Skip to main content

Primitive Recursive Arithmetic and Its Role in the Foundations of Arithmetic: Historical and Philosophical Reflections

In Honor of Per Martin-Löf on the Occasion of His Retirement

  • Chapter
  • First Online:

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 27))

Abstract

We discuss both the historical roots of Skolem’s primitive recursive arithmetic, its essential role in the foundations of arithmetic, its relation to the finitism of Hilbert and Bernays, and its relation to Kant’s philosophy of mathematics.

This paper is loosely based on the Skolem Lecture that I gave at the University of Oslo in June, 2010. The present paper has profited, both with respect to what it now contains and with respect to what it no longer contains, from the discussion following that lecture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The finitist types are called the finitist types of the first kind in “Finitism” (Tait 1981). The finitist types of the second kind are the types, corresponding to a constant equation, of the computations proving the equation. We need not discuss these here.

  2. 2.

    Concerning Hilbert’s flirtation with logicism, see Hilbert (1918), his lecture “Prinzipien der Mathematik” in his 1917–1918 lectures on logic Hilbert (2011, Chap. 1) and Mancosu (1999), Sieg (1999a). Concerning his rejection of it, see his lecture “Probleme der Mathematischen Logik” in Hilbert (2011, Chap. 2).

  3. 3.

    The fact that non-primitive recursive functions such as the Ackermann function, defined by twofold nested recursions, are definable using primitive recursion of higher type was already shown by Hilbert in (1926).

  4. 4.

    The difficulty of dealing with equations of higher type was avoided by Spector in (1962) by restricting equations to those between numerical terms and restricting formulas to equations. Equations s = t, standing alone, between terms of type A → B are taken to be abbreviations for sx = tx, where the variable x of type A does not occur in s or t. \(s = t \rightarrow u = v\) is then taken to be an abbreviation for \((1 - sgn\vert s - t\vert ) + sgn\vert u - v\vert = 0\), where | x − y | denotes absolute difference.

  5. 5.

    Gödel seems to have tried over and over again (see Gödel 1972, footnote h), but I think unsuccessfully, to eliminate this logical complexity.

  6. 6.

    See Tait (2006) for further discussion.

  7. 7.

    Jens Erik Fenstad suggested in conversation that it was perhaps Skolem’s close study of E. Netto’s Lehrbuch der Combinatorik (1901), a work of which he later collaborated in producing a second edition, that led him to his conception of foundations of arithmetic. Again, it is true that the work abounds in proofs by mathematical induction, but nowhere is a function or concept defined by induction.

  8. 8.

    It is worth noting that in Dedekind’s case the impredicativity is limited to (1) constructing from a Dedekind infinite system ⟨D, 0, ⟩ (i.e. where 0 ∈ D and xx′ is an injective operation on D whose range does not contain 0) the simply infinite subsystem \(\langle \mathbb{N}, 0, \prime\rangle\), and (2) defining the ordering < of \(\mathbb{N}\). According to his well-known letter to Keferstein (1890), (1) was simply part of his proof that the theory of simply infinite systems is consistent. His development of arithmetic from the axioms of a simply infinite system together with the axioms of order ( < ), in particular his familiar bottom-up derivation of the principle of definition by recursion (as opposed to Frege’s (1893) top-down derivation), is predicative. (2) is worth noting because < is primitive recursive, but the natural definition of its characteristic function is not by iteration; and the principle of definition by induction that Dedekind proved was restricted to definition by iteration. Dedekind defined the ordering n < x essentially as the least set which contains n′ and is closed under xx′. Dedekind needed the relation < in his derivation of the principle of definition by iteration.

  9. 9.

    Frege (1879) and Dedekind (1888). It is worth noting that a version of Dedekind’s monograph under the same title can be found in his notebooks dating, as he himself indicates in the Preface to the first edition, from 1872–1878. A reference to this manuscript can also be found in a letter to Dedekind from Heinrich Weber, dated 13 November 1878. (See Dugac (1976).)

