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Abstract In this paper, we study self-motions of non-architecturally singular par-
allel manipulators of Stewart Gough type, where the planar platform and the pla-
nar base are related by a projectivity. By using mainly geometric arguments, we
show that these manipulators have either so-called elliptic self-motions or pure
translational self-motions. In the latter case, the projectivity has to be an affinity
a + Ax, where the singular values s1 and s2 of the 2× 2 transformation matrix A
with 0 < s1 ≤ s2 fulfill the condition s1 ≤ 1≤ s2.
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1 Introduction

The geometry of a planar Stewart Gough (SG) platform is given by the six base
anchor points Mi with coordinates Mi := (Ai,Bi)T with respect to the xy-plane πM of
the fixed system Σ0 and by the six platform anchor points mi with coordinates mi :=
(ai,bi)T with respect to the xy-plane πm of the moving system Σ . If the geometry
of the manipulator is given as well as the six leg lengths Ri, then the SG platform
is in general rigid, but under particular conditions the manipulator can perform an
n-parametric motion (n > 0), which is called self-motion. Note that such motions
are also solutions to the famous Borel Bricard problem (cf. [1, 2, 3]).

It is well known that planar SG platforms which are singular in every possible
configuration, possess self-motions in each pose. These so-called architecturally sin-
gular planar SG platforms were extensively studied in [4, 5, 6, 7]. Therefore, we are
only interested in self-motions of planar SG platforms, which are not architecturally
singular.
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In this paper, we discuss the case where the base anchor points Mi and the plat-
form anchor points mi are related by a non-singular projectivity κ . 1 For the re-
mainder of this article we call such manipulators planar projective SG platforms.
Note that a projectivity is the most general linear mapping between two projective
extended planes, and that κ is uniquely determined by corresponding quadrangles.

It is well known (cf. Chasles [8]), that a planar projective SG platform is architec-
turally singular if and only if one set of anchor points is located on a conic section.
Under consideration of this result the theorem given by Karger in Sec. 3 of [9] can
be rewritten as follows:

Theorem 1. A singular configuration of a planar projective SG platform, which is
not architecturally singular, does not depend on the distribution of the anchor points
in the platform and the base, but only on the mutual position of the planes πM and
πm and on the correspondence between them. The configuration is singular iff either
one of the legs can be replaced by a leg of zero length or two legs can be replaced
by aligned legs.

A non-singular projectivity which maps ideal points onto ideal points is a non-
singular affinity. The subcase of planar parallel manipulators of SG type with
affinely equivalent platform and base (= planar affine SG platforms) was studied
by Karger in [9, 10, 11]. It should also be noted that according to Mielczarek et
al. [12], one can attach a two-parametric set of additional legs to planar affine SG
platforms without restricting the direct kinematics, whereas the correspondence be-
tween the anchor points is given by the affinity itself.

As we want to study planar projective SG platforms we have to consider the
projective extension of the carrier planes of the platform and base anchor points, i.e.

(ai,bi) 7→ (wi : xi : yi) and (Ai,Bi) 7→ (Wi : Xi : Yi). (1)

Note that ideal points are characterized by wi = 0 and Wi = 0, respectively.

2 Basic results

Lemma 1. One can attach a two-parametric set of additional legs to planar projec-
tive SG platforms without changing the forward kinematics and singularity surface.

Proof. For the proof we can use the homogenized version of the criterion given
in Eq. (12) of [13] which corresponds with the criterion for the solvability of the
inhomogeneous system of equations given in Eq. (30) of [12].

Assume a non-architecturally singular planar manipulator m1, . . . ,M6 is given.
Then one can add a further leg (with anchor points m7 and M7) to the originally legs
(without changing the direct kinematics and the singularity surface) if the following
rank condition holds (see also Remark 1 of Röschel and Mick [6]):

1 If κ is singular, one set of anchor points would collapse into a line or a point, which yields trivial
cases of architecturally singular manipulators.
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rk(Q) = 6 with Q = (q1, . . . ,q7)T and

qi =(wiWi,wiXi,wiYi,xiWi,xiXi,xiYi,yiWi,yiXi,yiYi)T .
(2)

Now it can easily be checked by the use of MAPLE that rk(Q) = 6 holds true for

(Wi,Xi,Yi)T := P(wi,xi,yi)T for i = 1, . . . ,7 (3)

where P is the matrix of the projectivity (P is a regular 3×3 matrix). �

Remark 1. Due to Lemma 1 it is clear why a singular configuration of a planar pro-
jective SG platform does not depend on the distribution of the anchor points in πM

and πm (cf. Thm. 1). �

Theorem 2. Self-motions of planar projective SG platforms, which are not archi-
tecturally singular, can only be of the following type:

1. Spherical self-motion with rotation center mκ = m,
2. Schönflies self-motion, where the direction of the rotation axis is parallel to the

planes πM and πm,
3. Elliptic self-motion.

