realizers for logical axioms: Below we use the E℘-recursive function sg(a) :=
{a}.

(IPL1) k w A→ (B → A).

(IPL2) s w [A→ (B → C)]→ [(A→ B)→ (A→ C)].

(IPL3) λe.λd.(e, d)〉 w A→ (B → A ∧B).

(IPL4) λe.0e w A ∧B → A.

(IPL5) λe.1e w A ∧B → B.

(IPL6) λe.sg((0, e)) w A→ A ∨B.

(IPL7) λe.sg((1, e))〉 w B → A ∨B.

(IPL8) k(~a ) w (A ∨B)→ [(A→ C)→ ((B → C)→ C)], for some E℘-recursive partial function k,
where ~a comprises all parameters appearing in the formula.

(IPL9) λe.λd.0 w (A→ B)→ ((A→ ¬B)→ ¬A).

(IPL10) λe.0 w A→ (¬A→ B).

(IPL11) λe.e • b w ∀xA(x)→ A(b).

(IPL12) λe.sg(e) w A(a)→ ∃xA(x).

Proof : As for IPL1 and IPL2, this justifies the combinators s and k. Combinatory completeness
of these two combinators is equivalent to the fact that these two laws together with modus ponens
generate the full set of theorems of propositional implicational intuitionistic logic.
Except for IPL8, one easily checks that the proposed realizers indeed realize the pertaining formulae.
So let’s check IPL8. A ∨ B → ((A → C) → ((B → C) → C)). Suppose e w A ∨ B. Then
e 6= ∅. Let d ∈ e. Then 0d = 0 ∧ 1d w A or 0d = 1 ∧ 1d w B. Suppose f w A → C and
g w B → C. Define an E℘-recursive partial function f by

f(d′, f ′, g′) = [dN](0d
′, 0, f ′ • (1d

′), g′ • (1d
′)).

Then

f(d′, f ′, g′) =

{

f ′ • (1d
′) if 0d

′ = 0
g′ • (1d

′) if 0d
′ = 1
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As a result, f(d, f, g) w C and hence λf.λg.f(d, f, g) w (A → C) → ((B → C) → C). Thus,
Φ(e, λd.λf.λg.f(d, f, g)) 6= ∅ and for all p ∈ Φ(e, λd.λf.λg.f(d, f, g)) we have

p w (A→ C)→ ((B → C)→ C).

Let E(~a ) := (A → C) → ((B → C) → C), where ~a comprises all parameters appearing in the
formula on the right hand side. The upshot is that by Lemma 3.2 we can conclude

χE(~a,Φ(e, λd.λf.λg.f(d, f, g))) w E(~a ).

And consequently we have

k(~a ) := λe.χE(~a,Φ(e, λd.λf.λg.f(d, f, g))) w A ∨B → E(~a ).

⊓⊔

Theorem 3.5 Let D(u1, . . . , ur) be a formula of L∈ all of whose free variables are among u1, . . . , ur.
If

CZF + Pow ⊢ D(u1, . . . , ur),

then one can effectively construct an index of an E℘-recursive function g such that

IKP(P) ⊢ ∀a1, . . . , ar g(a1, . . . , ar) w D(a1, . . . , ar) .

Proof : We use a standard Hilbert-type systems for intuitionistic predicate logic. The proof proceeds
by induction on the derivation. For the logical axioms and the equality axioms we have already
produced appropriate E℘-recursive functions in Lemmata 3.3 and 3.4. It remains to deal with
logical inferences and set-theoretic axioms. We start with the rules.
The only rule from propositional logic is modus ponens. Suppose that we have E℘-recursive func-
tions g0 and g1 such that for all ~a, g0(~a ) w A(~a )→ B(~a ) and g1(~a ) w A(~a ). Then g(~a ) w B(~a )
holds with the E℘-recursive function g(~a ) := g0(~a ) • g1(~a ).
For the ∀ quantifier we have the rule: from B(~u)→ A(x, ~u) infer B(~u)→ ∀xA(x, ~u) if x is not free
in B(~u). Inductively we have an E℘-recursive function h such that for all b,~a,

h(b,~a ) w B(~a)→ A(b,~a).

Suppose d w B(~a). Then h(b,~a )•d w A(b,~a) holds for all b, whence λx.(h(x,~a )•d) w ∀xA(x,~a).
As a result,

λd.λx.(h(x,~a ) • d) w B(~a)→ ∀xA(x,~a).

For the ∃ quantifier we have the rule: from A(x, ~u)→ B(~u) infer ∃x A(x, ~u)→ B(~u) if x is not free
in B(~u). Inductively we then have an E℘-recursive function g such that for all b,~a,

g(b,~a ) w A(b,~a)→ B(~a).

Suppose e w ∃xA(x,~a). Then e 6= ∅ and for all d ∈ e, 1d w A(0d,~a). Consequently, (∀d ∈
e) g(0d,~a ) • 1d w B(~a). We then have Φ(e, λd.g(0d,~a ) • 1d) 6= ∅ and

(∀y ∈ Φ(e, λd.g(0d,~a ) • 1d) y w B(~a) .

Using Lemma 3.2 we arrive at χB(~a,Φ(e, λd.g(0d,~a ) • 1d)) w B(~a); whence

λe.χB(~a,Φ(e, λd.g(0d,~a ) • 1d)) w ∃xA(x,~a)→ B(~a) .
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Next we show that every axiom of CZF + Pow is realized by an E℘-recursive function. We treat
the axioms one after the other.

(Extensionality): Since e w ∀x(x ∈ a ↔ x ∈ b) implies a = b, and hence 0 w a = b, it follows
that

λu.0 w [∀x(x ∈ a ↔ x ∈ b)→ a = b ].

(Pair): There is an E℘-recursive function ℓ such that

ℓ(a, b, c) := {(0, a) | c = a} ∪ {(1, b) | c = b}.

We have ∀u ∈ {a, b} ℓ(a, b, u) w (u = a ∨ u = b) and hence, letting c := {a, b},

λu.ℓ(a, b, u) w ∀x ∈ c(x = u ∨ x = b) .

We also have (0, 0) w (a ∈ c ∧ b ∈ c), so that

(λu.ℓ(a, b, u), (0, 0)) w ∀x ∈ c(x = a ∨ x = b) ∧ (a ∈ c ∧ b ∈ c).

Thus we arrive at

sg((p(a, b), (λu.ℓ(a, b, u), (0, 0))) w ∃y [∀x ∈ y(x = a ∨ x = b) ∧ (a ∈ y ∧ b ∈ y)].

(Union): Let ℓU be the E℘-recursive function defined by

ℓU (a, u) = {(x, (0, 0)) | x ∈ a ∧ u ∈ x}.

For u ∈
⋃

a we then have ℓU (a, u) w ∃x ∈ a u ∈ x, and therefore

λu.ℓU (u, a) w (∀u ∈
⋃

a)(∃x ∈ a) u ∈ x.

Obviously λu.λv.0 w (∀x ∈ a)(∀y ∈ x) y ∈
⋃

a. Therefore we have

sg((
⋃

a, (λu.ℓU (u, a), λu.λv.0))) w ∃w [(∀u ∈ w)(∃x ∈ a) u ∈ x ∧ (∀x ∈ a)(∀y ∈ x) y ∈ w].

(Empty Set): Obviously sg((∅, λv.0)) w ∃x (∀u ∈ x)u 6= u.

(Binary Intersection): Let c := a ∩ b. As

λv.(0, 0) w ∀x ∈ c (x ∈ a ∧ x ∈ b)

and λu.0 w ∀x (x ∈ a ∧ x ∈ b→ x ∈ c) hold, we conclude that

sg((a ∩ b, (λv.(0, 0), λu.0))) w ∃y [∀x ∈ y (x ∈ a ∧ x ∈ b) ∧ ∀x (x ∈ a ∧ x ∈ b→ x ∈ y)].

