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Abstract Synthesis of mechanisms with their center of mass (CoM) at an invari-
ant point on one of the elements is useful for the design of statically balanced and
shaking-force balanced mechanisms and manipulators. For this purpose, a kinematic
architecture based on a general 4R four-bar linkage is found by applying the method
of principal vectors as a linkage together with a similar four-bar linkage. The balance
conditions are obtained for an arbitrary mass distribution of each of the elements and
a balanced grasper mechanism and a balanced two-degree-of-freedom manipulator
are derived as practical examples.
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1 Introduction

When the center of mass (CoM) of a mechanism (i.e. manipulator, robot) is at a
stationary point with respect to the base, the mechanism is shaking-force balanced.
This means that for all motion of the mechanism the resultant dynamic forces on
the base are zero [7]. Shaking-force balance therefore is important for high speed
mechanisms with minimal vibrations of the base. A mechanism with a stationary
CoM is also statically balanced with respect to gravity. Then a mechanism can be
maintained in each posture with minimal effort [3].

The CoM of a mechanism is stationary if it is an invariant point on at least one
of the elements with this point or element being (part of) the base. An elementary
way to describe the CoM with respect to its elements is with the method of prin-
cipal vectors [1]. This method has been applied to derive such inherently balanced
linkages considering general mass distributions of all elements [5, 6].
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Fig. 1 Center of mass of four-bar linkage A0A1A2A3, similar linkage A4A5A6A7, the principal vector
linkage A1P1B1SB2P3A2P2, and links D8E8 and D9E9 is at invariant point S on links A5A6, B1S,
B2S.

It was shown in [2, 8] that the CoM of a general 4R four-bar linkage also is an in-
variant point on the coupler link of a similar four-bar linkage moving synchronously.
In addition, with the double contour method [4] similar linkages are found for the
analysis of the CoM of more complex linkages. This method is based on principal
vectors.

The goal of this paper is to combine and to apply the three mentioned approaches
as linkages to obtain an inherently balanced 4R four-bar based kinematic architec-
ture from which a wide variety of balanced mechanisms can be derived. First the
kinematic architecture is found and subsequently its force balance conditions are
derived.

2 Kinematic Architecture with CoM at Invariant Link Point

Figure 1 shows a kinematic architecture of which the CoM of all elements is at
invariant link point S. The architecture is based on a general 4R four-bar link-
age A0A1A2A3. S is a point on the coupler link A5A6 of a similar four-bar link-
age A4A5A6A7 [2, 8] and is also a point on a linkage of parallelograms A1P1B1P2,
P2B1SB2, and A2P2B2P3 of which the (principal) dimensions a1, a21, a23, and a3 are
defined by the principal points Pi [1, 6]. In addition to their coinciding joint at S,
these two linkages can be linked by parallelograms SA6C1B1 and SB2C2A5 of which
B1C1 and B2C2 are part of elements P1B1C1 and P3B2C2, respectively. These paral-
lelograms are found with the double contour method of which one solution could be
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Fig. 2 By describing the CoM of all elements S along the principal vectors vi, the conditions wi for
which S is a coupler point of the similar linkage are found.

the linkage P1C1A6A7A4A5 [4]. Other possible links are D8E8 and D9E9 which are
parallel to lines A0A4 and A3A7, respectively.

The conditions for which the CoM of all elements S is a coupler point of similar
linkage A4A5A6A7 can be written as a function of the principal dimensions. To obtain
the conditions, the position of S can be written with complex vectors as illustrated
in Fig. 2 with

A0S = v1u1 + v2u2 + v3u3 = w1u4 +w2u1 +w3u2 (1)

Vectors ui are the time dependent vectors describing the relative positions of joints
A0, A1, A2, and A3. Constant vectors vi are the principal vectors describing the prin-
cipal points Pi within each element. Vectors wi are also constant and determine the
size and pose of the similar linkage. These vectors can be written as

v1 =
l1−a1 cosβ1

l1
+ a1 sinβ1

l1
i v2 =

a21 cosβ21
l2

+ a21 sinβ21
l2

i v3 =
a3 cosβ3

l3
+ a3 sinβ3

l3
i

w1 = κR
1 +κ I

1i w2 = γR + γ I i w3 = w2(ρR +ρ I i)

with link lengths li and angles βi j to describe the orientation of the principal di-
mensions ai j with respect to the line connecting the joints. Vectors wi are written
with the real and imaginary parts of the orientation κ1 of A0A4, the orientation γ
of the similar linkage and the orientation ρ of A5S with respect to A5A6. With the
substitution of the loop equation u1 +u2 +u3 = u4 for u4, Eq. 1 can be rewritten as

(v1 −w1 −w2)u1 +(v2 −w1 −w3)u2 +(v3 −w1)u3 = 0 (2)

and after substitution of the constant vectors it is written as
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{(1− a1 cosβ1

l1
−κR

1 − γR)+(
a1 sinβ1

l1
−κ I

1 − γ I)i}u1 +

{(a21 cosβ21

l2
−κR

1 − γRρR + γ Iρ I)+(
a21 sinβ21

l2
−κ I

1 − γRρ I − γ IρR)i}u2+ (3)