Proof. We start by denoting the line of intersection of πM and πm by s in the projec-
tive extension of the Euclidean 3-space. As in any pose of a self-motion of a planar
projective SG platform, the manipulator has to be in a singular configuration, we
can apply Thm. 1. Therefore the manipulator is singular if and only if one of the
following cases hold:

a. πM and πm coincide,
b. S = Sκ holds, where S is the intersection point of s and sκ ,
c. s = sκ .

It is well known that every projectivity of the projective extension of the Euclidean
plane onto itself has at least one real fixed point F = Fκ . Therefore, if one pose of
the self-motion is singular due to item (a), this already implies item (1) if F is a
finite point or item (2) if F is an ideal point. Clearly, this also holds for item (b) with
respect to the fixed point S = Sκ . For the study of item (c) we consider again only
one singular configuration of the self-motion. As s = sκ holds the projectivity from
s onto itself can be (i) hyperbolic, (ii) parabolic or (iii) elliptic.

Item (i) immediately implies that the self-motion can only be a pure rotation
about the finite axis s which is a special case of item (1) and (2), respectively. If s
is the ideal line (⇒ πM ‖ πm) then the self-motion is a pure translation, which is a
special case of item (2).

For item (ii) we have one fixed point and we end up with item (2) and (1), re-
spectively, depending on the circumstance if the fixed point is an ideal point or not.

Item (iii) corresponds to the case of Thm. 1, where two legs can be replaced by
collinear legs, as we cannot attach a leg with zero length (over R) without chang-
ing the direct kinematics and singularity surface. Therefore the following definition
finishes the proof of Thm. 2.
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Definition 1. A self-motion of a planar projective SG platform is called elliptic, if
each pose of this motion is singular due to item (c,iii). �

Due to Thm. 2 we only have to investigate spherical self-motions with rotation
center mκ = m (cf. Sec. 3), Schönflies self-motions with the rotation axis parallel
to πM and πm (cf. Sec. 4) and elliptic self-motions (cf. Sec. 5).

3 Spherical self-motions

If a planar projective SG platform has a spherical self-motion about mκ = m, then
the spherical image of this manipulator with respect to the unit sphere S2 centered in
mκ = m also has to have a self-motion. Therefore the problem reduces to the deter-
mination of non-degenerated2 spherical 3-dof RPR manipulators with self-motions,
where the three base and platform anchor points are located on great circles. The
following result is proven in Appendix A:

Lemma 2. A non-degenerated spherical 3-dof RPR manipulator, where the base an-
chor points M◦

1, M◦
2, M◦

3 and the platform anchor points m◦
1, m◦

2, m◦
3 are located on

great circles, can only have a self-motion if two platform points m◦
1 = m◦

3 coincide
(after relabeling of anchor points and interchange of platform and base) and if the
spherical lengths R◦i of the legs equal R◦1 = M◦

1M
◦
2, R◦2 = m◦

1m
◦
2, R◦3 = M◦

3M
◦
2.

The self-motion of the manipulator given in Lemma 2 is a pure rotation about the
axis a := [mκ = m,m◦

1 = m◦
3 = M◦

2] (cf. Fig. 1a). Trivially, we can only add an ad-
ditional leg (with anchor points m◦

4 and M◦
4) to this manipulator without restricting

the self-motion if m◦
4 = m◦

1 or M◦
4 = M◦

2 holds. This has the following consequence
for the corresponding planar projective SG platform: κ has to map all platform an-
chor points /∈ a on points of a. Therefore κ cannot be a bijection and we get the
contradiction. This proves the following theorem:

Theorem 3. Planar projective SG platforms, which are not architecturally singular,
do not have spherical self-motions with rotation center mκ = m.

4 Schönflies self-motions

The Schönflies motion group is a four-dimensional subgroup of the Euclidean mo-
tion group and consists of all translations combined with all rotations about a fixed
direction d, which in our case is parallel to πM and πm. Moreover, it is well known
(e.g. [14]) that platform points being on lines parallel to d have congruent trajecto-
ries in a Schönflies motion. Therefore we can translate every leg of the manipulator
in direction d during a Schönflies self-motion without changing this motion. This
property is important for the following argumentation.

2 Neither all platform anchor points nor all base anchor points collapse into one point.
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Fig. 1 a) Non-degenerated spherical 3-dof RPR manipulator with a self-motion. b,c) Non-
degenerated planar 3-dof RPR manipulators with self-motions: Circular translation (b) and a pure
rotation about the point M−

2 = m−
1 = m−

3 (c), which is the planar analogue of (a).

We choose the y-axis of the moving and the fixed frame parallel to the direction d.
Moreover, we choose a line g ∈ πm which is orthogonal to d (cf. Fig. 2a). Under the
projectivity κ the platform anchor points mg ∈ g are mapped to the corresponding
base anchor points Mg := mgκ on the line gκ ∈ πM, which cannot be parallel to d
(cf. Fig. 2b). Note that the lines [mg,Mg] belong to a regulus R.

Now we choose a platform point m /∈ g and denote the footpoint on g with respect
to m by m f . Then τ denotes the signed distance of m f and m with respect to the
direction d. Due to the above considerations we can also add the leg [m,mτ] (beside
the leg [m,mκ]) without restricting the self-motion, where mτ denotes the point
which we get by translating m f κ about τ in direction d. If this construction is done
for all points of a line h ‖ g through m we get the line hτ . We distinguish two cases:

• hκ 6= hτ: Now every point m ∈ h (with exception of me := {hκ ∩ hτ}κ−1) can
only rotate about the line [mτ,mκ] ‖ d (cf. Fig. 2a,b). Therefore the platform
cannot move in direction d during the self-motion and the problem reduces to the
following planar one: Determine all non-degenerated 3-dof RPR manipulators
with collinear platform anchor points m−

1 , m−
2 , m−

3 and collinear base anchor
points M−

1 , M−
2 , M−

3 possessing a self-motion.
It is well known, that there only exists the so-called circular translation (cf. Fig.
1b) beside the planar analogue (cf. Fig. 1c) of the spherical self-motion given
in Lemma 2, which yields for the same arguments as in the spherical case no
solution to our problem. The circular translation implies that the projectivity κ

with matrix P = (pi j) has to be an affinity of the following form:

Mi =
(

p21
p31

)
+

(
1 0

p32 p33

)
mi with p33 ∈R\{0,1} and p21, p31, p32 ∈R.

(4)
This can be seen as follows: As the pencil of lines through the ideal point of d
has to be mapped onto an identical pencil of lines through the ideal point of d,
the ideal line has to be mapped onto itself (⇒ p12 = p13 = 0). As the entries of
P are still homogeneous, we can set p11 = 1 without loss of generality (w.l.o.g.),
as p11 = 0 implies that κ is singular. Moreover, the fact that the above mentioned
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a) b) c)
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mκ
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s2

d2 d1

c

k = cκ

Fig. 2 Sketch of the mappings κ and τ between the platform (a) and the base (b). In (c) the proof
of Thm. 5 is illustrated: common point and tangent of an ellipse k and the unit circle c.

pencils are identical yields p22 = 1. Finally, we get p23 = 0 from the condition that
the ideal point in direction d is fixed under κ . Moreover, p33 6= {0,1} has to hold,
because otherwise the affinity is singular resp. hκ = hτ holds, a contradiction.

• hκ = hτ: Now this has to hold for all distances τ because otherwise we get the
above case. As a consequence the projectivity κ with matrix P = (pi j) has to be
an affinity of the following form:

Mi =
(

p21
p31

)
+

(
p22 0
p32 1

)
mi with p22 ∈ R\{0} and p21, p31, p32 ∈ R.

(5)
This can be seen as follows: The condition that the ideal point of the y-axis of
the moving frame is mapped onto the ideal point of the y-axis of the fixed frame
yields p13 = p23 = 0. Now we invest the property that the anchor points of a leg,
during its translation in direction d, always have to correspond one another within
the projectivity. This can be expressed as follows:

P

1
u
v

+

0
0
τ

 = P

 1
u

v+ τ

 . (6)

As the first two rows are fulfilled identically, only the third row yields a condi-
tion, which reads as follows: τ(p11− p33 + p12u) = 0. This equation can only be
fulfilled for all u ∈ R if p12 = 0 (⇒ κ is an affinity ) and p11 = p33 hold. As the
entries of P are still homogeneous, we can set p11 = 1 w.l.o.g., as p11 = 0 implies
that κ is singular. Moreover, p22 6= 0 has to hold, because otherwise the affinity
is also singular.

These considerations prove the first two sentences of the following theorem:

Theorem 4. A planar projective SG platform, which is not architecturally singular,
can only have a Schönflies self-motion with the direction d of the rotation axis paral-
lel to πM and πm, if it belongs to the subset of planar affine SG platforms. Moreover,
if we choose the y-axis of the moving and the fixed frame in direction of d, the affinity
κ has to be of the form given in Eqs. (4) or (5). In addition, all self-motions of these
manipulators are pure translations and the self-motion is two-dimensional only if
the platform and the base are congruent and all legs have equal length.
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The last sentence of this theorem, which was already known to Karger [9], can
easily be proved by direct computations, which are given in Appendix B. Moreover,
we can give a geometric characterization of all non-architecturally singular planar
affine SG platforms with self-motions:

Theorem 5. Assume a planar affine SG platform, which is not architecturally sin-
gular, is determined by Mi = a + Ami. Then this manipulator has a self-motion if
and only if the singular values s1 and s2 of A with 0 < s1 ≤ s2 fulfill s1 ≤ 1≤ s2.

Proof. First of all, we prove that a planar affine SG platform cannot have an elliptic
self-motion. If s = sκ is not the ideal line, then the projectivity from s onto itself has
at least one fixed point, namely the ideal point of s = sκ . Therefore s = sκ has to be
the ideal line during the whole self-motion. This implies that the elliptic self-motion
is a Schönflies motion, where the direction of the rotation axis is orthogonal to
πM ‖ πm. As all points of the platform have to run on spherical paths, this Schönflies
motion can only be the Borel Bricard motion (cf. [1, 2]) due to [14]. Therefore the
corresponding points of the platform and base have to be related by an inversion. As
an inversion is no projectivity, we get a contradiction.

Under consideration of this result and Thms. 2 and 3, planar affine SG platforms
can only have self-motions given in Thm. 4. We consider the image of the unit
vectors c = (cosϕ,sinϕ) ∈ πm for ϕ ∈ [0,2π] under κ . Clearly, the tie points of the
vectors Ac are located on an ellipse k (including the special case of a circle).

? The necessary and sufficient condition for an affinity of the form Eq. (5) is that
a vector d1 of Ac has length 1. This corresponds geometrically to the common
points of k and the unit circle c (cf. Fig. 2c).

? The necessary and sufficient condition for an affinity of the form Eq. (4) is that
a vector d2 of Ac exists, which has distance 1 from the ellipse tangent in its
conjugate point d2 on k. This corresponds geometrically to the determination of
common tangents of k and c (cf. Fig. 2c).

If we choose a new coordinate system in the base and platform such that the y-axis
is parallel to di and A−1di, respectively, we end up with an affinity of the form given
in Eq. (5) for i = 1 resp. Eq. (4) for i = 2. Clearly, we only get real common points
and tangents of k and c if the singular values s1 and s2 of A fulfill s1 ≤ 1≤ s2. �

Remark 2. Note, that Thm. 5 also implies the result of [10] that planar equiform
SG platforms cannot have a self-motion if they are not architecturally singular, as
s1 = s2 6= 1 holds. Finally, it should also be mentioned that all planar affine SG
platforms given in Eq. (4) and Eq. (5) are Schönflies-singular manipulators due to
item (3) and item (2), respectively, of Thm. 3 given by the author in [15]. �
Example 1. We verify Thm. 5 at hand of the planar affine SG platform with a self-
motion given by Karger on page 162 of [9]. The first three pairs of anchor points
are determined by a1 = b1 = b2 = A1 = B1 = B2 = 0, a2 = 1, a3 = 5, b3 =−4 and
A2 = A3 = B3 = 2. For this example a, A, s1 and s2 are given by:

a =
(

0
0

)
, A =

(
2 2
0 − 1

2

)
, s1 =

√
41−5

4
≈ 0.35, s2 =

√
41+5

4
≈ 2.85.
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5 Conclusion and future research

We proved that non-architecturally singular planar projective SG platforms have
either elliptic self-motions (Def. 1) or pure translational self-motions (Thms. 2–4).
The latter are the only self-motions of planar affine SG platforms (Thm. 5).

