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Abstract. In the first part, we recall the axiomatic definition of the elementary morphological operators (dilations,
erosions, anti–dilations and anti–erosions) and their characterization in the case of Boolean lattices. This charac-
terization is used to derive the set operator decompositions from the general decompositions of operators between
complete lattices. In the second part, we define the notions of “conditionally translation invariant” (c.t.i.) and of
“locally c.t.i.” elementary operators. These operators are those usually implemented on digital computers. We
show how any c.t.i. elementary operator can be decomposed in terms of locally ones.
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1.  Introduction

In Image Processing, to work with translation invariant (t.i.) operators we must assume
that the image domain has a torus structure. Unfortunately, this assumption is not accept-
able in many practical applications. For this reason, the linear operators or the morpholog-
ical elementary operators commonly used in Image Processing, behave like t.i. operators
only in the “central” area of the image domain.

In the first part of the paper, we recall the axiomatic definitions of the four classes of
morphological elementary operators. When the domain or the range of these elementary
operators is a Boolean lattice, we can characterize the pairs of elementary operators that
form Galois connections. This characterization is useful for two reasons: on one hand, it
gives the clue for the link between any operator and its left or right kernel, and, on the other
hand, it can be used to characterize the elementary set operators in terms of structuring
functions.

Based on theses results, we derive the set operator decompositions from the general
operator decompositions introduced by Banon and Barrera (1993).

In the second part of the paper, we introduce the formal definition of the so–called
conditionally translation invariant (c.t.i.) elementary operators. This definition
corresponds to what is usually implemented on digital computers and it is based on the
notion of c.t.i. structuring function. We present the collection of all the structuring ele-
ments that characterize the c.t.i. structuring functions.

Unfortunately, the c.t.i. elementary operators are not sufficient to represent any opera-
tor. For this reason, we introduce the notion of locally c.t.i. elementary operator and we
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give a constructive decomposition of any c.t.i. elementary operator. The decomposition
of a c.t.i. dilation is given as an example to illustrate the theory.

2.  Axiomatic Definition and Characterization of the Morphological Elementary
Operators

Let (�,�), or simply �, be a complete lattice (Birkhoff, 1967). We denote by �, 


the union and intersection in �. The dual complete lattice of �, (�,�), is denoted 
�
�.

Let �1 and �2 be two complete lattices. The class �2
�1 of the mappings � from  �1

to �2, called operators, equipped with the punctual ordering �
(�2)

� �
(�2)

�� � �(X)�
�2

��(X) (X	 �1)

is a complete lattice.
We define the morphological elementary operators axiomatically. The dilations (resp.

erosions) from �1 to �2 are the operators in �2
�1 which commute with union (resp. inter-

section). The anti–dilations (resp. anti–erosions) from �1 to �2 are the dilations (resp.

erosion) from �1 to 
�
�2 (Banon & Barrera, 1993).

We will denote by �(�1,�2), �(�1,�2)� �
a(�1,�2) and �a(�1,�2) , respectively, the

class of dilations, erosions, anti–dilations and anti–erosions from �1 to �2. We know
(Banon & Barrera, 1993a) that these classes are complete lattices. Consequently, the
Galois connections (�,�) between �1 and �2 (Birkhoff, 1967) form a complete lattice
with respect the the partial ordering

(�,�)� (��,��) � � �
(�2)

�� and � �
(�1)

��.

If (�,�) is a Galois connection, then � is the companion operator of � and similarly
� is the companion operator of �.

Let E be a non empty set, then (�(E),�), or simply �(E) or �, the collection of all
parts of E equipped with the inclusion �, is a complete Boolean lattice. We denote by
Xc the set complement of a subset X of E.

Let (�,�) be a complete lattice. The set �
E of the functions a from E to � equipped

with the punctual ordering �
(�)

 is a complete lattice.

We now recall Corollary 4 of Achache (1982). A similar result (with �� �(E)) is
in Serra (1988, Section 2.2).

Proposition 1 – The mapping a� (�,�) from the complete lattice �E to the complete
lattice of Galois connections between � and (�(E),�) defined by

�(X)� { y	 E : X�
�

a(y)} ( X	 �)   and   �(Y)� 

y 	 Y

a(y) (Y	 �(E))

is a lattice isomorphism. Its inverse (�,�)� a is given by a(y)� �({ y}) ( y	 E). �

We know (Achache, 1982, Lemma 1) that �	 �
a(�,�) and �	 �

a(�,�). From
Proposition 1 we can derive the following proposition.

Proposition 2 – The mapping a� (�,�) from the complete lattice �E to the complete
lattice of Galois connections between � and (�(E),�) defined by
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�(X)� { y� E : X�
�

a(y)} c (X� �)   and   �(Y)� �
y � Yc

a(y) (Y� �(E))

is a lattice isomorphism. Its inverse (�,�)� a is given by a(y)� �({ y} c) (y� E). �

In this case, �� �(�,�) and �� �(�,�). In Propositions 1 and 2 the function a
is called the structuring function of the elementary operators � and �.

From Propositions 1 and 2 we can derive the elementary operators characterization
given in Table 1 and the next corollary where �2 stands for �(E2).

TABLE 1
Elementary operators characterization.

�� �(�1,�2)

�

identifying
to

�
�1

in
Prop.

1

leads to and

�� �a

with

�a(X)� { y� E2 : a(y)� X}

�� �(�2,�1) �� �a
�a(Y)� 	

y� Y
a(y)

�� �
a(�1,�2)

�1 1
�� b�

a
b�

a(X)� { y� E2 : X� b(y)}

�� �
a(�2,�1) �� �a

b
�a

b(Y)� �
y � Y

b(y)

�� �
a(�1,�2)�

�1 2
�� �a

a �a
a(X)� { y� E2 : a(y)� X} c

�� �
a(�2,�1) �� a�

a a�
a(Y)� 	

y � Yc
a(y)

2
�� b� b�(X)� { y� E2 : X� b(y)} c

�� b� b�(Y)� �
y� Yc

b(y)�1

�� �(�1,�2)

�� �(�2,�1)

Corollary 3 – Let a and b be two functions from E2 to �1. Then we have:
(1) if a is the structuring function of �� �(�2,�1) (i.e., a(y)� �({ y}) ( y� E2)) then
its companion erosion is �a;
(2) if b is the structuring function of �a

� �
a(�2,�1) (i.e., b(y)� �a({ y}) ( y� E2))

then its companion anti–dilation is b�
a;

(3) if a is the structuring function of �a
� �

a(�2,�1) (i.e., a(y)� �a({ y} c) (y� E2))
then its companion anti–erosion is �a

a;
(4) if b is the structuring function of �� �(�2,�1) (i.e., b(y)� �({ y} c) (y� E2)) then
its companion dilation is b�. �

3.  Operator Decomposition in terms of Elementary Operators

In order to specialize to set operators the general decomposition theorem (Banon & Bar-
rera, 1993) we need to derive one more corollary from Proposition 1. In this section �1

and �2 stands, respectively, for �(E1) and �(E2). Let � be an operator from �1 to �2.
We recall (Banon & Barrera, 1993) that the mappings ��(�) and ��(�)  from �2 to
�(�1) given by, for any Y� �2 ,

��(�)(Y)� { X� �1 : Y� �(X)} and ��(�)(Y)� { X� �1 : �(X)� Y}

are called, respectively, the left and right kernel of �.
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Corollary 4 – The left and right kernel of a set operator from �1 to �2 are, respectively,
an anti–dilation and an erosion from �2 to �(�1). �

Proof – For the left kernel, the result follows from Proposition 1 by identifying E, � , a
and � to, respectively, �1, �2, � and ��(�). For the right kernel, the result follows from

Proposition 1 by identifying E, � , a and � to, respectively, �1, 
�
�2, � and ��(�) . �

Let �,�� �1
�2 and let [�,�] be the interval function from �2 to �(�1) with extremi-

ties � and � (Banon & Barrera, 1993).