(Powerset): It suffices to find a realizer for the formula

∃y ∀x(x ⊆ a→ x ∈ y)]
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since realizability of the power set axiom follows then with the help of ∆0 Separation. One easily
verifies that e w ∀u(u ∈ b→ u ∈ a) implies b ⊆ a and consequently b ∈ P(a). Therefore we have

λu.λv.0 w ∀x[x ⊆ a→ x ∈ P(a)],

thus sg((P(a), λu.λv.0)) w ∃y ∀x[x ⊆ a→ x ∈ y].

(Set Induction): Suppose e w ∀x[∀y(y ∈ x→ A(y))→ A(x)]. Then, for all a,

e • a w [∀y(y ∈ a→ A(y))→ A(a)] .

Suppose we have an index e∗ such that for all b ∈ a, e∗ • b w A(b). As v w b ∈ a entails b ∈ a,
we get

λu.λv.e∗ • u w ∀y(y ∈ a→ A(y)),

and hence

(e • a) • (λu.λv.e∗ • u) w A(a). (1)

By the recursion theorem we can effectively cook up an index q such that

(q • e) • a ≃ (e • a) • (λu.λv.(q • e) • u).

In view of the above it follows by set induction that for all a, (q • e) • a ↓ and (q • e) • a w A(a).
As a result we have λw.(q • e) • w w ∀x A(x), yielding

λeλw.(q • e) • w w ∀x[∀y(y ∈ x→ A(y))→ A(x)]→ ∀x A(x).

(Strong Collection): Suppose

e w ∀u(u ∈ a→ ∃y B(u, y)). (2)

Then we have, for all b ∈ a, (e • b) • 0 w ∃y B(b, y), and so (e • b) • 0 6= ∅ and

(∀d ∈ (e • b) • 0) 1d w B(b, 0d). (3)

Let
C∗ := {0d | (∃x ∈ a)[d ∈ (e • x) • 0 ]}.

C∗ is a set in our background theory, using Replacement or Strong Collection.
Now assume e′ w b ∈ a. Then b ∈ a and hence, by the above, (e • b) • 0 6= ∅ and

(∀d ∈ (e • b) • 0) (0, 1d) w [0d ∈ C∗ ∧ B(b, 0d)]. (4)

There is an E℘-recursive function ℓ2 defined by

ℓ2(e, b) ≃ {(0d, (0, 1d)) | d ∈ (e • b) • 0}.

From (4) we can infer that ℓ2(e, b) w ∃y [y ∈ C∗ ∧ B(b, y)] and hence

λu.λv.ℓ2(e, u) w ∀x(x ∈ a→ ∃y [y ∈ C∗ ∧ B(x, y)]). (5)
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Now assume c ∈ C∗. Then there exists b ∈ a and d ∈ (e • b) • 0 such that c = 0d. Moreover, by
(3), whenever b ∈ a, d ∈ (e • b) • 0 and 0d = c, then 1d w B(b, c). Letting ℓ3 be the E℘-recursive
function defined by

ℓ3(a, c, e) ≃ {(b, (0, 1d)) | b ∈ a ∧ ∃d ∈ (e • b) • 0 0d = c},

we then have

ℓ3(a, c, e) w ∃x(x ∈ a ∧ B(x, c)), (6)

thus

λu.λv.ℓ3(a, u, e) w ∀y[y ∈ C∗ → ∃x(x ∈ a ∧ B(x, y))]. (7)

Finally observe that there is an E℘-recursive function l such that

l(a, e) := {0d | d ∈
⋃

x∈a

((e • x) • 0)} = {0d | (∃x ∈ a)[d ∈ (e • x) • 0 ]} = C∗.

Thus in view of (5) and (7) we arrive at

sg((l(a, e), (λu.λv.ℓ2(e, u), λu.λv.ℓ3(a, u, e)))) w ∃z [∀x(x ∈ a→ ∃y [y ∈ z ∧ B(x, y)])

∧ ∀y[y ∈ z → ∃x(x ∈ a ∧ B(x, y))]].

As a result, λw.λq.sg((l(w, q), (λu.λv.ℓ2(q, u), λu.λv.ℓ3(w, u, q)))) is a realizer for each instance of
Strong Collection.

(Infinity): By [6, Lemma 9.2.2] it suffices to find a realizer for the formula

∃z ∀x(x ∈ z ↔ [x = ∅ ∨ ∃y ∈ z x = y ∪ {y}]).

Here x = ∅ is an abbreviation for ∀y(y ∈ x → y 6= y) and (∃y ∈ z) x = y ∪ {y} is an abbreviation
for

∃y(y ∈ z ∧ [∀w(w ∈ x→ [w ∈ y ∨ w = y]) ∧ [∀w(w ∈ y → w ∈ x) ∧ y ∈ x ]]).

We have

λu′.λv′.0 w ∀y(y ∈ ∅ → y 6= y). (8)

For n + 1 ∈ ω we have

ℓ4(n + 1) w ∀w(w ∈ n + 1→ (w ∈ n ∨ w = n)) (9)

for the E℘-recursive function

ℓ4(u) := λw.λv′.{(0, 0) | w ∈ [pN](u)} ∪ {(1, 0) | w = [pN](u)}.

We also have (λw′.λv′.0, 0) w ∀w(w ∈ n→ w ∈ n + 1) ∧ n ∈ n + 1. Thus

ℓ5(n + 1) w n ∈ ω ∧ [∀w(w ∈ n + 1→ (w ∈ n ∨ w = n)) (10)

∧ [∀w(w ∈ n→ w ∈ n + 1) ∧ n ∈ n + 1]].
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with ℓ5(n + 1) := (0, (ℓ4(n + 1), (λw′.λv′.0, 0))). From (10) we conclude that

ℓ6(n + 1) w (∃y ∈ ω)(n + 1 = y ∪ {y}), (11)

where ℓ6(m) := sg(([pN](m), ℓ5(m))). Now from (8) and (11) we conclude that for every m ∈ ω:

sg([dN](0, m, (0, λu′.λv′.0), (1, ℓ6(m)))) w m = ∅ ∨ ∃y ∈ ω m = y ∪ {y}.

If e w a ∈ ω then a ∈ ω, and hence with ℓ7(ω) := λu.sg([dN](0, u, (0, λu′.λv′.0), (1, ℓ6(u)))),

ℓ7(ω) w (∀x ∈ ω)[x = ∅ ∨ ∃y ∈ ω x = y ∪ {y}]. (12)

Conversely, if e w ∀y(y ∈ a → y 6= y), then really ∀y ∈ a y 6= y, and hence a = ∅, so that a ∈ ω.
Also, if e′ w ∃y ∈ ω a = y ∪ {y} then by unraveling this definition it turns out that a ∈ ω holds.
As a result, if d w [a = ∅ ∨ ∃y ∈ ω a = y ∪ {y}] then there exists f ∈ d such that 0f = 0 and
1f w a = ∅ or 0f = 1 and 1f w ∃y ∈ ω a = y ∪ {y}. In either case we have a ∈ ω, and so

λx.λe.0 w ∀x([x = ∅ ∨ ∃y ∈ ω x = y ∪ {y}]→ x ∈ ω). (13)

Combining (12) and (13), we have with h := sg((ω, λv.(λd.(ℓ7(ω) • v), λe.0))) that

h w ∃z ∀x(x ∈ z ↔ [x = ∅ ∨ ∃y ∈ z x = y ∪ {y}]). (14)

⊓⊔

We would like to show that KP(P) also realizes every theorem of Tharp’s quasi-intuitionistic set
theory without Ord-Im. This requires a special Lemma about realizability of bounded formulae.

Definition 3.6 To each ∆P
0 formula D(x1, . . . , xr) of L∈ all of whose free variables are among

~x = x1, . . . , xr, we assign a total E℘-recursive function kD of arity r as follows:

1. kD(~x) = {0} if D(~x) is atomic.