The study of elliptic self-motions is dedicated to future research. It remains open
whether these self-motions even exist, as no example is known to the author so far.
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Comptes Rendus des Séances de l’Académie des Sciences 52 1094–1104 (1861)

9. Karger, A.: Singularities and self-motions of a special type of platforms, Advances in Robot
Kinematics: Theory and Applications (J. Lenarcic, F. Thomas eds.), 155–164, Springer (2002)

10. Karger, A.: Singularities and self-motions of equiform platforms, Mechanism and Machine
Theory 36(7) 801–815 (2001)

11. Karger, A.: Parallel manipulators with simple geometrical structure, Proc. of the 2nd Euro-
pean Conference on Mechanism Science (M. Ceccarelli ed.), 463–470, Springer (2008)

12. Mielczarek, S., Husty, M.L., Hiller, M.: Designing a redundant Stewart-Gough platform with
a maximal forward kinematics solution set, Proc. of the International Symposion of Multi-
body Simulation and Mechatronics (MUSME), Mexico City, Mexico (2002)

13. Borras, J., Thomas, F., Torras, C.: Singularity-invariant leg rearrangements in doubly-planar
Stewart-Gough platforms, Proc. of Robotics Science and Systems, Zaragoza, Spain (2010)

14. Husty, M.L., Karger, A.: Self motions of Stewart-Gough platforms: an overview, Proc. of the
workshop on fundamental issues and future research directions for parallel mechanisms and
manipulators (C.M. Gosselin, I. Ebert-Uphoff eds.), 131–141 (2002)

15. Nawratil, G.: Special cases of Schönflies-singular planar Stewart Gough platforms, New
Trends in Mechanisms Science (D. Pisla et al. eds.), 47–54, Springer (2010)



Self-motions of planar projective Stewart Gough platforms 9

Appendix A

In the following we give the proof of Lemma 2:

Proof. W.l.o.g. we can assume that the origin O of Σ0 is the center of rotation.
Moreover, the constraint Γi(mi,Mi,Ri) that mi 6= O is located on a sphere with ra-
dius Ri and midpoint Mi 6= O can be replaced by the constraint Γk(mk,Mk,Rk) if
^(Mi,O,mi) = ^(Mk,O,mk), {O,Mi,Mk} collinear and {O,mi,mk} collinear.

If
{
mi,m j,O

}
are collinear and

{
Mi,M j,O

}
are not collinear, then one can re-

place Γi by Γk such that mk = m j holds. Therefore the self-motion can only be a pure
rotation about the line a = [O,mk = m j], as the tetrahedron

{
O,mk = m j,Mk,M j

}
forms a rigid structure. For pure rotations we distinguish two cases:

I. a /∈ πM: We can add all legs [Mp,mp] with mp ∈ a
II. a ∈ πM: We can add all legs [Mp,mp] with Mp ∈ a or mp ∈ a

without disturbing the rotational self-motion. Note that for Ri = 0 (⇒ mi = Mi) the
self-motion is also a pure rotation about the line a = [O,mi = Mi] (cf. item II). Item
I implies an architecturally singular manipulator as all platform anchor points have
to be located on a. This corresponds to the degenerated case of the spherical 3-dof
RPR manipulator (cf. footnote 2). Item II yields the self-motion given in Lemma 2.

Clearly, the same argumentation can be done for the case that
{
Mi,M j,O

}
are

collinear and
{
mi,m j,O

}
are not collinear.

Due to these considerations we can assume w.l.o.g. that the triples
{
Mi,M j,O

}
and

{
mi,m j,O

}
are not collinear for i, j ∈ {1,2,3} and i 6= j. Therefore we can set:

B1 = b1 = 0, A1 = B2 = B3 = a1 = b2 = b3 = 1, (A2−A3)(a2−a3)R1R2R3 6= 0.

According to Brunnthaler et al.3 the constraints Γi can be written as:

Γi : 2aiAi(e2 +2 +e2
3− e2

0− e2
1)+A2

i +a2
i −R2

i +

4(e2
1 + e2

3)+4e0e3(ai−Ai)−4e1e2(ai +Ai) = 0,
(7)

for i = 2,3 and Γ1 : 4(e2
2 + e2

3)−R2
1 = 0, where e0, . . . ,e3 are the Euler parameters.

Now Γ1, Γ2 and Γ3 represent three quadrics in the Euler parameter space and a self-
motion corresponds to a common intersection curve of them.

Part [A] a2A2a3A3 6= 0:
Under this assumption we can compute the resultant Γ23[193]4 of Γ2 and Γ3 with
respect to e0 w.l.o.g.. The coefficient of e2

2 of Γ23 splits up into F1F2 with F1 =
Ge1 +He3, F2 = Ge1−He3 and

G = a2a3(A2−A3)+A2A3(a2−a3), H = a2a3(A3−A2)+A2A3(a2−a3). (8)

3 Brunnthaler, K., Schröcker, H.-P., Husty, M.: Synthesis of spherical four-bar mechanisms using
spherical kinematic mapping, Advances in Robot Kinematics: Mechanisms and Motion (J. Lenar-
cic, B. Roth eds.), 377–384, Springer (2006)
4 We write the number of terms of the not explicitly given factors into brackets.
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1. F1F2 6= 0: Under this assumption we can compute the resultant Γ123[3497] of
Γ23 and Γ1 with respect to e2. In order to obtain a self-motion Γ123 has to be
fulfilled independently of the remaining Euler parameters. Therefore we denote
the coefficients of ei

1e j
3 of Γ123 by Γ

i j
123 and set them equal to zero. Then Γ 80

123
implies a2 = a3A3/A2 and from Γ 08

123 we get A2 =−a3. Then Γ 44
123 cannot vanish

without contradiction (w.c.).
2. F1 = 0, G 6= 0: Now we can compute e1 from F1 = 0. Moreover, we denote the

coefficient of e2 of Γ23 by W .

a. W 6= 0: Now we can compute the resultant Γ123[28809] of Γ23 and Γ1 with
respect to e2 w.l.o.g.. We denote the coefficients of ei

3 of Γ123 by Γ i
123. Now

Γ 0
123 and Γ 4

123 imply R2
i = a2

i +A2
i for i = 2,3. Then Γ 6

123 cannot vanish w.c..
b. W = 0: If Γ23 is not fulfilled identically, W = 0 or Γ23 implies an expres-

sion for e3. Finally, Γ1 would imply an expression for e2 and we cannot get
a self-motion. Therefore there can only exist a self-motion if Γ23 is fulfilled
independently of the Euler parameters. We denote the coefficients of ei

2e j
3 of

Γ23 by Γ
i j

23 . Now Γ 11
23 can only vanish w.c. for HJ[6] = 0.

i. H = 0 (⇒ e1 = 0): As for a3 = A2A3/(A2−A3) the expression H cannot
vanish w.c. we can assume A2A3 + a3(A3 −A2) 6= 0. Therefore we can
express a2 from H = 0. Then Γ 04

23 implies A2 = −a3 and from Γ 00
23 we

get R2
2 = R2

3 (⇒ Γ2 = Γ3). We can always express e0 from Γ2 = Γ3 due to
A2A3a2a3 6= 0 but Γ1 is not fulfilled identically (⇒ no self-motion).

ii. J = 0, H 6= 0: W.l.o.g. we can solve J = 0 for R2. Moreover, we can solve
the only non-contradicting factor of Γ 02

23 for R3 which yields R2
i = a2

i +A2
i

for i = 2,3. Now the resultant Γ 04
23 and Γ 13

23 with respect to a3 can only
vanish w.c. for a2 =±A3 over R. In both cases the back substitution into
Γ 04

23 and Γ 13
23 yields the contradiction.

3. F1 = 0, G = 0: Now F1 can only vanish for e3 = 0 or H = 0. As it can easily
be seen that G = H = 0 yields a contradiction, we are left with the case H 6= 0
and e3 = 0. In this case Γ23 only depends on e2. Therefore there can only be a
self-motion if Γ23 is fulfilled independently of e2.

a. A2A3 +a3(A2−A3) 6= 0: Under this assumption we can express a2 from G =
0. Then the coefficient of e2

2 of Γ23 implies A2 = a3 and from the coefficient
of e0

2 of Γ23 we get R2
2 = R2

3. Now again Γ2 = Γ3 holds and we get the same
contradiction as in item (2bi).

b. a3 = A2A3/(A3−A2): Now G = 0 cannot vanish w.c..

4. F2 = 0: This can be done analogously to item (2) and item (3).

Part [B] a2A2a3A3 = 0:
First we assume a2 = A2 = 0. As a consequence a3A3 6= 0 has to hold. Moreover,
we get Γ2 = 4(e2

1 + e2
3)−R2

2. Therefore we can always express e1 from Γ2 and e2
from Γ1. Due to a3A3 6= 0 we can also solve Γ3 for e0 which already shows that this
cannot yield a self-motion.
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Therefore we can assume w.l.o.g. that A2 = 0 and a2A3 6= 0 hold (under consid-
eration of exchanging the platform and the base). We distinguish two cases:

1. e3 = 0: For this condition we can always solve Γ2 for e1 and Γ1 for e2. Therefore
we cannot get a self-motion in this case.

2. e3 6= 0: We have to distinguish two cases:

a. a3 = 0: W.l.o.g. we can compute Γ123. Then the coefficient of e6
3 can only

vanish w.c. for a2 =−A3. Then the coefficient of e4
3 yields the contradiction.

b. a3 6= 0: We distinguish further two cases:
i. e1 6=±e3: Under this assumption the coefficient of e2

2 of Γ23 cannot van-
ish. Therefore we can compute Γ123. Now the coefficient of e8

1 of Γ123
cannot vanish w.c..

ii. e1 =±e3: In these two special cases the coefficient of e2 of Γ23 can only
vanish for e2

3(a2−a3)+a3(R2
2−a2

2) = 0. As this equation cannot be ful-
filled independently of e3 without yielding a contradiction, we can also
compute Γ123 w.l.o.g.. Now the coefficient of e8

1 of Γ123 cannot vanish
w.c. over R. This finishes the proof of Lemma 2. �

Remark 3. It can be proven analogously, that general non-degenerated spherical 3-
dof RPR mechanisms (platform anchor points and base anchor points have not to be
located on great circles) can only have a self-motion if m◦

1 = m◦
3 holds (after rela-

beling of anchor points and interchange of platform and base) and if the spherical
lengths R◦i of the legs equal R◦1 = M◦

1M
◦
2, R◦2 = m◦

1m
◦
2, R◦3 = M◦

3M
◦
2. �

Appendix B

By using the Study parameters (e0 : . . . : e3 : f0 : . . . : f3) to parametrize Euclidean
displacements, Husty5 showed that the condition for mi to be located on a sphere
with center Mi and radius Ri can be expressed by the following homogeneous
quadratic equation:

Λi : (A2
i +B2

i +a2
i +b2

i −R2
i )K +4( f 2

0 + f 2
1 + f 2

2 + f 2
3 )

+2(e2
3− e2

0)(Aiai +Bibi)+2(e2
2− e2

1)(Aiai−Bibi)
+4[( f0e2− e0 f2)(Bi−bi)+(e1 f3− f1e3)(Bi +bi)
+( f2e3− e2 f3)(Ai +ai)+( f0e1− e0 f1)(Ai−ai)
+ e0e3(Aibi−Biai)− e1e2(Aibi +Biai)] = 0.

Moreover, we abbreviate the difference Λi −Λ j by Λi, j and denote the equation
∑

3
i=0 ei fi = 0 of the Study quadric by Ψ . Based on this preparatory work we can

prove the last sentence of Thm. 4:

5 Husty, M.L.: An algorithm for solving the direct kinematics of general Stewart-Gough platforms,
Mechanism and Machine Theory 31(4) 365–380 (1996)
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Proof. As the self-motion induced by the circular translation is trivially a pure trans-
lation, we only have to prove that the self-motions of the manipulators given by Eq.
(5) are pure translations. This can be done by direct computations as follows:

We choose the y-axis of the moving and the fixed frame parallel to the direction
d. Therefore the Schönflies motion group is determined by e1 = e3 = 0.

Due to the considerations given in Sec. 4 we can restrict ourselves to the motion
implied by the regulus R, which is determined by three pairwise distinct legs ∈R.
W.l.o.g. we can choose a coordinate system in the moving system Σ such that the
platform anchor points of the three legs are given by m1 = (0,0) and m j = (a j,0)
for j = 2,3 and 0 6= a2 6= a3 6= 0. Moreover, we can assume that M1 is located in
the origin of the fixed system (⇒ p21 = p31 = 0). Therefore we get M1 = (0,0) and
M j = (p22a j, p32a j) for j = 2,3 with p22 6= 0.

In the following we give the discussion of cases:

I. p32 6= 0: Under this assumption we can solve Ψ and Λ2,1 for f0 and f2. Plug-
ging the obtained expressions into Λ3,1 yields a homogeneous quadratic equa-
tion of the form c0e2

0 + c2e2
2 = 0 where the ci’s only depend on the geome-

try of the manipulator. Moreover, as c0− c2 = 4p22a2a3(a2− a3) 6= 0 holds,
Λ3,1 cannot be fulfilled identically. Therefore this equation determines already
the orientation of the platform, which is constant during the self-motion, as
c0e2

0 + c2e2
2 = 0 do not depend on f1 and f3.

Now we only have to show that we cannot get a two-dimensional self-motion,
which corresponds to the fact that the remaining equation Λ1 cannot be fulfilled
identically. This can be seen as follows: The difference of the coefficients of
f 2
1 and f 2

3 of Λ1 splits up into:

16a2
2(p22(e0− e2)− e0− e2)(p22(e0 + e2)− e0 + e2). (9)

a. p22(e0− e2)− e0− e2 = 0: As e0 6= e2 has to hold (otherwise we get e0 =
e2 = 0, a contradiction) we can solve this equation for p22. Moreover, we
can express p32 from the only non-contradicting factor of the coefficient of
f 2
1 of Λ1, which yields:

± 2e0e2

(e0− e2)
√
−e2

0− e2
2

. (10)

As this cannot yield an real number for e0,e2 ∈ R we are done.
b. p22(e0 + e2)− e0 + e2 = 0: This can be done analogously to item (a).

II. p32 = 0: We have to distinguish the following two cases:

a. p22 6= 1: We distinguish further two cases:
i. e0 6= 0: Under this assumption we can solve Ψ and Λ2,1 for f0 and

f1. Plugging the obtained expressions into Λ3,1 yields again a homo-
geneous quadratic equation of the form c0e2

0 + c2e2
2 = 0 where the ci’s

only depend on the geometry of the manipulator. Moreover, as again
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c0− c2 = 4p22a2a3(a2−a3) 6= 0 holds, Λ3,1 cannot be fulfilled identi-
cally. Therefore this equation determines already the orientation of the
platform, which is again constant during the self-motion.
Moreover, the coefficient of f 2

2 of Λ1 factors into 16a2
2(p22−1)2(e2

0 +
e2

2) 6= 0 and therefore we cannot obtain a two-dimensional self-motion.
ii. e0 = 0 (⇒ e2 = 1): Now Ψ implies f2 = 0.

? p22 6=−1: Under this assumption we can express f3 from Λ2,1. Then
Λ3,1 only depends on the geometry of the manipulator and therefore
this is a so-called assembly condition.
Moreover, the coefficient of f 2

1 of Λ1 factors into 16a2
2(p22 +1)2 6= 0

and therefore we cannot obtain a two-dimensional self-motion.
? p22 = −1 (⇒ platform and base are congruent): Now Λ2,1 and

Λ3,1 are assembly conditions, which imply R1 = R2 = R3. We are
only left with Λ1 : 4( f 2

0 + f 2
1 + f 2

3 )−R2
1 = 0, which yields the two-

dimensional self-motion.
b. p22 = 1 (⇒ platform and base are congruent): We distinguish three cases:

i. e0e2 6= 0: Under this assumption we can solve Ψ and Λ2,1 for f0 and
f3. Plugging the obtained expressions into Λ3,1 yields again a homo-
geneous quadratic equation of the form c0e2

0 + c2e2
2 = 0 where the ci’s

only depend on the geometry of the manipulator. Moreover, as again
c0−c2 = 4a2a3(a2−a3) 6= 0 holds, Λ3,1 cannot be fulfilled identically.
Therefore this equation determines already the orientation of the plat-
form, which is again constant during the self-motion.
Moreover, the coefficient of f 2

2 of Λ1 factors into 64a2
2e2

2(e
2
0 + e2

2) 6= 0
and therefore we cannot obtain a two-dimensional self-motion.

ii. e2 = 0 (⇒ e0 = 1): Now Ψ implies f0 = 0. Then Λ2,1 and Λ3,1 are
assembly conditions, which imply R1 = R2 = R3. We are left with
Λ1 : 4( f 2

1 + f 2
2 + f 2

3 )−R2
1 = 0, which yields the two-dimensional self-

motion.
iii. e0 = 0 (⇒ e2 = 1): Now Ψ implies f2 = 0. Moreover, we can solve

Λ2,1 for f3 w.l.o.g.. Then Λ3,1 is an assembly condition.
Moreover, the coefficient of f 2

0 of Λ1 equals 64a2
2 6= 0 and therefore we

cannot obtain a two-dimensional self-motion. This finishes the proof
of the last sentence of Thm. 4. �
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