  10. 10.

    It is usual to say that, whereas Frege understood the numbers as cardinals, Dedekind took them to be ordinals. Although there is some justice in this, there is also an objection: when Cantor introduced the concept of ordinal number, it was as the isomorphism types of well-ordered sets, just as he introduced the cardinals as isomorphism types of abstract sets. Just as Cantor did not refer to his transfinite numbers in (1883a) as ordinal numbers (see Tait (2000) for further discussion of this), Dedekind did not define the (finite) numbers as order types nor did he refer to them as ordinals. A significant thing about both systems of numbers, Cantor’s transfinite numbers and Dedekind’s finite numbers, and as opposed to Frege’s, is that they are defined intrinsically, without reference to the domain of either sets or well-ordered sets.

  11. 11.

    Such a reduction is carried out in Robinson (1947) for the case in which D is finitary type, without the introduction of product types A ×B. Instead, she introduced the primitive recursive coding of pairs of natural numbers and then showed that all other primitive recursions could be reduced, using this coding, to iteration.

  12. 12.

    By the Strong Normalization Theorem, definitional equality means having the same normal form. This theorem is preserved when the conversions of (pL, pR) and λxtx to p and t, respectively, are admitted.

  13. 13.

    “Here I stop this monotonous series of reasonings.” Sect. IV.

  14. 14.

    Many of the writers that I mention, including Poincaré and Dedekind, in fact take the least natural number to be 1. For the sake of simplicity, since nothing of relevance for us is really at stake in the choice, I will pretend that everyone starts with 0.

  15. 15.

    For a discussion of this see Goldfarb (1988).

  16. 16.

    It has sometimes been suggested that the difference between these two meanings of “intuition”, Kant’s and the particular sense of ‘intuition that’ that we are discussing, deriving from “intuitus”, was created by translating Kant’s “Anschauung” into English (and French) as “intuition”. But what Kant referred to as “Anschauung” in the Critique of Pure Reason, he sometimes parenthetically called “intuitus” and also referred to exclusively as intuitus in his earlier Inaugural Dissertation, written in Latin. (See for example Sect. 10.) Thus, in using the term “Anschauung”, he was merely translating the Latin into German: no new meaning was created by our translation of “Anschauung”; it was already there in his own use of the term “intuitus.” An interesting question, which I won’t attempt to answer here, is why Kant adapted the term intuitus in the way he did.

  17. 17.

    Thus, the intuitive truths in this sense are the a priori truths (i.e. the ‘first principles’) in the original sense of that term.

  18. 18.

    If A, B and C, D are pairs of like magnitudes, then A : B ≤ C : D if and only if for all positive numbers m and n, mB ≤ nA implies mC ≤ nD.

  19. 19.

    One would have, on Kant’s behalf, to admit, given the construction of a number f(X) from the arbitrary number X, the iteration f Y(X) of this construction along the arbitrary number Y.

  20. 20.

    In his discussion of mathematical reasoning in contrast with philosophical reasoning in the Discipline of Pure Reason, he speaks of geometric reasoning and algebraic reasoning but indicates no awareness of the special character of reasoning about the natural numbers.

References

  • Bernays, P. 1930–1931. Die Philosophie der Mathematik und die Hilbertsche Beweistheorie. Blätter für deutsche Philosophie 4: 326–367. Reprinted in Bernays (1976). A translation by P. Mancosu appears in Mancosu (1998), 234–265.

    Google Scholar 

  • Bernays, P. 1976. Abhandlungen zur philosophie der mathematik. Darmstadt: Wissenschaftliche Buchgesellschaft.

    Google Scholar 

  • Cantor, G. 1883a. Grundlagen einer allgemeinen Mannigfaltigheitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen. Leipzig: Teubner. A separate printing of Cantor (1883b), with a subtitloe, preface and some footnotes added. A translation Foundations of a general theory of manifolds: a mathmatico-philosophical investigation into the theory of the infinite by W. Ewald is in (Ewald, 1996, 639–920).