2. kD(~x) = {{〈0, z〉} | z ∈ kA(~x) ∧ A(~x)} ∪ {{〈1, z〉} | z ∈ kB(~x) ∧ B(~x)} if D(~x) is of the form
A(~x) ∨ B(~x).

3. kD(~x) = {〈z, w〉 | z ∈ kA(~x) ∧ w ∈ kB(~x)} if D(~x) is of the form A(~x) ∧ B(~x).

4. kD(~x) = {λv.χB(~x, kB(~x))} if D(~x) is of the form A(~x) → B(~x).

5. kD(~x) = {{〈z, v〉} | z ∈ xi ∧ v ∈ kA(~x, z) ∧ A(~x, z)} if D(~x) is of the form ∃z ∈ xi A(~x, z).

6. kD(~x) = {λz.χA(~x, z, kA(~x, z))} if D(~z) is of the form ∀z ∈ xi A(~x, z).

7. kD(~x) = {{〈z, 〈λy.0, v〉〉} | z ∈ P(xi) ∧ v ∈ kA(~x, z) ∧ A(~x, z)} if D(~x) is of the form
∃z ⊆ xi A(~x, z).

8. kD(~x) = {λy.λz.χA(~x, z, kA(~x, z))} if D(~z) is of the form ∀z ⊆ xi A(~x, z).

In the above, we tacitly used the fact that for every ∆P
0 formula A(~x, u) there is an E℘-recursive

function fA such that fA(~x, a) = {u ∈ a | A(~x, u)}. This is proved in [36, Lemma 2.20].

For ∆0-formulae realizability and truth coincide as the following Proposition shows.
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Proposition 3.7 Let D(~x) be a ∆P
0 formula whose free variables are among ~x = x1, . . . , xr. Then

the following are provable in IKP(P):

(i) D(~x) → kD(~x) 6= ∅ ∧ ∀u ∈ kD(~x) u w D(~x).

(ii) (∃e e w D(~x)) → D(~x).

Proof : We show (i) and (ii) simultaneously by induction on the complexity of D.

1. For atomic D this is obvious.

2. Let D(~x) be of the form A(~x) ∨ B(~x). First suppose that D(~x) holds. Then the induction
hypothesis entails that A(~x) and kA(~x) 6= ∅ or B(~x) and kB(~x) 6= ∅. In every case we have
kD(~x) 6= ∅.
If u ∈ kD(~x) then either u = {〈0, z〉} and A(~x) for some z ∈ kA(~x) or u = {〈1, z〉} and B(~x) for
some z ∈ kB(~x). In the first case the inductive assumption yields z w A(~x) and hence u w D(~x).
In the second case the inductive assumption yields z w B(~x) and hence also u w D(~x). This
shows (i).
As to (ii), suppose that e w D(~x). Then there exists u ∈ e such that u = 〈0, d〉 ∧ d w A(~x) or
u = 〈1, d〉 ∧ d w B(~x) for some d. The induction hypothesis yields A(~x) or B(~x), thus D(~x).

3. Let D(~x) be of the form A(~x) ∧ B(~x). Then (i) and (ii) are immediate by the induction
hypothesis.

4. Let D(~x) be of the form A(~x) → B(~x). By definition, kD(~x) = {λv.χB(~x, kB(~x))} 6= ∅. As to
(i), assume that D(~x) holds and e w A(~x). Then the induction hypothesis (ii) applied to A(~x)
yields that A(~x) holds, which implies that B(~x) holds. The induction hypothesis (i) for the latter
formula yields that kB(~x) 6= ∅ and ∀u ∈ kB(~x) u w B(~x). An application of Lemma 3.2 thus yields
χB(~x, kB(~x)) w B(~x). As a result, λv.χB(~x, kB(~x)) w D(~x) confirming (i).
For (ii), suppose e w (A(~x)→ B(~x)) and A(~x) holds. By the induction hypothesis (i) for the latter
formula, kA(~x) 6= ∅ and ∀u ∈ kA(~x) u w A(~x). Thus, picking u0 ∈ kA(~x) we have e • u0 w B(~x),
and hence the induction hypothesis (ii) for the latter formula yields that B(~x) holds.

5. Let D(~x) be of the form ∃z ∈ xi A(~x, z). To verify (i), suppose ∃z ∈ xi A(~x, z) holds. Then
there is z ∈ xi such that A(~x, z). The induction hypothesis (i) for the latter formula yields that
kA(~x, z) 6= ∅, and hence kD(~x) 6= ∅. Now suppose u ∈ kD(~x). Then u = {〈z, v〉} for some z ∈ xi

and v ∈ kA(~x, z). As A(~x, z) holds the induction hypothesis (i) yields that v w A(~x, z), whence
u w ∃z ∈ xi A(~x, z).
For (ii), assume e w ∃z ∈ xi A(~x, z). Then e 6= ∅. Picking d ∈ e we have 0d ∈ xi and
1d w A(~x, 0d), thus A(~x, 0d) by the induction hypothesis (ii), thence ∃z ∈ xi A(~x, z) holds.

6. Let D(~x) be of the form ∀z ∈ xi A(~x, z). To verify (i), suppose ∀z ∈ xi A(~x, z) is true. By
definition, kD(~x) = {λz.χA(~x, z, kA(~x, z))} 6= ∅. If z0 ∈ xi we have A(~x, z0), so that inductively
kA(~x, z0) 6= ∅ and ∀d ∈ kA(~x, z0) d w A(~x, z0). Whence, by Lemma 3.2, χA(~x, z0, kA(~x, z0)) w

A(~z, z0). As a result, λz.χA(~x, z, kA(~x, z)) w D(~x).
As for (ii), suppose e w ∀z ∈ xi A(~x, z). Thus e • z w A(~x, z) for all z ∈ xi, so that inductively
∀z ∈ xi A(~x, z) holds.

7. Let D(~x) be of the form ∃z ⊆ xi A(~x, z). To verify (i), suppose ∃z ⊆ xi A(~x, z) holds. Then
there is z ∈ P(xi) such that A(~x, z). The induction hypothesis (i) for the latter formula yields that
kA(~x, z) 6= ∅, and hence kD(~x) 6= ∅. Now suppose u ∈ kD(~x). Then u = {〈z, 〈λy.0, v〉〉} for some
z ⊆ xi and v ∈ kA(~x, z). As A(~x, z) holds the induction hypothesis (i) yields that v w A(~x, z).
Also λy.0 w z ⊆ xi. Whence u w ∃z (z ⊆ xi ∧ A(~x, z)).
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For (ii), assume e w ∃z [z ⊆ xi ∧ A(~x, z)]. Then e 6= ∅. Picking d ∈ e we have 1d w [0d ⊆
xi ∧ A(~x, 0d)]. This entails 0d ⊆ xi and 1(1d) w A(~x, 0d). Thus A(~x, 0d) by the induction
hypothesis (ii), thence ∃z ⊆ xi A(~x, z) holds.

8. Let D(~x) be of the form ∀z ∈ xi A(~x, z). To verify (i), suppose ∀z ∈ xi A(~x, z) is true. By
definition, kD(~x) = {λy.λz.χA(~x, z, kA(~x, z))} 6= ∅. If y w z0 ⊆ xi, then z0 ⊆ xi holds and we have
A(~x, z0), so that inductively kA(~x, z0) 6= ∅ and ∀d ∈ kA(~x, z0) d w A(~x, z0). Whence, by Lemma
3.2, χA(~x, z0, kA(~x, z0)) w A(~z, z0). As a result, λy.λz.χA(~x, z, kA(~x, z)) w D(~x).
As for (ii), suppose e w ∀z ⊆ xi A(~x, z). Thus e• z w [z ⊆ xi → A(~x, z)] for all z. If z ⊆ xi, then
λy.0 w z ⊆ xi, so that (e • z) • (λy.0) w A(~x, z), and therefore, by the inductive assumption,
A(~x, z) holds. As a result, ∀z ∈ xi A(~x, z) holds. ⊓⊔

Theorem 3.8 Let T − denote Tharp’s [39] quasi-intuitionistic set theory without Ord-Im. Let
D(u1, . . . , ur) be a formula of L∈ all of whose free variables are among u1, . . . , ur. If

T − ⊢ D(u1, . . . , ur),

then one can effectively construct an index of an E℘-recursive function g such that

KP(P) ⊢ ∀a1, . . . , ar g(a1, . . . , ar) w D(a1, . . . , ar) .