Lemma 5 – Let � be a set operator from �1 to �2.
(1) If �� �(�2,�1) and �� �

a(�2,�1) then, for any Y� �2,

[�,�]({ y}) 
 ��(�)({ y}) ( y� Y) � [�,�](Y)
 ��(�)(Y).

(2) If �� �
a(�2,�1) and �� �(�2,�1) then, for any Y� �2,

[�,�]({ y} c)
 ��(�)({ y} c) (y� Yc) � [�, �](Y)
 ��(�)(Y). �

Proof – Let us prove part (1). For any Y� �2,

TRUE � [�,�](Y)
 [�,�]({ y}) ( y� Y) (� is isotone and � is antitone)

� [�,�](Y)
 

y� Y

[�,�]({ y}) (property of the intersection)

� [�,�](Y)
 

y� Y

��(�)({ y}) ( [�,�]({ y}) 
 ��(�)({ y}) ( y� Y))

� [�,�](Y)
 ��(�)(�
y� Y

{ y}) (by Corollary 4,��(�) is an anti–dilation)

� [�, �](Y)
 ��(�)(Y). (Y representation by singletons)

The proof of part (2) is similar to the proof of part (1). �

Let AB be the set defined by

AB � {( a, b)� �1
E2� �1

E2 : 	y� E2, (a(y)
 b(y)) or (a(y)� E1 and b(y)� �)}

Let a, b� �1
E2. We denote by [a, b] the interval function from E2 to �(�1) with

extremities a and b. We denote the punctual ordering �
(
)

 on �(�1)
E2 simply �.

Theorem 6 – Any operator �� �2
�1 can be decomposed in terms of a set of sup–gener-

ating or inf–generating operators and the constructive decompositions are

�� �
(a, b) � AB and [a, b] � � �(�)

(�a� b�
a)

where ��(�)(y)� { X� �1 : y� �(X)}, for any y� E2, and

�� �
(a, b) � AB and [a, b] � ��(�)

(�a
a� b�)

where ��(�)(y)� { X� �1 : y� �(X)} , for any y� E2. �

Proof – We can make a direct proof or, as we do below, derive the result from the general
decomposition theorem of Banon & Barrera (1993). For any � from �1 to �2,
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�� �
(�, �) � ��

a and [�, �] � � �(�)
(�I �O�)

(Theorem 6.1 of Banon & Barrera (1993a) or Theorem 1 of Banon & Barrera (1993b))

� �
(�, �) � ��

a and ([�, �](y) 
 � �(�)({ y}) ( y � E2))
(�I �O�) (Lemma 5)

� �
(a, b) � AB and [a, b] � � �(�)

(�a� b�
a). (Corollary 3)

The proof of the second decomposition is similar to the proof of the first one.�
A direct proof of a similar result is given in Banon & Barrera (1990).
The sup–generating and inf–generating operators of Theorem 6 are, respectively, the

operators �a� b�
a and �a

a� b�, where a and b are functions from E2 to �1.

4.  Conditionally Translation Invariant Elementary Operators

Let (Z 2,�) be the set of ordered pairs of integers equipped with the usual addition. Let
u be a point of Z2, we denote by B� u the translate by u of a subset B of Z2 and by Bt

its transpose (Banon & Barrera 1991). From now on, we assume that the sets E1 and E2

of Section 3 are subsets of Z2 (for example “rectangles”).
A function b from E2 to �1 is conditionally translation invariant or a ct–function iff

�B� �(Z2), �y� E2, b(y)� (B� y) 
 E1.

Let us consider the following subcollection �E1,E2
, or simply �, of �(Z2)

�� { B� �(Z2) : �b� B, �u� E2, b� u� E1} .

Let 	 denote the Minkowski addition on �(Z2) (Hadwiger, 1950). We observe that
� is an ideal and a complete sublattice of �(Z2), its greatest element is E1	 E2

t and
�� �(E1	 E2

t). Figure 1 shows an element B of � generated by two rectangles.

Fig. 1 – An element of an ideal generated by two rectangles.

E1

E2

E2
t

E1	 E2
t

(0, 0)

B
u� b

�u

�b

The next proposition characterizes the ct–functions in �
E2
1

 in terms of subsets of

E1	 E2
t.

Proposition 7 – The mapping B� bB from � to the set of ct–functions in �E2
1

 given by

bB(y)� (B� y) 
 E1 (y� E2)

is a bijection. Its inverse b� Bb is given by Bb� �
y � E2

(b(y)� y). �

Proof – (1) For any B� �, bB is by construction a ct–function.
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(2) For any ct–function b from E2 to �(E1)

Bb� 

y� E2

(b(y)� y) (definition of Bb)


 

y � E2

(E1� y) (b(y)
 E1)

� E1� E2
t, (definition of �)

That is, Bb� �.
(3) Let us prove that B� bB is “one to one”. On one hand, for any B� �,
TRUE � (B� y) � E1
 (B� y) (y� E2) (property of the intersection)

� ((B� y) � E1)� y
 B (y� E2) (translation is isotone)

� 

y� E2

(((B� y) � E1)� y)
 B (property of the union)

� BbB

 B. (definitions of bB and Bb)

On the other hand, for any B� � and b� Z 2,
b� B � b� B and �y� E2, b� y� E1 (definition of �)

� �y� E2, b� y� B� y and y� b� E1 (property of the translation)
� �y� E2, b� y� (B� y) � E1 (definition of the intersection)
� �y� E2, b� ((B� y) � E1)� y (translation is isotone)

� b� 

y � E2

(((B� y) � E1)� y) (definition of the union)

� b� BbB
. (definitions of bB and Bb)

That is, for any B� �, B
 BbB
. Therefore, B� bB is “one to one”.

(4) Let us prove that B� bB is “onto”. On one hand, for any ct–function b in �E2
1

 and
y� E2,

bBb
(y)� (( 


v� E2

(b(v)� v))� y) � E1 (definitions of Bb and bB)

� b(y) � E1 (v� y e property of the union)
� b(y). (b(y)
 E1)

On the other hand, for any ct–function b in �E2
1

 and y� E2,

TRUE � (( 

v � E2

(b(v)� v))� y) � E1
 ( 

v� E2

(b(v)� v))� y (property of �)

� ((( 

v� E2

(b(v)� v))� y) � E1
 (b(v)� v)� y) (v� E2) (prop. of 
)

� (bBb
(y)
 (b(v)� v)� y) (v� E2) (definitions of Bb and bB)

� bBb
(y)
 b(v). (v� y)

Therefore, B� bB is “onto”. �

We say that an elementary operator from �(E1) to �(E2) is conditionally translation
invariant (c.t.i.) iff its structuring function from E2 to �(E1) is a ct–function. For any
B� �, we denote by �B (or B�) the c.t.i. elementary operator which has the structuring
function bB. In particular, we have �B(X)� ((X � E1

c)	 B) � E2 (X� �(E1)) and
�B(Y)� (Y� B) � E1 (Y� �(E2)) where 	 is the Minkowski subtraction on �(Z2)
(Hadwiger, 1950).
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5.  Locally c.t.i. Elementary Operators

A function b from E2 to �1 is said to be a locally ct–function iff there exist a subset M
of E2, called mask, and a ct–function b
 from E2 to �1, such that

b(y) � �b
(y)   if y� M

�  otherwise 
   (y� E2).

We will now give a constructive function decomposition in terms of locally ct–func-
tion. Let b be a function from E2 to �1. We define the binary relation �b on E2 by

y1 �b y2 � �B� �, (B� y1) 	 E1 � b(y1) and (B� y2) 	 E1 � b(y2).

The relation �b is an equivalence relation. We denote by E2��b the resulting partition
of E2.

Proposition 8 – Any function b from E2 to �1 can be decomposed in terms of locally ct–
functions and the constructive decomposition is

b� �
M � E2��b

bBb�M,M

where, for any M � �(E2) and B� �, bB,M is the function from E2 to �1 given by

bB,M(y) � �bB(y)   if y� M

�  otherwise 
   (y� E2)

and b�M denotes the restriction of b to M. �

Proof – For any N� E2��b and y� N,

( �
M � E2��b

bBb�M,M)(y) � bBb�N
(y) (definition and property of bB,M)

� b�N(y) (Proposition 7 applied to the ct–function b�N)
� b(y). (definition of restriction)

�

The locally ct–functions of Proposition 8 are the functions bB,M.

We say that an elementary operator from �1 to �2 is locally c.t.i. iff its structuring
function in �E2

1
 is a locally ct–function. For any M � �2 and B� �, we denote by �B,M

(or B,M�) the locally c.t.i. elementary operator which has the structuring function bB,M.

6.  Elementary Operator Decomposition in terms of Locally c.t.i. Elementary
Operators

Theorem 9 – Any elementary operator � (resp. �, �a and �a) of the class �(�1,�2) (resp.
�(�1,�2)� �

a(�1,�2) and �a(�1,�2) ) can be decomposed in terms of locally c.t.i. ele-
mentary operators of the same class and, if b is its structuring function, the constructive

decomposition is ��

M

Bb�M,M� (respectively. ��

M

�Bb�M,M, �a��
M

�a
Bb�M,M and

�a��
M

Bb�M,M�
a), where the union and intersection are taken over E2��b. �

Proof – The result is a consequence of Propositions 1, 2 and 8. The decomposition
involves an union (resp. intersection) when the mappinga� � is an isomorphism (resp.
a dual isomorphism). �
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From Theorems 6 and 9, we see that any operator can be decomposed in terms of
locally c.t.i. elementary operators.

Let E be a non empty subset of Z2 and B� �E.E. We now consider the example of
decomposition of �B, the ct–dilation by B defined from �(E) to �(E). We know that
�B(X)� (X� B) 	 E. The left kernel (as defined in Theorem 6) of �B is given by

��(�B)(y)� { X� � : (Bt� y) 	 X� �} ( y� E).

For any y� E, if (Bt� y) 	 E� �, then ��(�B)(y)� � and the pairs (a, b) of interest
in the decomposition of �B are such that the a(y) contain at least one point in (Bt� y) 	 E;
if (Bt� y) 	 E� �, then ��(�B)(y)� � and by convention a(y)� E and b(y)� �.

Let consider the following simple case where B� { p} with p� E� Et and let
Z� E 	 (E� p). The pairs (a, b) of interest leading to the greatest interval functions
reduce to only one defined by a(y)� { y� p} and b(y)� E if y� Z, and a(y)� E and
b(y)� � if y� E� Z.

Hence, by Theorem 6, �{ p} � �a
 b�
a where a and b are the above ct–functions. We

observe that even �{ p}  being a ct–dilation �a is neither a ct–erosion nor a locally ct–ero-
sion. Just b�

a is a locally ct–anti–dilation (with M � Z and B� E). Nevertheless, by
Theorem 9, we can decompose �a in terms of two locally ct–erosions: �a� �{�p},Z
 �E,Zc

Finally, we get the following decomposition of the ct–dilation �{ p}  in terms of locally ct–
erosions and ct–anti–dilation:

�{ p} � (�{�p},Z
 �E,Zc)
 E,Z�
a.
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