{(a3 cosβ3

l3
−κR

1 )+(
a3 sinβ3

l3
−κ I

1)i}u3 = 0

Since generally this equation must hold for all motion, i.e. for all independent values
of ui not being restricted to the relative motions of the 4R four-bar linkage, each of
the six terms needs to be zero. The terms for u3 are zero when

κR
1 =

a3 cosβ3

l3
, κ I

1 =
a3 sinβ3

l3
, κ1 = tan−1

(
κ I

1

κR
1

)
= β3 (4)

from which κ1 is found to be equal to β3 as was shown in another way also in [8].
Subsequently, γ is found from the terms for u1 being zero resulting in

γR = 1− a1 cosβ1

l1
− a3 cosβ3

l3
,γ I =

a1 sinβ1

l1
− a3 sinβ3

l3

γ = tan−1
(

γ I

γR

)
= tan−1

( a1
l1

sinβ1 − a3
l3

sinβ3

1− a1
l1

cosβ1 − a3
l3

cosβ3

)
(5)

η =
√
(γR)2 +(γ I)2 =

√
(1− a1

l1
cosβ1 −

a3

l3
cosβ3)2 +(

a1

l1
sinβ1 −

a3

l3
sinβ3)2

η is the scaling factor of the similar linkage and equals η = l5/l1 = l6/l2 = l7/l3 =
‖A4A7‖/l4. ρ is found when the terms for u2 are zero, which is for

ρR =
(1− a1 cosβ1

l1
− a3 cosβ3

l3
)( a21 cosβ21

l2
− a3 cosβ3

l3
)− ( a1 sinβ1

l1
− a3 sinβ3

l3
)( a21 sinβ21

l2
− a3 sinβ3

l3
)

( a1 sinβ1
l1

− a3 sinβ3
l3

)2 +(1− a1 cosβ1
l1

− a3 cosβ3
l3

)2

ρ I =
(1− a1 cosβ1

l1
− a3 cosβ3

l3
)( a21 sinβ21

l2
− a3 sinβ3

l3
)− ( a1 sinβ1

l1
− a3 sinβ3

l3
)( a21 cosβ21

l2
− a3 cosβ3

l3
)

( a1 sinβ1
l1

− a3 sinβ3
l3

)2 +(1− a1 cosβ1
l1

− a3 cosβ3
l3

)2

ρ = tan−1
(

ρ I

ρR

)
, τ =

√
(ρR)2 +(ρ I)2 (6)

From polygon A0A3A7A4 and with κ1 and γ known, angle κ2 can be derived as

κR
2 = 1−κR

1 − γR = a1 cosβ1
l1

κ I
2 = κ I

1 + γ I = a1 sinβ1
l1

κ2 = tan−1
(

κ I
2

κR
2

)
= β1 (7)

Herewith the similar linkage has been fully defined with parameters based on the
principal dimensions and the dimensions of the four-bar linkage A0A1A2A3 solely.
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Fig. 3 The mass of link 4 is distributed on the other three links. Shown are (a) link 1 and (b) link 3
on which a mass ma

4 at A0, a mass mb
4 at A3, and a mass mc

4 at J3 on each of the links are modeled.

3 Force Balance Conditions

To have S be the CoM of the complete kinematic architecture of Fig. 1, the principal
dimensions a1, a21, a23, and a3 need to be calculated from the mass of each element
and their positions. Since the principal dimensions are defined with respect to three
elements of the four-bar linkage A0A1A2A3, the first step is to distribute the mass of
the fourth element, m4 of link 4, equivalently to the other elements. For links 1 and 3
this can be done by modeling a mass ma

4 =m4(1−e4/l4) at A0, a mass mb
4 =m4e4/l4

at A3 and a mass mc
4 = m4 f4/l4 at positions J3 on both links 1 and 3 as indicated

in Figs. 3a and b, respectively. ma
4, mb

4, and mc
4 also need to be modeled on link

2, which will be shown later on. For the analysis of link 1 it now has a total mass
m′

1 = m1 +ma
4 +mc

4 centered at s′1 from A1 which is de CoM of the three masses.
Similarly, for the analysis of link 3 it has a total mass m′

3 = m3 +mb
4 +mc

4 centered
at s′3 from A2.

To include the masses of D8E8 and D9E9, also they can be distributed among the
other elements in a similar way as with m4. Unfortunately this paper leaves too little
space to present this distribution in detail, for which they are not considered here.

With m4 distributed, link 4 can be taken out resulting in the linkage of Fig. 4. This
linkage is an extended composition of the linkage investigated in [5, 6] and the same
method can be applied here to derive the principal dimensions. This means that Pi

can be found independently from one another with linear momentum equations.
To find P1, the linear momentum of the linkage for θ̇2 = θ̇3 = 0 (links 2 and 3

being immovable) can be written with respect to reference frame x1y1 aligned with
a1 as indicated in Fig. 4, to be equal to the total mass mtot moving at S as
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Fig. 4 Mass model of the kinematic architecture after distribution of the mass of link 4 to link 1
and link 2, and without considering links D8E8 and D9E9.