Proof : Note that with the exception of excluded middle for power bounded formulae, the axioms
of T − are axioms of CZFP , too. Let D(~u ) be ∆P

0 . Define

dD(~a) := {〈0, u〉 | u ∈ kD(~a)} ∪ {〈1, u〉 | u ∈ k¬D(~a)},

with kD, k¬D defined as in Definition 3.6. Note that dD is E-recursive. By Proposition 3.7(i) and
classical logic we have that dD(~a) 6= ∅. Moreover, if 〈i, u〉 ∈ dD(~a) then either i = 0 and u w D(~a)
or i = 1 and u w ¬D(~a). Thus dD(~a) w D(~a) ∨ ¬D(~a).
In view of the previous Theorem 3.5 we thus found realizers for all theorems of T −. ⊓⊔

Lemma 3.9 CZFP is a subtheory of T −.

Proof : The only axioms of CZFP that do not already belong to T − are the instances of Bounded
Separation. Let A(u) be bounded. We shall reason in T −. Using excluded middle for bounded
formulae, Pairing and Emptyset, we have

∀u ∈ a∃z [(A(u) ∧ z = {u}) ∨ (¬A(u) ∧ z = 0)].

Thus, by Strong Collection, there exists a set b such that

∀u ∈ a∃z ∈ b [(A(u) ∧ z = {u}) ∨ (¬A(u) ∧ z = 0)] (15)

∧ ∀z ∈ b ∃u ∈ a (A(u) ∧ z = {u}) ∨ (¬A(u) ∧ z = 0)].

By Union,
⋃

b is a set, and by (15),
⋃

b = {u ∈ a | A(u)}. ⊓⊔
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4 A type theory pertaining to CZFP

Let ML1 be Martin-Löf’s type theory with a single universe U but without any W -types (cf. [19]).
The type U of small types reflects the basic forms of type. These are N0 (empty type), N (type
of naturals), (Πx : A)F (x), (Σx : A)F (x), A + B and I(A, b, c) where A and B are types, F is a
family of types over A and b, c : A.
ML1V is the extension of ML1 with Aczel’s type of iterative sets V (cf. [1]). V is inductively
specified by the rule

A : U x : A⇒ F : V

sup(x : A)F : V

It is this type V with the above introduction rule and a corresponding elimination rule (or rule of
transfinite recursion on V) that has been used in [1] to give an interpretation of constructive set
theory (for more details see [2, 29]).

Remark 4.1 V can be viewed as a single W -type on top of U. V should certainly not be construed
as an additional universe on top of U. As it turns out, adding V amounts to the same as adding
an elimination rule to U which renders U an inductively defined type. V can then be explicitly
defined from U in extensional ML1 augmented by the principle of transfinite recursion on U as
has been shown by Palmgren in [26].

We extend the syntax of ML1V with a type constant P and several other constants pertaining
to it. The rules for P render it an impredicatively Π-closed type universe inside U. The rules
governing P are given by the schemes

0P : P P : U
a : P

TP(a) : U

a : P b1 : TP(a) b2 : TP(a)

b1 = b2 : TP(a)

A : U x : A⇒ B : P

(πx : A)B : P

A : U x : A⇒ B1 = B2 : P

(πx : A)B1 = (πx : A)B2 : P

TP(0P) = N0

A : U x : A⇒ B : P

sA,B : TP((πx : A)B)↔ (Πx : A)TP(B)
(⋆).

The formulation of the rules for the type P, embodies the principle that elements of P are only
codes for types, hence the need for a decoding function TP and the π-binder. 0P represents the
false proposition and thus TP(0P) should be the empty type.
With these rules the type P behaves like the impredicative type of propositions of the calculus
of constructions, with the additional property that all propositions in P are proof-irrelevant. The
equivalence in the rule (⋆) was already introduced in [10]. This type theory will be denoted by
MLVP.

5 Reducing MLVP to CZFP

Here we build on the types-as-classes interpretation from [33] and [34, Definition 6.7] that uses
classes of indices of generalized set recursive functions to interpret large Π-types. [34, Theorem
6.8] shows that this provides a translation of ML1V into CZF. In this interpretation the type U
is emulated by the inductively defined class Y∗ introduced in [34, Definition 2.8]. A larger class
Y∗∗ is obtained by adding a fifth clause to the definition of Y∗ which just says that the powerset
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of {0} and every set x ⊆ {0} is in Y∗∗. To deal with MLVP, U will be interpreted as Y∗∗ and the
type V will then be interpreted as the class V(Y∗∗) which is defined in the same vein as V(Y∗)
in [34, Definition 3.1]. The type P will be interpreted by P({0}), the powerset of {0}. For sets A
and a function F : A→ P({0}) let π(A, F ) := {y ∈ {0} | ∀x ∈ A F (x) = {0}}. This is the way we
interpret the π-binder. TP will be interpreted as the identity function while sA,B is the unique 1-1
correspondence between the sets π(A, F ) and Πx∈AF (x).

Theorem 5.1 The types-as-classes translation provides an interpretation of MLVP in CZFP .

Proof : For details see [34, Theorem 6.8] and [29, Theorem 4.11]. ⊓⊔

6 Reducing CZF + Pow¬¬ to MLVP

Recall that the negative power set axiom, Pow¬¬, asserts that for every set a there exists a set c
containing all the subsets x of a for which ∀u ∈ a(¬¬u ∈ x→ u ∈ x) holds. The latter set will be
denoted by P¬¬(a).

Lemma 6.1 The theory obtained from CZF by adding the axiom ‘P¬¬({0}) is a set’ is equivalent
to CZF + Pow¬¬.

Proof : [15, Lemma 4.3.2]. ⊓⊔

Theorem 6.2 The theory CZF + Pow¬¬ can be justified in the type theory MLVP.

Proof : For the axioms of CZF this is due to Aczel [1]. The validity of the negative power set axiom
in a type theory with P was shown by Gambino [15, Lemma 4.3.7]. ⊓⊔

7 Completing the circle: the proof of Theorem 1.1

The main thing we know so far is that CZFP is proof-theoretically no stronger than KP(P)
(Theorem 3.5). As for the proof-theoretic equivalence of ((i) and (ii) in Theorem 1.1, we need to
show that CZFP + RDC + ΠΣ−AC is no stronger than CZFP . We shall draw on the formulae-
as-classes interpretation of [33] to achieve this.

Theorem 7.1 CZFP + RDC + ΠΣ−AC has a formulae-as-classes interpretation in CZFP .

