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Introduction

Rather than go through paper in detail, I want to give a broard
overview of the work and how it relates to several familar ideas in
kinematics.

(I’l explain what I mean by Constraint Variety after a few slides).



Inspiration I

Current work tries to generalise two ideas. First of these was work
by Jacques Hervé.

Consider two mechanisms which generate (codimension 0 sets of)
motions in different Schoenflies subgroups of SE (3).

Joining such mechanisms in parallel the possible displacements
that the platform can undergo is given by the intersection of the
two Schoenflies groups. This is, in general, the group of translation
R3, or some subset of this subgroup.

Notice, almost no calculation needed to produce this result.



Inspiration II

The second idea that I want to generalise is the work of Ian Parkin,
Ken Hunt, Chintien Huang and several others, on finite screw
systems.

If rigid body displacements are represented by dual quaternions,
then the set of all such displacements represented by a
6-dimensional quadric in P7—the Study quadric. (Actually an open
set in this variety, need to delete one A-plane). A group element is
represented by a dual quaternion of the form,

g = (a0 + a1i + a2j + a3k) + ε(c0 + c1i + c2j + c3k)



Inspiration II — Finite Screw Systems

To be a group element the dual quaternions must satisfy the
condition,

a0c0 + a1c1 + a2c2 + a3c3 = 0

the equation of the Study quadric. Here i , j , k are usual
quaternion basis and ε is the dual unit which squares to zero
ε2 = 0 and commutes with the quaternions.

A finite screw system is the set of displacements lying on a linear
subspace of P7. This might lie inside the Study quadric or intersect
it.

Some original skepticism about this idea. Why only P7?



Constraint Varieties

A constraint variety is any set of rigid body displacements
defined as an algebraic subvariety of the Study quadric.
(Variety=Algebraic set).

Poor name, originally thought of varieties of displacements defined
by geometric constraints. For example work by Charles Wampler
on sets of displacements which maintain the contact between a
point on the rigid body and a fixed plane.

I would call a finite screw system a linear constraint variety.



Linear Constraint varieties

Many well known examples. Just look at a few in the next couple
of slides.

The Study quadric contains 2 families of 3-planes usually called,
A-planes and B-planes. One of these A-planes is distinguished, its
points are not physical group elements — called the A-plane at
infinity, denoted A∞ and given by a0 = a1 = a2 = a3 = 0.

A-planes through the identity (g = 1), come in 2 types:

I those that don’t meet A∞ are SO(3) subgroups, i.e. rotations
about some point in space.

I those that meet A∞ in a line are SE (3) subgroups, i.e.
displacements preserving some plane in space.



Cylindrical Subgroups

The set of rotations about some axis combined with translations in
the direction of the axis form a subgroup of SE (3). This subgroup
can be thought of as the displacements generated by a cylindrical
joint.

The set of group elements that are generated by a C joint form a
Segre variety. It is simple to see that this variety can be
parameterised by a rotation about the axis followed by a translation
along the axis so the variety generated is isomorphic to P1 × P1.

In algebraic geometry this is well known to be isomorpic to a
2-dimensional quadric. Hence the variety must be the intersection
of the Study quadric with some 3-plane (not lying in the Study
quadric).

A little further work reveals that this 3-plane must meet A∞ in line.



Two 4D Linear Constraints

I The Schoenflies subgroups mentioned earlier, all lie on the
intersection of the Study quadric with a 5-plane. Such a
5-plane will contain A∞.

I Any line-symmetric motion lies in a 5-plane. First of all, a
rigid-body motion can be thought of as a curve in the Study
quadric. The 5-plane that the curve lies in will depend on the
lines in the ruled surface generating the motion. However,
such a 5-plane will meet A∞ in a 2-plane.



Geometrie der Dynamen

Eduard Study called these linear constraint varieties: chains
(“Kette”).

He claimed to have investigated them systematically and given a
kinematic interpretation for each in his 1903 book.

Res severa verum gaudium



Examples - What is this used for?

There many ways to use the information on constraints varieties,
look at some examples in the next few slides.

Suppose we connect in parallel a cylindical joint and a mechanism
which constrains a point on the coupler to lie in a plane. What
motion do we expect from the coupler?

Now it is possible to show that the constraint variety generated a
point-plane constraint is the intersection of the Study quadric with
another quadric in P7. This point-plane quadric also contains A∞.



Hence we seek the intersection of two quadrics with a 3-plane. In
general this would be a curve of degree 2× 2 = 4. However, we
have seen above that the 3-plane determined by the cylindric joint
intersects A∞ in a line, so this line must be a component of the
intersection of all three varieties. The intersection is therefore a
twisted cubic curve.

Examining the singularities of the intersection reveals that the
singularities lie on an imaginary 2-sphere in A∞. This 2-sphere is
invariant under the action of SE (3), I call it S∞. The intersection
consists of a twisted cubic curve and a line which meets the curve
in a pair of points on S∞.

The famous Darboux motion can be charaterised as a twisted
cubic curve in the Study quadric which meets S∞ at two points.

N.B. this result was know to Study.



Another Example
Husty et al showed that the displacements allowed by an RRR
linkage is the Segre variety P1 × P1 × P1. This variety is the
intersection of 9 quadrics in P7 one of which can be taken as the
Study quadric.

Suppose we join two RRRs, how many possible ways are there to
do this? Notice this question is equivalent to counting the number
of postures of for a 6R manipulator.

The degree of this Segre variety is 6. This is not enough to
compute the number of intersections. Three dimensional
subvarieties of the Study quadric have a bi-degree given by the
number of intersection with a generic A-plane and the number of
intersections with a generic B-plane. For the RRR constraint
variety this bi-degree is (4, 2). The rules for combining these
bi-degrees give,

(4, 2) ∩ (4, 2) = 4× 2 + 2× 4 = 16

postures for the 6R robot.



The CS Linkage
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In the paper look at 3 examples, these come
from Mike McCarthy and Gim Song Soh’s
book. Here, look at the examples in P7.

I Displacements generated by a CS linkage
same as displacements required to keep
point (centre of S joint) on a cylinder.

I Constraint variety is intersection of Study
quadric with a quartic hypersurface.

I This quartic contains A∞, moreover the
variety is singular along A∞.



The RPS Linkage
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Group elements which maintain contact between a point and a
cylindrical hyperboloid.

Again constraint variety is a quartic hypersurface (intersecting the
Study quadric) and again it contains and is singular along A∞.



The RRS Linkage
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Sweeping circle about axis gives
‘generalised’ torus.
Now constraint variety is a degree 8
hypersurface (intersecting the Study
quadric) but again it contains and is
singular along A∞.



Conclusions

I Can analyse mechanism by intersecting relevant constraint
varieties.

I Can’t handle helical joints — not algebraic.

I Do need to consider other models of SE (3).

I Also think about space of all CS linkages, for example, for
synthesis problems.
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