L1

θ̇1
=

[
m′

1s′1 cosα1 +(m5 +m6 +m7 +m11 +m33)a1 +m12 p12 +m13 p13 +m5 p5

m′
1s′1 sinα1 −m12q12 −m13q13 −m5q5

]

=

[
mtota1

0

]
(8)

with mtot =m1+m2+m3+m4+m5+m6+m7+m11+m12+m13+m31+m32+m33.
From these equations a1 and α1 are obtained with a1 resulting in

a1 =

√
m′2

1 s′21 − (m12q12 +m13q13 +m5q5)2 +m12 p12 +m13 p13 +m5 p5

mtot −m5 −m6 −m7 −m11 −m33
(9)

P3 is found similarly by writing the linear momentum of the linkage for θ̇1 = θ̇2 = 0
with respect to frame x3y3 aligned with a3 to be equal to mtot moving at S as

L3

θ̇3
=

[
m′

3s′3 cosα3 +(m5 +m6 +m7 +m31 +m13)a3 +m32 p32 +m33 p33 +m7 p7

m′
3s′3 sinα3 −m32q32 −m33q33 −m7q7

]

=

[
mtota3

0

]
(10)

From these equations a3 and α3 are obtained with a3 resulting in
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Fig. 5 Equivalent Linear Momentum System (ELMS) for θ̇2 when θ̇1 = θ̇3 = 0 for which the
masses of the moving elements are projected on link 2. P2 is found as being the CoM of the ELMS.

a3 =

√
m′2

3 s′23 − (m32q32 +m33q33 +m7q7)2 +m32 p32 +m33 p33 +m7 p7

mtot −m5 −m6 −m7 −m31 −m13
(11)

As in [5, 6], P2 can be found by using an Equivalent Linear Momentum System
(ELMS). This means that the mass of the moving elements for θ̇1 = θ̇3 = 0 (immov-
able parallelogram P2B1SB2, link 2 rotating about P2) are modeled on link 2 such
that their linear momentum is equal to one of the reference frames x21y21, x23y23, and
x2y2. Figure 5 shows the resulting ELMS with masses u1 = m1 +ma

4 +m11 p11/a21

and u2 = m3 +mb
4 +m31 p31/a23 at A1 and A2, respectively, masses m5 and m6 at

A5 and A6, respectively, mass m6 at distances e6 and f6 with respect to line A5A6,
and masses m11 and m31 also placed at J1 and J3, respectively. u1 and u2 contain the
distributed masses ma

4 and mb
4 of link 4 on link 2 and a mass mc

4 is placed at J3. J3 is
located at a distance l2 from P2 normal to line A1A2 in indicated direction.

P2 is found as being the CoM of the ELMS. With P2 being located at a distance
x2 from A1 along A1A2 and y2 normal to A1A2 as indicated in Fig. 5, P2 is found by
solving the linear momentum equations of the ELMS

L2

θ̇2
= u1

[
y2

−x2

]
+ v1

[
x2

y2

]
+u2

[
y2

−(x2 − l2)

]
− v2

[
x2 − l2

y2

]
+m2

[
y2 − f2

−(x2 − e2)

]
+

m5η l2τ
[

sin(γ +ρ)
−cos(γ +ρ)

]
+m7η l2

[
τ sin(γ +ρ)− sin(γ)

−τ cos(γ +ρ)+ cos(γ)

]
+

m6

[
η l2τ sin(γ +ρ)− e6 sin(γ)− f6 cos(γ)
−η l2τ cos(γ +ρ)+ e6 cos(γ)− f6 sin(γ)

]
+mc

4

[
−l2
0

]
= 0 (12)

with v1 = m11q11/a21 and v2 = m31q31/a23. No algebraic solution for P2 was found,
for which the equations have to be solved numerically. The principal dimensions

defining P2 are calculated as a21 =
√

x2
2 + y2

2 and a23 =
√
(l2 − x2)2 + y2

2 with which
all principal dimensions are obtained.
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Fig. 6 Two examples of balanced mechanisms derived from Fig. 1 with the CoM being a joint with
the base: (a) double grasper mechanism, (b) two-degree-of-freedom balanced manipulator.

4 Conclusion

An inherently balanced kinematic architecture of which the CoM is an invariant link
point has been composed based on a general 4R four-bar linkage and by applying
the method of principal vectors as a linkage together with a similar four-bar link-
age. The conditions for the kinematic architecture were derived as a function of the
principal dimensions. The principal dimensions were calculated from a generally
defined mass and mass location of each element, resulting in the general force bal-
ance conditions of the kinematic architecture. Figure 6 shows examples of possible
balanced devices that can be derived from the kinematic architecture such as a dou-
ble grasper mechanism and a 2-DoF manipulator with end-effector considering an
arbitrary mass distribution of each of the shown elements.
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