Skip to main content

Generalized Geodesic Distances Applied to Interpolation and Shape Description

  • Chapter

Part of the book series: Computational Imaging and Vision ((CIVI,volume 2))

Abstract

The time necessary to follow a path defined on a grey scale image is defined as the sum of the image values along the path. The geodesic time associated with two points of the image is nothing but the smallest amount of time necessary to link these two points. Starting from this notion, we define a new geodesic metric on the image plane: the generalized geodesic distance. The generalized geodesic distance betweeen two points is the length of the shortest path(s) linking these points in a minimum amount of time. This distance is used for defining a propagation function. Applications to shape description and interpolation from contour data are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beucher, S. (1990), Segmentation d’images et morphologie mathématique, PhD thesis, Ecole des Mines de Paris.

    Google Scholar 

  • Danielsson, P.-E. (1980), ‘Euclidean distance mapping’, Computer Graphics and Image Processing 14, 227–248.

    Article  Google Scholar 

  • Jeulin, D., Vincent, L. & Serpe, G. (1992), ‘Propagation algorithms on graphs for physical appli-cations’, Journal of Visual Communication and Image Representation 3(2), 161–181.

    Article  Google Scholar 

  • Kimmel, R. & Bruckstein, A. (1993), Sub¨Cpixel distance maps and weighted distance transforms, in ‘Geometric methods in computer vision II’, Vol. SPIE-2031, pp. 259–268.

    Google Scholar 

  • Lantuéjoul, C. & Beucher, S. (1980), ‘Geodesic distance and image analysis’, Mikroskopie 37, 138–142.

    Google Scholar 

  • Lantuéjoul, C. & Beucher, S. (1981), ‘On the use of the geodesic metric in image analysis’, Journal of Microscopy 121, 39–49.

    Article  Google Scholar 

  • Lantuéjoul, C. & Maisonneuve, F. (1984), ‘Geodesic methods in image analysis’, Pattern Recognition 17(2), 177–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Maisonneuve, F. & Lantuéjoul, C. (1984), ‘Geodesic convexity’, ACM Transactions on Graphics 3(2), 169–174.

    Google Scholar 

  • Maisonneuve, F. & Schmitt, M. (1989), ‘An efficient algorithm to compute the hexagonal and dodecagonal propagation function’, ACM Transactions on Graphics 8(2), 515–520.

    Google Scholar 

  • Meyer, F. (1992), Integrals and gradients of images, in P. Gader, E. Dougherty & J. Serra, eds, ‘Image Algebra and Morphological Image Processing III’, Vol. Proc. SPIE 1769, pp. 200–211.

    Google Scholar 

  • Osher, S. & Sethian, J. (1988), ‘Fronts propagating with curvature speed: algorithms based on Hamilton¨CJacobi formulations’, Journal of Computational Physics 79, 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Piper, J. & Granum, E. (1987), ‘Computing distance transformations in convex and non-convex domains’, Pattern Recognition 20(6), 599–615.

    Article  Google Scholar 

  • Rutovitz, D. (1968), Data structures for operations on digital images, in G. Cheng, R. Ledley, D. Kollock & A. Rosenfeld, eds, ‘Pictorial pattern recognition’, pp. 105–133.

    Google Scholar 

  • Sapiro, G., Kimmel, R., Shaked, D., Kimia, B. & Bruckstein, A. (1993), ‘Implementing continuous-scale morphology via curve evolution’, Pattern Recognition 26(9), 1363–1372.

    Article  Google Scholar 

  • Schmitt, M. (1989), ‘Geodesic arcs in non-Euclidean metrics, application to the propagation function’, Revue d’intelligence artificielle 3(2), 43–76.

    Google Scholar 

  • Soille, P. (1991), ‘Spatial distributions from contour lines: an efficient methodology based on distance transformations’, Journal of Visual Communication and Image Representation 2(2), 138–150.

    Article  Google Scholar 

  • Soille, P. (1992), Morphologie mathématique: du relief à la dimensionalité—Algorithmes et méthodes—, PhD thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

    Google Scholar 

  • Soille, P. (1993a), Generalized geodesy via geodesic time, Submitted to Pattern Recognition Letter.

    Google Scholar 

  • Soille, P. (1993b), The geodesic time function: principles and applications, in ‘The 1993 Interna-tional Conference on Confocal Microscopy & 3D Image Processing’, Sydney, p. 107.

    Google Scholar 

  • Usson, Y. & Montanvert, A. (1993), Reconstruction tridimensionnelle à partir des distances dis-cr¨¨tes, in ‘Colloque géométrie discrète en imagerie: fondements et applications’, Strasbourg,pp. 20–21.

    Google Scholar 

  • Verbeek, P. & Verwer, B. (1990), ‘Shading from shape, the eikonal equation solved by grey-weighted distance transform’, Pattern Recognition Letters 11, 681–690.

    Article  MATH  Google Scholar 

  • Verwer, B., Verbeek, P. & Dekker, S. (1989), ‘An efficient cost algorithm applied to distance transforms’, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(4), 425429.

    Article  Google Scholar 

  • Vincent, L. (1991a), Efficient computation of various types of skeletons, in ‘Medical Imaging V’, Vol. Proc. SPIE 1445.

    Google Scholar 

  • Vincent, L. (1991b), Exact Euclidean distance function by chain propagations, in ‘Proc. IEEE Computer Vision and Pattern Recognition’, pp. 520–525.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Soille, P. (1994). Generalized Geodesic Distances Applied to Interpolation and Shape Description. In: Serra, J., Soille, P. (eds) Mathematical Morphology and Its Applications to Image Processing. Computational Imaging and Vision, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1040-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1040-2_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4453-0

  • Online ISBN: 978-94-011-1040-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics