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Abstract. In the first part, we recall the axiomatic definition of the elementary morphological operators (dilations,
erosions, anti—dilations and anti—erosions) and their characterization in the case of Boolean lattices. This charac-
terization is used to derive the set operator decompositions from the general decompositions of operators between
complete lattices. In the second part, we define the notions of “conditionally translation invariant” (c.t.i.) and of
“locally c.t.i.” elementary operators. These operators are those usually implemented on digital computers. We
show how any c.t.i. elementary operator can be decomposed in terms of locally ones.
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1. Introduction

In Image Processing, to work with translation invariant (t.i.) operators we must assume
that the image domain has a torus structure. Unfortunately, this assumption is not accept-
able in many practical applications. For this reason, the linear operators or the morpholog-
ical elementary operators commonly used in Image Processing, behave like t.i. operators
only in the “central” area of the image domain.

In the first part of the paper, we recall the axiomatic definitions of the four classes of
morphological elementary operators. When the domain or the range of these elementary
operators is a Boolean lattice, we can characterize the pairs of elementary operators that
form Galois connections. This characterization is useful for two reasons: on one hand, it
gives the clue for the link between any operator and its left or right kernel, and, on the other
hand, it can be used to characterize the elementary set operators in terms of structuring
functions.

Based on theses results, we derive the set operator decompositions from the general
operator decompositions introduced by Banon and Barrera (1993).

In the second part of the paper, we introduce the formal definition of the so—called
conditionally translation invariant (c.t.i.) elementary operators. This definition
corresponds to what is usually implemented on digital computers and it is based on the
notion of c.t.i. structuring function. We present the collection of all the structuring ele-
ments that characterize the c.t.i. structuring functions.

Unfortunately, the c.t.i. elementary operators are not sufficient to represent any opera-
tor. For this reason, we introduce the notion of locally c.t.i. elementary operator and we
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give a constructive decomposition of any c.t.i. elementary operator. The decomposition
of a c.t.i. dilation is given as an example to illustrate the theory.

2. Axiomatic Definition and Characterization of the Morphological Elementary
Operators

Let (£, <), or simply£, be a complete lattice (Birkhoff, 1967). We denote Wy, A
the union and intersection ih Thedual complete lattice of,, (£, =), is denoted?.

Let £, and £, be two complete lattices. The class'* of the mappings from £,

to £,, calledoperators equipped with theunctual ordering(f)
2

=y = yPpX) =y9'(X) X E L)
(£2) L2
is a complete lattice.
We define the morphological elementary operators axiomaticallydifdtens (resp.

erosion3 from 4., to 4., are the operators if," which commute with union (resp. inter-
section). Theanti—dilations(resp.anti—erosion¥ from £, to £, are the dilations (resp.

erosion) fromd,, to z, (Banon & Barrera, 1993).

We will denote byA(4.,, 4£,), E(L4, 4,), A¥ (L4, 4,) andEXL,, £,) , respectively, the
class of dilations, erosions, anti—dilations and anti—erosions forto £,. We know
(Banon & Barrera, 1993a) that these classes are complete lattices. Consequently, the
Galois connectionsa( ) betweens , and £, (Birkhoff, 1967) form a complete lattice
with respect the the partial ordering

(@,p) = (@'.p) = a(isz)a andﬂ(fl)ﬁ .

If (a,p) is a Galois connection, thehis thecompanion operator ot and similarly
a is thecompanion operator of.

Let E be a non empty set, the®(E), C), or simplyP(E) or &, the collection of all
parts ofE equipped with the inclusiorC, is a complete Boolean lattice. We denote by
X° the set complement of a subXedf E.

Let (£, <) be a complete lattice. The s&t of the functions from E to £ equipped

with the punctual orderin%) is a complete lattice.
We now recall Corollary 4 of Achache (1982). A similar result (witk= P(E)) is
in Serra (1988, Section 2.2).
Proposition 1— The mapping — (a,3) from the complete latticé.F to the complete
lattice of Galois connections betweérand (P(E), C) defined by
aX) ={y € E: X=aW)} (X € L) and A(Y) = y/E\Ya(y) (Y € 2(B)

is a lattice isomorphism. Its inverse, §) — a is given bya(y) = f({y}) (y € E). O
We know (Achache, 1982, Lemma 1) that= A¥L,?P) and § € AXP, L). From

Proposition 1 we can derive the following proposition.

Proposition 2— The mapping — (a,3) from the complete latticeF to the complete

lattice of Galois connections betweérand (P(E), D) defined by
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aX) ={y €E: X=aW)}* (X € £) and () = A .a) (Y € 2(E)
y €Y

is a lattice isomorphism. Its inverse, §) — a is given bya(y) = f({y}°) (y € E). O

In this caseg € A(L,P) and B € E(P, 4£). In Propositions 1 and 2 the functian
is called thestructuring function of the elementary operatarand S.

From Propositions 1 and 2 we can derive the elementary operators characterization
given in Table 1 and the next corollary whétestands forP(E,).

TABLE 1
Elementary operators characterization.

identifying in

7 to Prop. leads to and with

r L a € E(L,P) a=¢ &X)={y€E€E:aly =X}
' B EAPLL) B =0a 0a(Y) = y\E/Ya(y)

N 1 a € AL, P,) a = 0* WX ={y € E: X=Db(y)}
1 pen@,r) p=oy, 0N = D00

B ) a € B L, P) a=¢€% X)) ={yeE:ay =X}
1 BEE@, L) p=& M= Va0

B ) a € AL, P) a=0 PBX) ={yeE: X=Dby}°
' B € E(@,4,) B = e(Y) = y é\YCb(y)

Corollary 3 — Leta andb be two functions fronk, to £,. Then we have:

(1) if ais the structuring function af € A(®,, 4£,) (i.e.,aly) = 6({y}) (y € E,)) then
its companion erosion is;

(2) if b is the structuring function 0b® € AP, 4£,) (i.e., by) = d3{y}) (y € Ey))
then its companion anti—dilation 82

(3) if a is the structuring function of* € EXP,, £,) (i.e., aly) = e{y}°) (y € E,))
then its companion anti—erosioneiy;

(4) if bis the structuring function of € E(P,, £,) (i.e.,b(y) = e({y}° (y € E,)) then
its companion dilation igd. O

3. Operator Decomposition in terms of Elementary Operators
In order to specialize to set operators the general decomposition theorem (Banon & Bar-
rera, 1993) we need to derive one more corollary from Proposition 1. In this s@¢tion
and 9, stands, respectively, faP(E,) and P(E,). Let ¢ be an operator fror®, to P,.
We recall (Banon & Barrera, 1993) that the mappings(y) and % - (y) from P, to
P(P,) given by, for anyy € P,
“H@)(Y) ={XeEP YT yX)}and F-@)(Y) = {XE P, p((X) C Y}
are called, respectively, theft andright kernel ofy.
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Corollary 4 — The left and right kernel of a set operator friénto P, are, respectively,
an anti—dilation and an erosion fraiy to P(%,). O

Proof — For the left kernel, the result follows from Proposition 1 by identiffing, , a
anda to, respectively®,, ¥,, ¥ and - 96(). For the right kernel, the result follows from

Proposition 1 by identifyin, £ ,aanda to, respectively®,, Eﬁz, wand¥%-(y). O
Leta,f € @19’2 and let &, 8] be theinterval functionfrom %, to P(%,) with extremi-
tiesa and g (Banon & Barrera, 1993).

Lemma 5- Lety be a set operator frof, to P.,.
Q) Ifa € AP, Py andf € AYP,, P,) then, for anyy € P,

[a.B1€ YY) C - F@){YD) (y € Y) = [a,pI(Y) C - F@)(Y).
2) If a € E{9,,9,) andf € E(P,, P,) then, for anyy € P,
[.p1{¥}) C - @AY} (y € Y) = [a.pIY) C Fo- @)(V). O
Proof — Let us prove part (1). For atye P,

TRUE < [a,BI(Y) C [a,.B]{Y}) (YEY) (a is isotone angb is antitone)
< [a,flM C N [a,f1dY) (property of the intersection)
yEY
= [a,pI(Y) C yQY' Fw)dy) ([a.A1{Yh C - F@)AYH (YEY))
< [a,B1(V) C - @) U {y}) (by Corollary 4,- 36(y) is an anti—dilation)
yEY
< [a,BI(Y) C - Fo(@)(Y). (Y representation by singletons)
The proof of part (2) is similar to the proof of part (1). O

Let AB be the set defined by
AB = {(ab) € P, x P,2: Vy € E,, (aly) C b(y)) or (ay) = E, andb(y) = 0)}
Let a,b € éPlEZ. We denote byd, b] the interval functionfrom E, to P(P,) with

extremitiesa and b. We denote the punctual orderi(rg) on P(P)E2 simply <.

Theorem 6— Any operatoly € ?]329)1 can be decomposed in terms of a set of sup—gener-
ating or inf-generating operators and the constructive decompositions are

= v ] a
v (a,b) € ABand p,b] < .%(w)(f A 09

where - Jo()(y) = {X € P,: y € y(X)}, foranyy € E,, and

= A SRRV
v (ab) € ABand p b] = %(w)(e )
where 96 - (@)(y) = {X € P,: y & v(X)}, for anyy € E,. O
Proof — We can make a direct proof or, as we do below, derive the result from the general
decomposition theorem of Banon & Barrera (1993). Forafom &P, to P,
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= V al A OB
v (@p) € AA%and 1, f] = ~a<;(¢)( 2

(Theorem 6.1 of Banon & Barrera (1993a) or Theorem 1 of Banon & Barrera (1993b))

= V (@l A Op) (Lemma 5)
(@,B) € AA%and (B, BI(Y) C - @)Y (Y € Ey)

= V a A 9. C Il 3
(ab) € ABand p,b] < - %(y) (6a A 407 (Corollary 3)

The proof of the second decomposition is similar to the proof of the first oned

A direct proof of a similar result is given in Banon & Barrera (1990).

The sup—generating and inf-generating operators of Theorem 6 are, respectively, the
operators, A 2 ande?, vV 0, wherea andb are functions fronk, to ?,.

4. Conditionally Translation Invariant Elementary Operators

Let (Z2, +) be the set of ordered pairs of integers equipped with the usual addition. Let
u be a point ofZ2, we denote by + u the translate by of a subseB of Z? and byB!
its transpose (Banon & Barrera 1991). From now on, we assume that thg aatsE,
of Section 3 are subsets &f (for example “rectangles”).
A functionb from E, to ¢, is conditionally translation invarianbr act—functioniff
IB € (2%, Vy € E, b(y) = (B + y)nE,.
Let us consider the following subcollecti&klsz, or simply®, of P(Z?)

B={BePZ?):VbeB, JUEE, b+ueE}.
Let @ denote the Minkowski addition oft(Z?) (Hadwiger, 1950). We observe that
P is an ideal and a complete sublatticeR(Z?), its greatest element B, ® E,' and
B = P(E, ® E,). Figure 1 shows an elemeddf B generated by two rectangles.

|3 | o
N BN
\\\ \\\ Ezt
~ AN
u+b [P—— >
1~ — B
= Vb@ E, ®E,)
1

Fig. 1 — An element of an ideal generated by two rectangles.

The next proposition characterizes the ct—function@*’fﬁ in terms of subsets of
E,®E,.
Proposition 7— The mappind® — bg from P to the set of ct—functions ﬁﬁfZ given by
be(y) = B+ Y)NE, (y € E)

is a bijection. Its inversb — B, is given byB, = U (b(y) — ). O
YEE

Proof — (1) For anyB € B, bgis by construction a ct—function.
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(2) For any ct—functiob from E, to P(E,)

B,= U (by) —y) (definition of By)

yeE

c U (E -y (b(y) C E)
y€EE,

=E ®E,, (definition of ®)

That is,B, € 3.

(3) Let us prove thaB — by is “one to one”. On one hand, for aBye %,

TRUE = B+ Y)NE, C(B+Yy) (YEE) (property of the intersection)
=< (B+y)NE)—-yCB (yE€E) (translation is isotone)
< U (B+ynE)-y)CB (property of the union)

yeE
< B, CB. (definitions ofbg and B,)
On the other hand, for arly € $ andb € Z2,
beB=be&eBanddyeE, b+y€E, (definition of B)
=3dye E, b+yeB+yandy+be& E, (property of the translation)
< 3dyeE, b+ye (B+ynE, (definition of the intersection)
< 3dyeE, be(B+ynE) -y (translation is isotone)
=be U (B+y)NnE)-y (definition of the union)
yeEE
= b€EB,, (definitions ofbg and B,)

That is, foranyB € 3, B C Bbs' Therefore B — by is “one to one”.

(4) Let us prove thaB — by is “onto”. On one hand, for any ct—functibrin ?PEZ and
y E E21

be () = (( UE (b(v) — V) + y)NE, (definitions of B, andby)
vVEE,
D b(y)nE, (v = y e property of the union)
= b(y). (b(y) C E)

On the other hand, for any ct—functibim ﬂf’f? andy € E,,

TRUE < ((V gE (b(v) —Vv)) + Y)NE, C (V gE (b(v) —Vv)) +y (property ofn)

e (((V gE (b(v) = V) + Y)NE; C (b(v) = V) +) (v E E;) (prop. of U)

< (bg,(y) C (b(v) —V) +y) (vE Ey) (definitions of B, andbg)
= bg, (y) C b(v). (v=1y)
Therefore,B — by is “onto”. O

We say that an elementary operator frik,) to P(E,) is conditionally translation
invariant (c.t.i.)) iff its structuring function fromg, to P(E,) is a ct-function. For any
B € 8, we denote by, (or ga) the c.t.i. elementary operator which has the structuring
function b In particular, we havey(X) = (XUE,) © B)nE, (X € ®(E,)) and
oY) = (Y® B)NE, (Y € P(E,) where © is the Minkowski subtraction of?(Z?)
(Hadwiger, 1950).
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5. Locally c.t.i. Elementary Operators

A functionb from E, to ¢, is said to be #ocally ct—functioniff there exist a subséil
of E,, calledmask and a ct—functiot’ from E, to &,, such that

b@={””"yEM v € Ey.

We will now give a constructive function decomposition in terms of locally ct—func-
tion. Letb be a function fronk, to %,. We define the binary relatiai,, on E, by
Y1 Rp Yy, & ABE B, (B + y)NE; = b(y) and 8 + y,) N E; = b(yy).

The relation®,, is an equivalence relation. We denotely/®,, the resulting partition
of E,.

Proposition 8— Any functionb from E, to 9, can be decomposed in terms of locally ct—
functions and the constructive decomposition is

0 otherwise

=V b
M € Ep/Ry, oMM

where, for anyM € P(E,) andB € B, bgy is the function fromk, to 9, given by
| bely) ifye M

Pen(y) = {(Z) otherwise vEE)
andb/M denotes the restriction bfto M. O

Proof — For anyN € E,/%, andy € N,

(, .V . Do) =b

M€ B, ) (definition and property obg)

Bp/N

b/N(y) (Proposition 7 applied to the ct—functibiN)
b(y). (definition of restriction)
O
The locally ct—functions of Proposition 8 are the functibgg.
We say that an elementary operator frémto 9, is locally c.t.i. iff its structuring
function in %PEZ is a locally ct—function. For anyl € 9, andB € B, we denote by,
(or gma) the locally c.t.i. elementary operator which has the structuring funiogign

6. Elementary Operator Decomposition in terms of Locally c.t.i. Elementary
Operators

Theorem 9— Any elementary operatdr(resp.s, 6 ande?) of the clas:\(P,, P.) (resp.
E(®,.,9?,), A P, P,) andEAP,, P,) ) can be decomposed in terms of locally c.t.i. ele-
mentary operators of the same class anldljsfits structuring function, the constructive

decompositioni® = A g O (respectivelys = A e¢g v, 2= V €% yand
M b/M’ M b/M’ M b/M’

M

0=V Bb/M'Méa)' where the union and intersection are taken &y¢ab,. O
M

Proof — The result is a consequence of Propositions 1, 2 and 8. The decomposition
involves an union (resp. intersection) when the magpirga is an isomorphism (resp.
a dual isomorphism). O
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From Theorems 6 and 9, we see that any operator can be decomposed in terms of
locally c.t.i. elementary operators.

Let E be a non empty subset 8f andB € B... We now consider thexampleof
decomposition oBg, the ct—dilation by Bdefined from®(E) to 9(E). We know that
0g(X) = (X @ B)nE. The left kernel (as defined in Theorem 6)Ygfis given by

c¥60)y) ={XEP: B'+y)nX =0 (y€EE).
Foranyy € E,if (B' + y)nE = 0, then- 36(dg)(y) = 0 and the pairsa b) of interest
in the decomposition af; are such that tha(y) contain at least one point iB'(+ y) N E;
if (B'+ y)NnE = 0, then- 36(dg)(y) = 0 and by conventiom(y) = E andb(y) = 0.

Let consider the following simple case wheBe= {p} with p € E® E' and let
Z = En(E + p). The pairs 4, b) of interest leading to the greatest interval functions
reduce to only one defined lafy) = {y — ptandb(y) = Eif y € Z,anda(y) = Eand
by) =0ifye E-Z

Hence, by Theorem 6,,, = ¢, A ;0* wherea andb are the above ct—functions. We
observe that eved,, being a ct—dilatiorz, is neither a ct—erosion nor a locally ct—ero-

sion. Justd?is a locally ct—anti—dilation (wittM = Z and B = E). Nevertheless, by
Theorem 9, we can decompasgn terms of two locally ct—erosions; = e;_; 7 A €gzc

Finally, we get the following decomposition of the ct—dilatigp in terms of locally ct—
erosions and ct—anti—dilation:

(S(p} = (8{,,)}’2 N 8E,ZC) N E’Zéa.
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