Proof : The interpretation of CZF + RDC + ΠΣ−AC into CZF of [33, Theorem 4.13] can be
lifted to the theories with Pow added on both sides if one uses the stronger notion of computability
introduced in Definition 2.9. One just needs to show that the power set axiom is validated in this
interpretation if one has it in the background theory and uses the stronger notion of computability.
This is not very difficult. ⊓⊔

To get back from KP(P) to CZFP we shall rely on [35]. Let OT (ϑ) = (BH,≺) be the primitive
recursive ordinal representation system for the Bachmann-Howard ordinal given in [37, Lemma 1.3];
here OT(ϑ) is a primitive recursive set of naturals equipped with a primitive recursive well-ordering
≺ and

BH := {α ∈ OT(ϑ) | α ≺ Ω}.
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For τ ∈ BH let

Vτ :=
⋃

ν≺τ

P(Vν) (16)

V ¬¬
τ :=

⋃

ν≺τ

P¬¬(V ¬¬
ν ). (17)

Let ‘Vτ exists’ be the statement

∃F [F function ∧ dom(f) = {ν ∈ BH | ν ≺ τ} ∧ ∀ν ≺ τ F (ν) =
⋃

ξ≺ν

P(F (ξ))] .

Lemma 7.2 For every (meta) τ ∈ BH, CZF proves the scheme of transfinite induction up to τ ,
i.e.,

∀ν ≺ τ [(∀µ ≺ ν ϕ(µ))→ ϕ(ν)] → ∀ν ≺ τ ϕ(ν)

for all formulae ϕ(ν).

Proof : This is a consequence of [32, Lemma 4.3, Theorem 4.13]. ⊓⊔

Lemma 7.3 Let τ ∈ BH. The following are provable in CZF + Pow¬¬ for all β � α � τ :

(i) ‘V ¬¬
α exists’.

(ii) V ¬¬
0 = ∅.

(iii) If α is a limit, then V ¬¬
α =

⋃

ξ≺α V ¬¬
ξ .

(iv) V ¬¬
α+1 = V ¬¬

α ∪ P¬¬(V ¬¬
α ).

(v) V ¬¬
β ⊆ V ¬¬

α .

(vi) V ¬¬
α is transitive.

(vii) u ∈ x ∈ V ¬¬
α → ∃ξ ≺ α u ∈ V ¬¬

ξ .

Proof : (i) follows by transfinite recursion on α using Lemma 7.2 and Replacement. (ii) holds
because V ¬¬

0 =
⋃

ξ≺0
V ¬¬

ξ = ∅.

(iii): V ¬¬
α =

⋃

ξ≺α P
¬¬(V ¬¬

ξ ) =
⋃

ξ≺α

⋃

ζ≺ξ P
¬¬(V ¬¬

ξ ) =
⋃

ξ≺α V ¬¬
ξ when α is a limit.

(iv):

V ¬¬
α+1 =

⋃

ξ≺α+1

P¬¬(V ¬¬
ξ )

= P¬¬(V ¬¬
α ) ∪

⋃

ξ≺α

P¬¬(V ¬¬
ξ )

= P¬¬(V ¬¬
α ) ∪ V ¬¬

α .

(v): Suppose β ≺ α. It suffices to show that V ¬¬
β ∈ P¬¬(V ¬¬

β ). But this is clearly the case since
V ¬¬

β ⊆ V ¬¬
β and (trivially)

∀y ∈ V ¬¬
β (¬¬y ∈ V ¬¬

β → y ∈ V ¬¬
β ) .

(vi) and (vii): Let u ∈ x ∈ V ¬¬
α . Then u ∈ x ∈ P¬¬(V ¬¬

ξ ) for some ξ ≺ α. Hence u ∈ V ¬¬
ξ for

some ξ ≺ α, so that u ∈ V ¬¬
α by (v). ⊓⊔
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Theorem 7.4 (i) The following theories are proof-theoretically equivalent:

1. KP(P)

2. Z + {‘Vτ exists’}τ∈BH.

(ii) The following theories are proof-theoretically equivalent:

1. IKP(P)

2. IZ + {‘Vτ exists’}τ∈BH.

Proof : This is shown in [35]. ⊓⊔

7.1 Reducing Z + {‘ Vτ exists’}τ∈BH to CZF + Pow¬¬

The next step is to employ a double negation interpretation to reduce Z + {‘ Vτ exists’}τ∈BH to an
intuitionistic theory. Here we don’t follow Friedman’s approach in [14]. Instead we use two new
relations =∞ and ∈∞ to interpret = and ∈, respectively. Moreover, these relations are designed
to be stable under double negation. This Ansatz was inspired by a double negation interpretation
of Zermelo set theory in V ¬¬

ω+ω due to Gambino (see [15, Proposition 2.3.21]). In it he uses Aczel’s
a-relations, which combine the idea of bisumulation with stability of doubly negated formulae, to
interpret set-theoretic equality (for details see [15, Definition 2.2.14]). Our interpretation, however,
does not employ a-relations since our background theory has only Bounded Separation. Instead it
uses an equivalence relation defined by transfinite recursion on the ordinal representations of BH.

Theorem 7.5 For every ρ ∈ BH, the theory Z + ‘V ¬¬
ρ exists’ has an interpretation in CZF +

Pow¬¬.

The proof of 7.5 will occupy the remainder of this subsection. Given ρ ∈ BH one can effectively
find ρ∗ ∈ BH such that ρ ≺ ρ∗ and ρ∗ is a limit ordinal bigger than ω. In view of Theorem 7.4 we
also know that CZF + Pow¬¬ proves ‘V ¬¬

ρ∗ exists‘. We would like to use the set V ¬¬
ρ∗ to provide a

model for the theory Z + ‘Vρ exists’. The idea is, of course, to use some kind of double negation
interpretation. But as is well known, the extensionality axiom creates a problem when one uses the
usual Gödel-Gentzen translation. To overcome this problem we define an equivalence relation =∞

on V ¬¬
ρ∗ which will be used to interpret set-theoretic equality and thereby also membership.

Definition 7.6 Let x, y ∈ V ¬¬
ρ∗ . By transfinite recursion on α ≺ ρ∗ define

x =α y iff x, y ∈ V ¬¬
α ∧ ∀u ∈ x¬¬∃v ∈ y ∃β ≺ α u =β v

∧ ∀v ∈ y ¬¬∃u ∈ x∃β ≺ α u =β v

x =∞ y iff ¬¬∃α ≺ ρ∗ x =α y

x ∈∞ y iff ¬¬∃α ≺ ρ∗ ∃u ∈ y x =α u .

Lemma 7.7 Let x, y ∈ V ¬¬
ρ∗ and α ≺ β ≺ ρ∗. Then we have

(i) x =α y → x =β y.

(ii) x, y ∈ V ¬¬
α ∧ x =β y → x =α y.
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(iii) =α is a symmetric and transitive relation. =α is a reflexive relation on V ¬¬
α .

Proof : (i) Suppose x =α y. Then x, y ∈ V ¬¬
α , thus x, y ∈ V ¬¬

β by Lemma 7.3(v). Clearly we have
∃v ∈ y ∃ξ ≺ α u =ξ v → ∃v ∈ y ∃ξ ≺ β u =ξ v, thus

¬¬∃v ∈ y ∃ξ ≺ α u =ξ v → ¬¬∃v ∈ y ∃ξ ≺ β u =ξ v ,

and hence
∀u ∈ x¬¬∃v ∈ y ∃ξ ≺ α u =ξ v → ∀u ∈ x¬¬∃v ∈ y ∃ξ ≺ β u =ξ v .

Likewise, ∀v ∈ y ¬¬∃u ∈ x∃ξ ≺ α u =ξ v → ∀v ∈ y ¬¬∃u ∈ x∃ξ ≺ β u =ξ v . As a result, x =β y.

(ii): We use induction on α. Suppose that x, y ∈ V ¬¬
α and x =β y. If u ∈ x and v ∈ y, then

u ∈ x ∈ P¬¬(V ¬¬
ξ0

) and v ∈ y ∈ P¬¬(V ¬¬
ξ1

) for some ξ0, ξ1 ≺ α. Hence u ∈ V ¬¬
ξ0

and v ∈ V ¬¬
ξ1

. Due
to the linearity of ≺ and in view of Lemma 7.3(v), there exists α0 ≺ α such that u, v ∈ V ¬¬

α0
. As a

result, if u ∈ x and ∃v ∈ y ∃ζ ≺ β u =ζ v, then the induction hypothesis yields ∃v ∈ y ∃ζ ≺ α u =ζ v.
Thus u ∈ x and ¬¬∃v ∈ y ∃ζ ≺ β u =ζ v imply ¬¬∃v ∈ y ∃ζ ≺ α u =ζ v. Consequently,

∀u ∈ x¬¬∃v ∈ y ∃ζ ≺ β u =ζ v → ∀u ∈ x¬¬∃v ∈ y ∃ζ ≺ α u =ζ v . (18)

Likewise one proves

∀v ∈ y ¬¬∃x ∈ u ∃ζ ≺ β u =ζ v → ∀v ∈ y ¬¬∃u ∈ x∃ζ ≺ α u =ζ v . (19)

Hence, since we assumed that x =β y we get x =α y from (18) and (19).

(iii) follows by induction on α. As for transitivity, suppose x, y, z ∈ V ¬¬
α , x =α y, and y =α z.

Assume that u ∈ x, v ∈ y, w ∈ z and u =ξ0 v and v =ξ1 w hold for some ξ0, ξ1 ≺ α. Then, using
(i) and the linearity of ≺, we find ξ ≺ α such that u =ξ v and v =ξ w, so that, by the induction
hypothesis, we get u =ξ w. As a result, letting A be u ∈ x ∧ v ∈ y ∧ ∃ξ0 ≺ α u =ξ0 v,

A → (∃w ∈ z ∃ξ1 ≺ α v =ξ0 w → ∃w ∈ z ∃ξ ≺ α u =ξ w)

A → (¬¬∃w ∈ z ∃ξ1 ≺ α v =ξ0 w → ¬¬∃w ∈ z ∃ξ ≺ α u =ξ w)

A → ¬¬∃w ∈ z ∃ξ ≺ α u =ξ w (since y =α z)

u ∈ x → (∃v ∈ y ∃ξ0 ≺ α u =ξ0 v → ¬¬∃w ∈ z ∃ξ ≺ α u =ξ w)

u ∈ x → (¬¬∃v ∈ y ∃ξ0 ≺ α u =ξ0 v → ¬¬∃w ∈ z ∃ξ ≺ α u =ξ w)

u ∈ x → ¬¬∃w ∈ z ∃ξ ≺ α u =ξ w (since x =α y)

and hence ∀u ∈ x¬¬∃w ∈ z ∃ξ ≺ α u =ξ w. Likewise one shows that ∀w ∈ z ¬¬∃u ∈ x∃ξ ≺ α u =ξ

w. Thus x =α z.
Symmetry and reflexivity are established similarly. ⊓⊔

Corollary 7.8 Let x, y ∈ V ¬¬
ρ∗ . Then:

x =∞ y ↔ ∀u ∈ V ¬¬
ρ∗ (u ∈∞ x ↔ u ∈∞ y) .

Proof : “→”: Suppose α, β ≺ ρ∗, v ∈ x, u =α v, w ∈ y, and v =β w. Letting γ := max(α, β), we
obtain u =γ v and v =γ w by Lemma 7.7(i), and hence u =γ w by Lemma 7.7(iii). Thus, letting B
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stand for the conjunction of α ≺ ρ∗, v ∈ x, and u =α v, we have the following implications:

B ∧ ∃β′ ≺ ρ∗ ∃w′ ∈ y v =β′ w′ → ∃γ′ ≺ ρ∗ ∃w′ ∈ y u =γ′ w′

B ∧ ¬¬∃β′ ≺ ρ∗ ∃w′ ∈ y v =β′ w′ → ¬¬∃γ′ ≺ ρ∗ ∃w′ ∈ y u =γ′ w′

B ∧ ∃η ≺ ρ∗ x =η y → u ∈∞ y

B ∧ ¬¬∃η ≺ ρ∗ x =η y → u ∈∞ y

B ∧ x =∞ y → u ∈∞ y

∃α ≺ ρ∗ ∃v ∈ x u =α v ∧ x =∞ y → u ∈∞ y

¬¬∃α ≺ ρ∗ ∃v ∈ x u =α v ∧ x =∞ y → u ∈∞ y

u ∈∞ x ∧ x =∞ y → u ∈∞ y .

In the above, we used several times that C → ¬¬C and

(A→ ¬¬C)→ (¬¬A→ ¬¬C)

are intuitionistically valid propositions.

“←”: Assume that ∀u ∈ V ¬¬
ρ∗ (u ∈∞ x ↔ u ∈∞ y). Choose α ≺ ρ∗ such that x, y ∈ V ¬¬

α . Let
u ∈ x. Then u ∈ V ¬¬

ξ for some ξ ≺ α by Lemma 7.2(vii). By Lemma 7.7(iii), we have u =ξ u,
which implies u ∈∞ x, and hence u ∈∞ y by our standing assumption. We also have

∃η ≺ ρ∗ ∃w ∈ y u =η w → ∃η ≺ α ∃w ∈ y u =η w ,

and hence
¬¬∃η ≺ ρ∗ ∃w ∈ y u =η w → ¬¬∃η ≺ α ∃w ∈ y u =η w ,

using Lemma 7.7(ii). Thence, as u ∈∞ y, we can conclude that ¬¬∃η ≺ α ∃w ∈ y u =η w. As a
result,

∀u ∈ x¬¬∃η ≺ α ∃w ∈ y u =η w

Likewise, we can conclude that ∀v ∈ y ¬¬∃η ≺ α ∃u ∈ x v =η u, so that x =α y, and consequently
x =∞ y. ⊓⊔

Corollary 7.9 Let x, y, z ∈ V ¬¬
ρ∗ . Then:

x =∞ y ∧ x ∈∞ z → y ∈∞ z .

Proof : Suppose x =α y, x =β u, and u ∈ z for some α, β ≺ ρ∗. Pick δ ≺ ρ∗ such that x, y, z ∈ V ¬¬
δ .

By Lemma 7.7 we have x =δ y, x =δ u, and thus y =δ u, which entails y ∈∞ z. As a result of the
foregoing we have

∃α ≺ ρ∗ x =α y ∧ ∃δ′ ≺ ρ∗ ∃u ∈ z x = u → y ∈∞ z , thus

x =∞ y ∧ x ∈∞ z → y ∈∞ z ,

exploiting (again) that y ∈∞ z is a twice negated formula. ⊓⊔

Next we will show in CZF+Pow¬¬ that the structure (V ¬¬
ρ∗ ,∈∞,=∞) models the double negation

translation of all the axioms of Z + ‘Vρ exists’ when the elementhood and equality symbols are
interpreted as ∈∞ and =∞, respectively.
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Definition 7.10 (N -translation) Let the map (.)N from the language of set theory into itself be
defined as follows:

(x ∈ y)N := x ∈∞ y

(x = y)N := x =∞ y

(A ∧B)N := AN ∧BN

(A ∨B)N := ¬(¬AN ∧ ¬BN )

(A→ B)N := AN → BN

(¬A)N := ¬AN

(∀xA)N := ∀x AN

(∃xA)N := ¬∀x¬AN .

Note that the formulae x ∈∞ y and x =∞ y are already doubly negated, so that there is no need
to put double negations in front of them.

Lemma 7.11 CZF + Pow¬¬ ⊢ (V ¬¬
ρ∗ ,∈∞,=∞) |= (Extensionality)N .

Proof : Observe that (Extensionality)N is

∀x,∀y [x =∞ y ↔ ∀u (u ∈∞ x ↔ u ∈∞ y)] .

So the claimed assertion is a consequence of Corollary 7.8. ⊓⊔

Corollary 7.12 CZF + Pow¬¬ ⊢ (V ¬¬
ρ∗ ,∈∞,=∞) |= ∀x∀y [A(x) ∧ x = y → A(y)].

Proof : This follows from Lemma 7.11 and Corollary 7.9 by formula induction on A(x). ⊓⊔

Lemma 7.13 CZF + Pow¬¬ ⊢ (V ¬¬
ρ∗ ,∈∞, =∞) |= (Pairing)N .

Proof : Let a, b ∈ V ¬¬
ρ∗ . Pick α ≺ ρ∗ such that a, b ∈ V ¬¬

α and let

c := {x ∈ V ¬¬
α | ¬¬(x =∞ a ∨ x =∞ b)} .

Note that c ⊆ V ¬¬
α . If u ∈ V ¬¬

α and ¬¬u ∈ c, then ¬¬(¬¬(u =∞ a ∨ u =∞ b)), hence ¬¬(u =∞

a ∨ u =∞ b), so that u ∈ c. This shows that c ∈ P¬¬(V ¬¬
α ), thus c ∈ V ¬¬

α+1.
Now suppose z =∞ x and x ∈ c. Then ¬¬(x =∞ a ∨ x =∞ b), and thus, by Corollary 7.12,
¬¬(z =∞ a ∨ z =∞ b). Hence, as z =β x implies z =∞ x,

β ≺ ρ∗ ∧ x ∈ c ∧ z =β x → ¬¬(z =∞ a ∨ z =∞ b)

∃β ≺ ρ∗ ∃x ∈ c z =β x → ¬¬(z =∞ a ∨ z =∞ b)

¬¬∃β ≺ ρ∗ ∃x ∈ c z =β x → ¬¬(z =∞ a ∨ z =∞ b)

z ∈∞ c → ¬¬(z =∞ a ∨ z =∞ b) .

Conversely, z =∞ a ∨ z =∞ b implies z ∈∞ c by Corollary 7.12 since a ∈∞ c and b ∈∞ c. Thus
¬¬(z =∞ a ∨ z =∞ b) implies z ∈∞ c since the latter formula starts with a negation. ⊓⊔

Lemma 7.14 CZF + Pow¬¬ ⊢ (V ¬¬
ρ∗ ,∈∞, =∞) |= (Union)N .
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Proof : Let a ∈ V ¬¬
ρ∗ . Pick α ≺ ρ∗ such that a ∈ V ¬¬

α and let

c := {v ∈ V ¬¬
α | ¬¬∃z ∈ a v ∈∞ z} .

Note that c ⊆ V ¬¬
α . If v ∈ V ¬¬

α and ¬¬v ∈ c, then ¬¬(¬¬∃z ∈ a v ∈∞ z), hence ¬¬∃z ∈ a v ∈∞ z,
so that v ∈ c. This shows that c ∈ P¬¬(V ¬¬

α ), thus c ∈ V ¬¬
α+1.

For x ∈ V ¬¬
ρ∗ we have:

β ≺ ρ∗ ∧ v ∈ c ∧ x =β v → x =∞ v ∧ ¬¬∃z ∈ a v ∈∞ z

β ≺ ρ∗ ∧ v ∈ c ∧ x =β v → x =∞ v ∧ ¬¬∃z ∈ V ¬¬
ρ∗ (z ∈∞ a ∧ v ∈∞ z)

β ≺ ρ∗ ∧ v ∈ c ∧ x =β v → ¬¬∃y ∈ V ¬¬
ρ∗ (y ∈∞ a ∧ x ∈∞ y) (by Corollary 7.12)

¬¬∃γ ≺ ρ∗ ∃u ∈ c x =β u → ¬¬∃y ∈ V ¬¬
ρ∗ (y ∈∞ a ∧ x ∈∞ y)

x ∈∞ c → ¬¬∃y ∈ V ¬¬
ρ∗ (y ∈∞ a ∧ x ∈∞ y) .

Conversely, let x, y, z ∈ V ¬¬
ρ∗ and β, δ ≺ ρ∗. Then:

y ∈ a ∧ u ∈ y → u ∈ V ¬¬
α ∧ ∃z ∈ a u ∈∞ z

y ∈ a ∧ u ∈ y → u ∈ V ¬¬
α ∧ ¬¬∃z ∈ a u ∈∞ z

y ∈ a ∧ u ∈ y → u ∈∞ c

y ∈ a ∧ u ∈ y ∧ x =β u → x ∈∞ c (by Corollary 7.12)

y ∈ a ∧ ¬¬∃β′ ≺ ρ∗ ∃u′ ∈ y x =β′ u′ → x ∈∞ c

y ∈ a ∧ x ∈∞ y → x ∈∞ c

y ∈ a ∧ z =δ y ∧ x ∈∞ z → x ∈∞ c (by Corollary 7.12)

∃δ′ ≺ ρ∗ ∃y′ ∈ a z =δ y′ ∧ x ∈∞ z → x ∈∞ c

¬¬∃δ′ ≺ ρ∗ ∃y′ ∈ a z =δ y′ ∧ x ∈∞ z → x ∈∞ c

z ∈∞ a ∧ x ∈∞ z → x ∈∞ c

¬¬∃z′ ∈ V ¬¬
ρ∗ (z′ ∈∞ a ∧ x ∈∞ z′) → x ∈∞ c .

From the above we conclude that (V ¬¬
ρ∗ ,∈∞,=∞) |= (Union)N . ⊓⊔

Lemma 7.15 CZF + Pow¬¬ ⊢ (V ¬¬
ρ∗ ,∈∞,=∞) |= (full Separation)N .

Proof : Let a ∈ V ¬¬
ρ∗ and let A(v) be a formula with parameters from V ¬¬

ρ∗ and at most the
free variable v. Let A∗(v) arise from A(v) by first applying the N -translation and subsequently
restricting all unbounded quantifiers to V ¬¬

ρ∗ . Pick α ≺ ρ∗ such that a ∈ V ¬¬
α and let

c := {x ∈ V ¬¬
α | x ∈∞ a ∧ (V ¬¬

ρ∗ ,∈∞,=∞) |= A∗(x)} .

c is a set by bounded Separation in our background theory. Obviously c ⊆ V ¬¬
α . Suppose u ∈ V ¬¬

α

and ¬¬u ∈ c. Then ¬¬u ∈∞ a and ¬¬A∗(u), thus u ∈∞ a and A∗(u) since both formulae are
negative. As a result, c ∈ V ¬¬

α+1.
Now let x ∈ V ¬¬

ρ∗ and β ≺ ρ∗. Then:

u ∈ c → u ∈∞ a ∧ A∗(u)

u ∈ c ∧ x =β u → x ∈∞ a ∧ A∗(x) (by Corollary 7.12)

∃β′ ≺ ρ∗ ∃u ∈ c x =β u → x ∈∞ a ∧ A∗(x)

¬¬∃β′ ≺ ρ∗ ∃u ∈ c x =β u → x ∈∞ a ∧ A∗(x) (succedent is negative)

x ∈∞ c → x ∈∞ a ∧ A∗(x) .
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u ∈ a ∧ A∗(u) → u ∈ c

u ∈ a ∧ A∗(u) → u ∈∞ c

u ∈ a ∧ x =β u ∧ A∗(x) → x ∈∞ c (by Corollary 7.12)

∃β′ ≺ ρ∗ ∃u ∈ a x =β u ∧ A∗(x) → x ∈∞ c

x ∈∞ a ∧ A∗(x) → x ∈∞ c .

As a result of the above we have

(V ¬¬
ρ∗ ,∈∞,=∞) |= ∃z ∀x[x ∈∞ z ↔ (x ∈∞ a ∧ AN (x))] .

⊓⊔

Lemma 7.16 CZF + Pow¬¬ ⊢ (V ¬¬
ρ∗ ,∈∞, =∞) |= (Set Induction)N .