    Google Scholar 

  • Cantor, G. 1883b. Über unendliche, lineare Punktmannigfaltigkeiten, 5. Mathematische Annalen 21: 545–586. In Cantor (1932).

    Google Scholar 

  • Cantor, G. 1932. In Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, ed. E. Zermelo. Berlin: Springer.

    Google Scholar 

  • Curry, H. 1940. A formalization of recursive arithmetic. Bulletin of the American Mathematical Society 263–282.

    Google Scholar 

  • Dedekind, R. 1872. Stetigkeit und irrationale Zahlen. Braunschweig: Vieweg. In Dedekind (1932). Republished in 1969 by Vieweg and translated in Dedekind (1963).

    Google Scholar 

  • Dedekind, R. 1888. Was sind und was sollen die Zahlen? Braunschweig: Vieweg. In Dedekind (1932). Republished in 1969 by Vieweg and translated in Dedekind (1963).

    Google Scholar 

  • Dedekind, R. 1890. Letter to Keferstein. Translated in van Heijenoort (1967), 99–103. Cambridge: Harvard University Press.

    Google Scholar 

  • Dedekind, R. 1932. In Gesammelte Werke, vol. 3, ed. R. Fricke, E. Noether, and O. Ore. Braunschweig: Vieweg.

    Google Scholar 

  • Dedekind, R. 1963. Essays on the theory of numbers. New York: Dover. English translation by W.W. Berman of Dedekind (1872) and Dedekind (1888).

    Google Scholar 

  • Dugac, P. 1976. Richard Dedekind et les fondements des mathematiques (avec de nombeux textes inédits). Paris: Librairie Philosophique J. Vrin.

    Google Scholar 

  • Ewald, W. (ed.). 1996. From Kant to Hilbert: a source book in the foundations of mathematics. Oxford: Oxford University Press. Two volumes.

    Google Scholar 

  • Frege, G. 1879. Begriffsschrift, eine der arithmetischen nachgebildete Formalsprache des reinen Denkens. Halle: L. Nebert.

    Google Scholar 

  • Frege, G. 1893. Grundgesetze der Arithmetik: Begriffsschriftlich abgeleitet, Band I, Jena: H. Pohle. Reprinted in 1962 along with Frege (1903) by Hildesheim: Georg Olms.

    Google Scholar 

  • Frege, G. 1903. Grundgesetze der Arithmetik: Begriffsschriftlich abgeleitet, Band II. Jena: H. Pohle.

    Google Scholar 

  • Gödel, K. 1958. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12: 280–287. Reprinted with an Englsh translation in (Gödel, 1990, 240–252). Gödel (1972) is a revised version.

    Google Scholar 

  • Gödel, K. 1972. On an extension of finitary mathematics which has not yet been used. In Collected works, vol. II Gödel (1990), 271–280. Revised version of Gödel (1958).

    Google Scholar 

  • Gödel, K. 1990. Collected works, vol. II. Oxford: Oxford University Press.

    Google Scholar 

  • Goldfarb, W. 1988. Poincaré against the logicists. In History and philosophy of modern mathematics: minnesota studies in the philosophy of science, vol. XI, ed. W. Aspray and P. Kitcher, 61–81. Minneapolis: The University of Minnesota Press.

    Google Scholar 

  • Goodstein, R. 1945. Function theory in an axiom-free equation calculus. Proceedings of the London Mathematical Society 48: 401–34.

    Article  Google Scholar 

  • Goodstein, R. 1957. Recursive number theory. Amsterdam: North-Holland.

    Google Scholar 

  • Grassmann, H. 1904. Gesammelte mathematische und physikalische Werke, vol. 2. Leipzig: Druck und Verlag von B.G. Teubner.

    Google Scholar 

  • Hilbert, D. 1905. Über die Grundlagen der Logik und der Arithmetik. In Verhandlungen des Dritten Internationalen Mathematiker-Kongress. Leipzig: Teubner.

    Google Scholar 

  • Hilbert, D. 1918. Axiomatisches denken. Mathematishe Annalen 78: 405–15. Reprinted in (Hilbert, 1932-9325, vol. 3, 1105–1115). Translated by W. Ewald in (Ewald, 1996, vol. 2).

    Google Scholar 

  • Hilbert, D. 1922. Neubegründung der Mathematik: Erste Mitteilung. Abhandlungen aus dem Seminar der Hamburgischen Universität 1: 157–177. English translation in (Mancosu, 1998, 198–214) and (Ewald, 1996, 1115–1134).

    Google Scholar 

  • Hilbert, D. 1923. Die logischen Grundlagen der Mathematik. Mathematische Annalen 88: 151–165. English translation in (Ewald, 1996, 1134–1148).

    Google Scholar 

  • Hilbert, D. 1926. Über das Unendliche. Mathematische Annalen 95: 161–90. Translated by Stefan Bauer-Mengelberg in From Frege to Gödel: a source book in mathematical logic, 367–92.

    Google Scholar 

  • Hilbert, D. 1932–9325. Gesammelte Abhandlungen. Bedrlin: Springer. 3 volumes.

    Google Scholar 

  • Hilbert, D. 2011. In David Hilbert’s Lectures on the Foundations of Arithmetic and Logic 1917–1933, ed. M. Hallett, W. Ewald, W. Sieg and U. Majer. Berlin: Springer.

    Google Scholar 

  • Kronecker, L. 1881. Grundzüge einer arithmetischen Theorie der algebraischen Grössen. In Leopold Kronecker’s Werke, vol. 2, ed. K. Hensel, 236–387 New York: Chelsea.

    Google Scholar 

  • Kronecker, L. 1886. Über einige Anwendungen der Modulsysteme auf elementare algebraische Fragen. In Leopold Kronecker’s Werke, vol. 3, ed. K. Hensel, 147–208. New York: Chelsea.

    Google Scholar 

  • Kronecker, L. 1887. ber den zahlbegriff. In Leopold Kronecker’s Werke, ed. K. Hensel, 251–274, New York: Chelsea.

    Google Scholar 

  • Mancosu, P. (ed.). 1998. From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920’s. Oxford: Oxford University Press.

    Google Scholar 

  • Mancosu, P. 1999. Between russell and hilbert: Behmann on the foundations of mathematics. Bulletin of Symbolic Logic 5: 303–330.

    Article  Google Scholar 

  • Martin-Löf, P. 1973. An intuitionistic theory of types: predicative part. In Logic colloqium ’73, ed. H. E. Rose and J. C. Shepherdson. Amsterdam: North-Holland.

    Google Scholar 

  • Martin-Löf, P. 1998. An intuitionistic theory of types. In Twenty-five years of constructive type theory, ed. G. Sambin and J. Smith, 221–244. Oxford: Oxford University Press.

    Google Scholar 

  • Netto, E. 1901. Lehrbuch der Combinatorik. Leipzig: Verlag von B.G. Teubner.

    Google Scholar 

  • Poincaré, H. 1894. Sur la Nature du Raisonnement mathématique. Revue de métaphysique et de morale 2: 371–84. Translation by George Bruce Halsted in Ewald (1996), vol. 2, 972–982.

    Google Scholar 

  • Poincaré, H. 1900. Du rôle de l’intuition et de la logique en mathématiques. In Compte rendu du Deuxiéme congrès international des mathématiciens tenu à Paris du 6 au 12 août 1900, 210–22. Pais: Gauthier-Villars. Translation by George Bruce Halsted, reprinted Ewald (1996), vol. 2, 1021–1038.

    Google Scholar 

  • Poincaré, H. 1905. Les mathématiques et la logique. Revue de métaphysique et de morale 13: 815–35. Translation by George Bruce Halsted in Ewald (1996), vol. 2, 1021–1038.

    Google Scholar 

  • Poincaré, H. 1906a. Les mathématiques et la logique. Revue de métaphysique et de morale 14: 17–34. Translation by George Bruce Halsted in Ewald (1996), vol. 2, 1038–1052.

    Google Scholar 

  • Poincaré, H. 1906b. Les mathématiques et la logique. Revue de métaphysique et de morale 14: 294–317. Translation by George Bruce Halsted in Ewald (1996), vol. 2, 1052–1071.

    Google Scholar 

  • Poincaré, H. 1906c. A propos de la logistique. Revue de métaphysique et de morale 14: 866–868.

    Google Scholar 

  • Poincaré, H. 1909. Le llogique de l’infin i. Revue de métaphysique et de morale 17: 461–82. Translation by George Bruce Halsted in Ewald (1996), vol. 2, 1038–1052.

    Google Scholar 

  • Robinson, J. 1947. Primitive recursive functions. Bulletin of the American Mathematical Society 53: 925–942.

    Article  Google Scholar 

  • Sieg, W. 1999a. Hilbert’s programs: 1917–1922. Bulletin of Symbolic Logic 5: 1–44.

    Article  Google Scholar 

  • Skolem, T. 1923. Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre. Matematikerkongressen in Helsingfors 4–7 Juli 1922, Den femte skandinaviske matematikerkongressen, Redogörelse, 217–232. Helsingfors: Akademiska Bokhandeln.

    Google Scholar 

  • Skolem, T. 1947. The development of recursive arithmetic. In Copenhagen: proceedings of the tenth congress of scandinavian mathematicians, 1–16. Reprinted in Skolem (1970), 499–514.

    Google Scholar 

  • Skolem, T. 1956. A version of the proof of equivalence between complete induction and the uniqueness of primitive recursions. Kongelige Norske Videnskabsselskabs Forhandlinger XXIX: 10–15.

    Google Scholar 

  • Skolem, T. 1970. In Selected works in logic, ed. J.E. Fenstad. Oslo: Universitetsforlaget.

    Google Scholar 

  • Spector, C. 1962. Provably recursive functionals of analysis: a consistency proof of analysis by an extension of the principles formulated in current intuitionistc mathematics. In Recursive function theory, proceedings of symposia in pure mathematics, vol. 5, ed. J. Dekker, 1–27. Providence: American Mathematical Society.

    Google Scholar 

  • Tait, W. 1981. Finitism. Journal of Philosophy 78: 524–556.

    Article  Google Scholar 

  • Tait, W. 2000. Cantor’s Grundlagen and the paradoxes of set theory, 269–90. Reprinted in Tait (2005b), 252–275.

    Google Scholar 

  • Tait, W. 2005a. Proof-theoretic semantics for classical mathematics. In Proof-theoretic semantics for classical mathematics, ed. R. Kahle and P. Schroeder-Heister. Special edition of Synthese.

    Google Scholar 

  • Tait, W. 2005b. The provenance of pure reason: essays in the philosophy of mathematics and its history. Oxford: Oxford University Press.

    Google Scholar 

  • Tait, W. 2006. Gödel’s interpretation of intuitionism. Philosophia Mathematica 14: 208–228.

    Article  Google Scholar 

  • van Heijenoort, J. (ed.). 1967. From Frege to Gödel: A Source Book in Mathematical Logic. Cambridge: Harvard University Press.

    Google Scholar 

  • Weyl, H. 1921. Über die neue Grundlagenkrise der Mathematik. Mathematische Zeitschrift 10: 39–79. Translated by P. Mancosu in Mancosu (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Tait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Tait, W.W. (2012). Primitive Recursive Arithmetic and Its Role in the Foundations of Arithmetic: Historical and Philosophical Reflections. In: Dybjer, P., Lindström, S., Palmgren, E., Sundholm, G. (eds) Epistemology versus Ontology. Logic, Epistemology, and the Unity of Science, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4435-6_8

Download citation

Publish with us

Policies and ethics