Proof : Let A(v) be a formula with parameters from V ¬¬
ρ∗ and at most the free variable v. Let A∗(v)

arise from A(v) by first applying the N -translation and subsequently restricting all unbounded
quantifiers to V ¬¬

ρ∗ . Assume that

∀z ∈ V ¬¬
ρ∗ [∀y ∈ V ¬¬

ρ∗ (y ∈∞ z → A∗(y))→ A∗(z)]. (20)

Let a ∈ V ¬¬
α where α ≺ ρ∗. The aim is to show that A∗(a) holds. To this end we proceed by

induction on α. If u ∈ a then u ∈ V ¬¬
ξ for some ξ ≺ α by Lemma 7.3(vii), thus A∗(u) holds by the

inductive assumption. For x ∈ V ¬¬
ρ∗ we thus have

x =β u ∧ u ∈ a → A∗(x) (by Corollary 7.12)

∃β ≺ ρ∗ ∃u ∈ a x =β u → A∗(x)

x ∈∞ a → A∗(x) (A∗(x) being negative) .

In view of our assumption (20) we thus have A∗(a). ⊓⊔

Lemma 7.17 CZF + Pow¬¬ ⊢ (V ¬¬
ρ∗ ,∈∞, =∞) |= (Power Set)N .

Proof : For x, y ∈ V ¬¬
ρ∗ define x ⊆∞ y as ∀u ∈ V ¬¬

ρ∗ (u ∈∞ x→ u ∈∞ y).
Let a ∈ V ¬¬

α+1 for some α ≺ ρ∗. Let

c := {x ∈ V ¬¬
α+1 | x ⊆∞ a}.

Then c ⊆ V ¬¬
α+1 and we have

w ∈ V ¬¬
α+1 ∧ ¬¬w ∈ c → ¬¬w ⊆∞ a

→ ¬¬∀u ∈ V ¬¬
ρ∗ (u ∈∞ w → u ∈∞ a)

→ ∀u ∈ V ¬¬
ρ∗ ¬¬ (u ∈∞ w → u ∈∞ a)

→ ∀u ∈ V ¬¬
ρ∗ (¬¬u ∈∞ w → ¬¬u ∈∞ a)

→ ∀u ∈ V ¬¬
ρ∗ (u ∈∞ w → u ∈∞ a)

→ w ⊆∞ a

→ w ∈ c .
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This shows that c ∈ V ¬¬
α+2.

Now suppose y ⊆∞ a. Let
y∗ := {v ∈ V ¬¬

α | v ∈∞ y}.

Then y∗ ⊆∞ y. Let u ∈∞ y. Then u ∈ a and hence

β ≺ ρ∗ ∧ u =β v ∧ v ∈ a → v ∈∞ y

β ≺ ρ∗ ∧ u =β v ∧ v ∈ a → v ∈∞ y∗

β ≺ ρ∗ ∧ u =β v ∧ v ∈ a → u ∈∞ y∗

∃β ≺ ρ∗ ∃v ∈ a u =β v → u ∈∞ y∗

¬¬∃β ≺ ρ∗ ∃v ∈ a u =β v → u ∈∞ y∗

u ∈∞ y → u ∈∞ y∗ .

So y ⊆∞ y∗, which together with y∗ ⊆∞ y yields y =∞ y∗, and hence y ∈∞ c. As a result,

y ⊆∞ a → y ∈∞ c . (21)

Conversely, suppose y ∈∞ c. Then we have

β ≺ ρ∗ ∧ y =β z ∧ z ∈ c → z ⊆∞ a

β ≺ ρ∗ ∧ y =β z ∧ z ∈ c → y ⊆∞ a

∃β ≺ ρ∗ ∃z ∈ c y =β z → y ⊆∞ a

¬¬∃β ≺ ρ∗ ∃z ∈ c y =β z → y ⊆∞ a

y ∈∞ c → y ⊆∞ a . (22)

(21) and (22) imply that the Powerset axiom holds in (V ¬¬
ρ∗ ,∈∞,=∞). ⊓⊔

Lemma 7.18 CZF + Pow¬¬ ⊢ (V ¬¬
ρ∗ ,∈∞, =∞) |= (Infinity)N .

Proof : By recursion on n ∈ ω define

0∗ := ∅

(n + 1)∗ := {u ∈ V ¬¬
n+1 | ¬¬(u ∈∞ n∗ ∨ u =∞ n∗)}

ω∗ := {u ∈ V ¬¬
ω | ¬¬∃n ∈ ω u =∞ n∗} .

By induction on n one readily verifies that n∗ ∈ V ¬¬
n+1. Also ω∗ ∈ V ¬¬

ω+1. Moreover, it is by now
routine (though tedious) to verify that the following statement holds in (V ¬¬

ρ∗ ,∈∞,=∞):

∀x [x ∈ ω∗ ↔ ¬¬ (¬¬∃u u ∈ x ∨ ¬¬∃y [y ∈ ω∗ ∧ ∀v (v ∈∞ x ↔ ¬¬(v ∈ y ∨ v = y))])] . (23)

It is a consequence of (23) that the N -translation of the Infinity axiom holds in (V ¬¬
ρ∗ ,∈∞,=∞). ⊓⊔

Lemma 7.19 CZF + Pow¬¬ ⊢ (V ¬¬
ρ∗ ,∈∞,=∞) |= (Vρ exists)N .
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Proof : The elements of the ordinal representation system OT (ϑ) = (OT(ϑ)∩Ω,≺) are elements of
ω. In the proof of Lemma 7.18 we defined the internalization n∗ ∈ V ¬¬

n+1 of n ∈ ω in the structure
(V ¬¬

ρ∗ ,∈∞,=∞). We will now define the internalization H(α) of the ordered pair 〈α∗, V ¬¬
α 〉 for each

α ≺ ρ. Recall that we chose ρ to be of the form ωρ0 for some ρ0 ≻ 1, so that for all α ≺ ρ, α+ω ≺ ρ.
For x ∈ V ¬¬

ρ∗ we use x ∈∞ OP (α∗, V ¬¬
α ) to abbreviate the following formula:

¬¬ [∀v ∈ V ¬¬
ρ∗ (v ∈∞ x ↔ v =∞ α∗) ∨ ∀v ∈ V ¬¬

ρ∗ (v ∈∞ x ↔ ¬¬ (v =∞ α∗ ∨ v =∞ V ¬¬
α ))] .

For α ≺ ρ define

H(α) := {x ∈ V ¬¬
ω+α+2 | x ∈∞ OP (α∗, V ¬¬

α )}

V ∗
ρ := {z ∈ V ¬¬

ρ | ¬¬∃α ≺ ρ z =∞ H(α)} .

One readily checks that H(α) ∈ V ¬¬
ω+α+3 and V ∗

ρ ∈ V ¬¬
ρ+1. It remains to show that V ∗

ρ is the set

witnessing that (V ¬¬
ρ∗ ,∈∞,=∞) |= (Vρ exists)N holds. This is so by design of V ∗

ρ but it is rather
tedious to check in detail. ⊓⊔

7.2 Proof of Theorem 1.1

We use ≤ and ≡ for the relations of being proof-theoretically reducible and proof-theoretically
equivalent, respectively. We have CZFP + RDC + ΠΣ−AC ≤ CZFP ≤ IKP(P) using Theorem
7.1 and Theorem 3.5. By Lemma 3.9 and Theorem 3.8 we get CZFP ≤ T

− ≤ KP(P). CZF +
Pow¬¬ ≤MLVP ≤ CZFP holds by Theorems 6.2 and 5.1. Theorems 7.5 and 7.4 yield KP(P) ≤
Z + {‘Vτ exists’}τ∈BH ≤ CZF + Pow¬¬. Moreover, IKP(P) ≡ IZ + {‘ Vτ exists’}τ∈BH holds
by Theorem 7.4. The upshot of these results is thus that all theories of Theorem 1.1 are proof-
theoretically equivalent. ⊓⊔
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